P and NP

Linear Speedup / Compression Theorems "Constant factors don't mather"
$\left.\begin{array}{l}\operatorname{DTIME}(T(n)) \subseteq \operatorname{DSPACE}(T(n)) \\ \operatorname{NTIME}(T(n)) \in \operatorname{NSPACE}(T(n))\end{array}\right\} \begin{aligned} & \text { Time bounds } \\ & \text { give an upper } \\ & \text { bod on memory }\end{aligned}$
$\left.\begin{array}{l}\operatorname{DTIME}(T(n)) \subseteq \operatorname{NTIME}(T(n)) \\ \operatorname{DSPACE}(S(n)) \subseteq \operatorname{NSPACE}(S(n))\end{array}\right\} \begin{aligned} & \text { Deft mac are } \\ & \text { Spl nondet mac }\end{aligned}$

$$
\operatorname{NTIME}(T(n)) \subseteq \operatorname{DSPACE}(T(n))
$$

Immerman S.

$$
L \rightarrow N L \rightarrow P \rightarrow N P \rightarrow \text { SPACE } \Theta \text { NPSPPACE } \rightarrow \text { EXP } \rightarrow \text { NE XP }
$$

$C O C=\{A \mid \bar{A} \in C\}$ Space Hierarchy
Prop: If C is a deterministic complexity class then $c_{0} C=C$.
Proof For any $A \in c_{0} C$, sun algo for \bar{A} and flip answer
$P, N P$ and co NP
Cobham-Edomond's Thesis The class problems that can be efficiently solved is P.

- Invariance thesis says P is platform n invariant
- Moat problems in P have running time
pounce by a low agree poly.
- polynomials grow much slower than expo.

Question $P \stackrel{?}{=} N P$
Polynomial Verifiable A problem A is polynomial verifiable of there is deteraminatic TM V s.t

$$
A=\{x \mid \exists p . \quad\langle x, p\rangle \in L(v)\}
$$

and $\exists k$ s.t V runs in time $|x|^{k}$ on input $\langle x, p\rangle$.

$$
W 2 O G|p| \leq|x|^{k}-|x|
$$

Theorem A is polynomial verifiable of $A \in N P$.
P : Collection of all problems s.t. you car efficient determine nembershif of an input / you can find the proof of membership and check correctness efficiently
NP: Collection of problems for which given a proof of the membership of an input you can check. I efficiently.
Pslytime Reduction Problem A reduces to problem B in polynomial time if there
so a function f computable in poly nominal lime st

$$
\begin{aligned}
& \forall x . \quad x \in A \text { iff } f(x) \in B \\
& A \leq_{p} B
\end{aligned}
$$

Proposition
(a) If $A \leqslant_{p} B$ and $B \leqslant_{p} C$ then $A \leq_{p} C$.
(b) If $A \leq p B$ then $\bar{A} \leqslant p \bar{B}$

Theorem let C be any complexity Claso "above P ". And $A \leq p B$.
If $B \in C$ then $A \in R$
If $A \notin C$ then $B \notin C$.
Fix C to be a complexity clos containing P. Hardness A is C-hard if $\forall B \in R \quad B \leqslant_{p} A$. Completeness A is C - complete if $A \in C$ and A is C-hard.
Gook. Lever The stem Satrofiabity problem for propositional logic is NP -complete.
Proof Membership in NP: Given a formula φ and a truth assignment, the verifier will evaluate φ an the truth assignment.
NP-hardwess: Let $A \in N P$. Need to show $A \leq p$ Sat. Let M be a NTM running in time n^{l} st LIn $)=A$.
φ_{x} is satisfiable of M acceptor x.
Assume M hos one work-Tape and has a unique accepting state q_{a} (which is hating) and rejecting state qu (wish io halting) and $p_{\text {rooposithins As Assume }}^{q_{0}} n=|x|$
$n^{l} \rightarrow \operatorname{St}(q, i)$ "States M at Tine i is q ". $n^{l+1} \rightarrow \ln H_{a l}(j, i)$ "Input heal is an cell j at tine $n^{2 l} \rightarrow$ WkHd (j, i) "Work Tape head is on cell j at Time i
$n^{2 l} \rightarrow W k(b, j, i)$ "Work tape ha o syinbol b in cell j at tine i.
Truth assignments to propositions encode a computation of M an n

$$
\varphi_{x}=\varphi_{\text {init }} \wedge \varphi_{\text {consistency }} \wedge \varphi_{\text {trans }} \wedge \varphi_{\text {accept. }}
$$

Tinct: Truth assignment correspond ing to proposclims at tine O correspond to the initial config of M.

$$
\begin{aligned}
& \varphi_{\text {init }}=\operatorname{St}\left(q_{0}, 0\right) \wedge \operatorname{InHd}(0,0) \wedge \operatorname{WkHd}(0,0) \\
& \Lambda \Lambda^{n^{-1}} \omega_{k}(\nu, j, 0) \\
& j=0 l
\end{aligned}
$$

$$
\begin{aligned}
& \text { Tconsistency - } l_{i=0}^{1} \text { unig }\left(\rightarrow u\left(\varphi_{0}, \varphi\right), \Delta l\left(q_{1}, \varphi\right) \ldots u\left(\psi_{k},\right)^{\prime}\right) \\
& a \operatorname{Uaiq}(\ln H d(0, i), \ldots \ln H d(n-1, i))
\end{aligned}
$$

$$
\begin{aligned}
& \left.\bigwedge_{j=0}^{n^{l}-i} U_{n i q}\left(W k\left(b_{a}, j, i\right), W k\left(b_{2}, j, i\right) \ldots\right)\right]
\end{aligned}
$$

$\operatorname{lnig}\left(p_{i} \cdot p_{k}\right)$ - Exactly ene p_{i} is true.

