Completeness of Resolution and Recap of computability

CUEP3 DUÉ1P3 Resolution
CUD
Soundness Theorem If a set of clauses
Soundness Theorem If a set of clauses Those a resolution refutation then
T is unsatrofiable.
Proof Suppose C1, C2 Cm is a
refutation of I. Consider
$\Delta_{o} = \Gamma$
$\Delta_{i} = \Delta_{i-1} U \{ c_{i} \}$
$\Delta_{m} = T \cup \{C_{1}, C_{2}, \dots C_{m}\}$
Cm = {3} => Am io un satisfiable
Resolution Lemma of C is the resolvent
of two clauses in T then of TUECZ is
unsatiofiable then T is unsatisfiable.
Brood Assume VFT and C is the
resolvent DUEPS and EUE7PS.
vt Dugpg vt EUg7pg
WLOG V(p) = T
Jlefs.t v[l]=T
Therefore v = C (since L = C)
Completeners Theorem of T is an unsatisfial
at a planner Then I have a sotatation.

Proof [Davis - Putnam] Assume T is finite set and is unsatisfiable Tio non-empty By induction on the number of propositions that appear in 17. Base Case: The set of propositions oppearing in T is empty. Refutation for T is {} Induction Step: Let & be a proposition that appears in T. If a clause C contains both pand op then Cio satisfied. WLOG assume T does not Contain Souch clauses. We partition Tinto To = { CET | Ep,7}3 nc = \$3 TT = { CETIPEC3 Tr = { CET 17PEC} Tp = To U {CUP (CUEP} E T, PUETPS E T, PUETPS E T, PS Refutation T is going to be do all resolutions and refute To.

Lemma Tp is unsatisfiable. o 1 1 - The listing Time

trod ASSume for convulation Satisfiable. Let v F Tp. V' be the valuation that agrees with v on all propositions except \$. v' = Tp WLOG V(+) = T and V'(+) = F. Tp = To U { CUD | CUEPSE Tt, DUETPSETES v F To v' F To v = T = v' = T = Ib v = Tt or v' = Tt then Tis satisfiable Assume VXT and VXXT. J CUÉP3 ET+, DUÉ7P3 ET+ s.t. V X DU {7p} v/ X CU {p}. v, v/ XD and v, v' X C v, v/ \ CUD E TP Contradicto V, V' FTp. If I is an infinite set of unsatisfiable clauses—then compactness Theorem soups that I a finite subset $\triangle \subseteq T$ which is

un satisfiable.

Computate they Twing Machines Input Read only Control

[Control

]

Read on

Read on Outljut Take Wriste only. At the begunns - Input tape contains input - All other takes are blank - State is initial state go At any line, turing machine reads the input Take and each work-take. Base de on its current state - Change its state - Write Symboto on each work-tope - Move input / work tope heads either left or right. - It may choose to write a symbol on the output take. Given an input, the TM can do one

of 3 things - Run forever - Halto bott it does not necept input - Halts and accepts. Language L(M) = { w | M accepto w} M'recognizes A'ff A = L(M). Church - Turing Thesis Any nechanical procedure can be implemented on Turing Machine. - For TM M There is sing (M) That have only one work-Tape s.t L(M) = 2(sing(M))- Nondetermissic: On any inplit the machine may here more thous one computation. A NTM N accept input & of N accepts su on some computation. - Fore any NTM N there is a detirmedic det(N) s.t L(N) = 2(dut(N)) Recursarely Enumerable A language A io r.e. if ITM M s.t. L(m) = A.

Recursive A language A is recursive of
J7M M that halts on all inputs and
$1/\Omega = A$
Proposition of A is recursive then it is
ploo r.e-
Proposition If A is recursive then A is
also recursive.
Proof ID A is revisive then I M that
halts on all inputs and L(M)=A.
Consider M: Runs M and flips NIS
answer.
M halts on all injerts
and $L(M) = A$.
Theorem A is recursive of and only of
Ais r.e. and Āis r.e.
Proof A reviewe - A 1.e
A recursive \Rightarrow A recursive \Rightarrow A is le.
(A is recognized M, and A vo
recognized by M2.
Algorithm for A:
On input & (dovitailing) Run M. on & ? probled
Run M. on & problet
Λ Λ Λ Λ Λ Λ

Hun 11/2 on 2 J If M, accepts then answer Yes