Completeness of Resolution and Recap of computability
Soundness Theorem. If a set of clauses Γ has a resolution refutation then Γ is unsatisfiable.

Proof. Suppose C_1, C_2, \ldots, C_m is a refutation of Γ. Consider:

$\Delta_0 = \Gamma$

$\Delta_i = \Delta_{i-1} \cup \exists C_i^3$

$\Delta_m = \exists \overline{\exists} \exists C_1, C_2, \ldots, C_m^3$

$C_m = \exists \overline{\exists} \exists \implies \Delta_m$ is unsatisfiable

Resolution Lemma. If C is the resolvent of two clauses in Γ then if $\Gamma \cup \exists C^3$ is unsatisfiable then Γ is unsatisfiable.

Proof. Assume $\models \neg \Gamma$ and C is the resolvent $DU\exists P^3$ and $EU\exists \neg P^3$.

$\models DU\exists P^3 \land EU\exists \neg P^3$

WLOG $\models C(p)$ = T

$\exists \overline{\exists}$ set of $\models [C] = T$

Therefore $\models C$ (since $C \subseteq C$)

Completeness Theorem. If Γ is an unsatisfiable set of clauses then Γ has a refutation.
Proof [Davis–Putnam]

Assume \(T \) is finite set and is unsatisfiable

\(T \) is non-empty

By induction on the number of propositions that appear in \(T \).

Base Case: The set of propositions appearing in \(T \) is empty.

\[\exists \exists \in T \]

Refutation for \(T \) is \(\exists \exists \)

Induction Step: Let \(\phi \) be a proposition that appears in \(T \).

If a clause \(C \) contains both \(\phi \) and \(\neg \phi \), then \(C \) is satisfied. WLOG assume \(T \) does not contain such clauses.

We partition \(T \) into

\[T_0^+ = \{ \exists \in T \mid \exists \phi, \neg \phi \wedge C = \phi \} \]

\[T_0^- = \{ \exists \in T \mid \phi \in C \} \]

\[T_0^0 = \{ \exists \in T \mid \neg \phi \in C \} \]

\[T_0^- = \{ \exists \in T \mid \neg \phi \in C \} \]

\[T_0^+ = T_0^+ \cup \exists \in C \cup D \mid C \cup \exists \phi \in T_0^+, D \cup \exists \neg \phi \in T_0^- \]

Refutation \(T \) is going to be do all resolutions and refute \(T_0^+ \).

Lemma \(T_0^+ \) is unsatisfiable.
Assume for contradiction that

\[\neg T_p \]

is satisfiable.

Let \(v \models T_p \).

Let \(v' \) be the valuation that agrees with \(v \) on all propositions except \(\top \).

\[v' \not\models T_p \]

WLOG \(v(\top) = T \) and \(v'(\top) = F \).

\[T_p = T_0 \cup \{ \text{CUD} \mid \text{CU} \notin \rho_3 \in T_+ \}, DU \notin \rho_3 \leq T_- \]

\[v \not\models T_0 \quad v' \not\models T_0 \]

\[v \not\models T_+ \quad v' \not\models T_- \]

If \(v \not\models T_- \) or \(v' \not\models T_+ \), then \(T \) is satisfiable.

Assume \(v \not\models T_- \) and \(v' \not\models T_+ \).

\[\exists \rho_3 \in T_+ \cup DU \notin \rho_3 \in T_- \]

s.t. \(v \not\models DU \notin \rho_3 \quad v' \not\models \text{CU} \rho_3 \).

\[v, v' \not\models \text{CUD} \quad \text{and} \quad v, v' \not\models \text{C} \quad v, v' \not\models \text{CUD} \in T_p \]

Contradicts \(v, v' \not\models T_p \).

If \(T \) is an infinite set of unsatisfiable clauses, then Compactness Theorem says that \(\exists \) a finite subset \(\Delta \subseteq T \) which is unsatisfiable.
At the beginning
- Input tape contains input
- All other tapes are blank.
- State is initial state 0.

At any time, Turing machine reads the input tape and each work-tape. Based on its current state
- Change its state
- Write Symbols on each work-tape
- Move input/work tape heads either left or right.
- It may choose to write a symbol on the output tape.

Given an input, the TM can do one
of 3 things
- Run forever
- Halts but it does not accept
- Halts and accepts.

Language \(L(M) = \{ w \mid M \text{ accepts } w \} \)

M recognizes A iff \(A = L(M) \).

Church-Turing Thesis Any mechanical procedure can be implemented on Turing machine.

- For TM M there is \(\text{Sing}(M) \) that has only one work-tape s.t
 \(L(M) = L(\text{Sing}(M)) \)

- Nondeterministic: On any input the machine may have more than one computation.
 A NTM N accepts input x if N accepts x on some computation.

- For any NTM N there is a deterministic \(L(\text{det}(N)) \) s.t \(L(N) = L(\text{det}(N)) \)

Recursively Enumerable A language A is r.e. if \(\exists \) TM M s.t. \(L(M) = A \).
Recursive: A language \(A \) is recursive if there exists a machine \(M \) that halts on all inputs and \(L(M) = A \).

Proposition: If \(A \) is recursive then it is also r.e.

Proposition: If \(A \) is recursive then \(\overline{A} \) is also recursive.

Proof: If \(A \) is recursive then \(\exists M \) that halts on all inputs and \(L(M) = A \). Consider \(\overline{M} \): Runs \(M \) and flips \(M \)'s answer.

\[\overline{M} \text{ halts on all inputs and } L(\overline{M}) = \overline{A}. \]

Theorem: \(A \) is recursive if and only if \(A \) is r.e. and \(\overline{A} \) is r.e.

Proof:

\(\Rightarrow \): \(\exists A \text{ r.e. } \Rightarrow \exists \overline{A} \text{ r.e. } \)

\(\Leftarrow \): \(A \) is recognized by \(M_1 \) and \(\overline{A} \) is recognized by \(M_2 \).

Algorithm for \(A \):

On input \(x \) (dovetailing)

Run \(M_1 \) on \(x \) and \(\overline{M_2} \) on \(x \).

Stop if \(M_1 \) or \(\overline{M_2} \) halts.
Run M_{12} on x.

If M_{12} accepts, then answer Yes.