Completeness of Resolution and Recap of computability

$\frac{C \cup\{p\} D \cup\{q p\}}{C U D}$ Resolution
Soundness Theorem If a set of clans Γ hov a resolution refutation then T is unsatrofiable.
Proof Suppose $c_{1}, c_{2} \ldots c_{m}$ is a refutation of P. Consider

$$
\begin{aligned}
& \Delta_{0}=\Gamma \\
& \Delta_{i}=\Delta_{i-1} \cup\left\{C_{i}\right\} \\
& \Delta_{m}=\Gamma \cup\left\{C_{1}, C_{2} \ldots C_{m}\right\} \\
& C_{m}=\{ \} \Rightarrow \Delta_{m} \text { io unsatisfiable }
\end{aligned}
$$

Resolution Lemma If C is the resobent of tiro clauses in Γ then of $T \cup\{c\}$ is unsatisfiable then Γ is unsatisfiable.
Proof Assume $v \neq \Gamma$ and C io the resolvent $D \cup\{P\}$ and $E \cup\{7 p\}$.

$$
v k D \cup\{p\} \quad v \vDash E \cup\{7 p\}
$$

WOG $\quad v(p)=T$

$$
\exists l \in E \text { set } v \llbracket l \rrbracket=T
$$

Therefore $v \neq C$ (since $l \in C$)
Completeness Theorem If T is an unsätiafiable Set of clauses then P has a refutation.

Proof [Davis - Putnam]
Assume Γ is finite set and is unsatisfiable T is non-empty
By induction on the number of proportion that appear in Γ.
Base Case: The sit of propositions appearing in T is empty.

$$
\} \in T
$$

Refutation for T is $\}$
Induction Step: Let p be a proposition that appears in T.
If a clause C contains botch pond Ip then C is satisfied. WLOG assume T does not contain sack clauses.
We partition T into

$$
\begin{aligned}
\text { We portion } & \text { into } \\
T_{0}^{p} & =\{c \in T \mid\{p, \neg p\} \cap c=\phi\} \\
T_{+}^{p} & =\{c \in T \mid p \in C\} \\
T_{+}^{p} & =\{c \in T \mid \neg p \in C\} \\
T_{p} & =\Gamma_{0}^{p} \cup\left\{C \cup D \mid C \cup\{p\} \in T_{+}^{p}, D \cup\{\neg p\} \in T_{-}^{p}\right\}
\end{aligned}
$$

Refutation P is going to be do all resolutions and refute T_{P}.
Lemma T_{p} w unsatisfiable.

Proof ASS ump for corvonanumor ip w Satiofiable.
Let $v \neq \Gamma_{p}$.
V^{\prime} be the valuation that agrees with v an all propositions except p.

$$
v^{\prime} F^{\prime} T_{p}^{\prime}
$$

SLOG $v(p)=T$ and $v^{\prime}(p)=F$.

$$
\begin{aligned}
& \text { LOG } \left.v(p)=7 \text { and } v(p) \mid C \cup\{p\} \in \Gamma_{+}^{p}, D \cup\{T p\} \in T_{-}^{p}\right\} \\
& T_{p}=\Gamma_{0}^{p} \cup\left\{C \cup D \mid=T_{0}^{p} \quad v^{\prime} \vDash T_{0}^{p}\right. \\
& v \vDash \Gamma_{+}^{p} \quad v^{\prime} \vDash T_{-}^{p}
\end{aligned}
$$

If $v \vDash \Gamma_{-}^{p}$ or $v^{\prime} \vDash T_{+}^{p}$ then $T_{\text {is }}$ satisfiable Assume $v \not \not \not \Gamma_{-}^{p}$ and $v^{\prime} \not \not \notin T_{+}^{p}$.
$\exists C \cup\{p\} \in \Gamma_{+}^{p}, \quad D \cup\{\neg p\} \in \Gamma_{-}^{p}$ s.t. $v \not \models D \cup\{\neg p\} \quad v^{\prime} \not \not \notin C \cup\{p\}$.
$v, v^{\prime} \not \forall D$ and $v, v^{\prime} \not \notin C$

$$
v, v^{\prime} \not \notin C \cup D \in \Gamma_{P}
$$

Contradictor $\quad v, v^{\prime} \not \vDash T_{p}$.
If Γ is an infante set of unsatisfiable clauses then compactness Theorem says that \exists a finite subset $\Delta \subseteq T$ which is unsatisfiable.

Computat duly
Towing Machines

At the beginning

- Inpart tape contains input
- All other tapes are blank.
- State is initial state do At any time, turing machine reads the input tape and each work-tape. Based on 'it' current state
- Change its state
- Write symbols on each work-tape
- Move inpart/work tape heads either left or right.
- It may choose to write a symbol on the outpost tape.
Given an input, the TM can do one
of 3 things"
- Run freer
- Halts but it doe not accept not accept input
- Halts and acceptor.

Language $L(M)=\{w \mid M$ accepts $w\}$ M recognizes A if $A=L(M)$.
Church -Turing Thesis Any mechanical procedure can be implemented on Twang Machine.

- For TM M there is sing (M) that has only one work-tape s.t

$$
L(M)=L(\operatorname{sing}(m))
$$

- Nondeterministic: On any inplet the machine may have more than one computation.
A NIM N accept input x if N accepts x on some compentation.
- Fore any NTM N there is a detirmudic $\operatorname{det}(N)$ s.t $L(N)=L(\operatorname{det}(N))$
Recursurly Enumerable A language A is re. if $\exists T M M$ sit. $L(n)=A$.

Recursive A language A is recursive if JIM M that halts on all inputs and $L(M)=A$.
Proposition If A is recursive then it is also re-
Proportion If A is recursive then \bar{A} is also recursive.
Proof If A is recursive then $\exists M$ that halts an all inputs and $L(M)=A$.
Consider \bar{M} : Runs M and flips M 's answer.
\bar{M} halts on all inperto and $L(\bar{M})=\bar{A}$.
Theorem A is recursive if and only if A is re. and \bar{A} is re.
Proof A recursive $\Rightarrow A$ re
A recursive $\Rightarrow \bar{A}$ recursive $\Rightarrow \bar{A}$ is le.
$(\Leftrightarrow A$ is recognized M, and \bar{A} is recognized by M_{2}.
Algorithm for A :
On input x
(dovetailing)
$\left.\begin{array}{l}\text { Run M. on } x \\ n\end{array}\right\}$ parallel

Kun NOL 2 orr $n j$ If M, accepts then answer Yes

