Compactness Theorem

Recap

- For a set of formulas T and valuation v $v \vDash \Gamma$ if $\forall \varphi \in \Gamma \quad v \vDash \varphi$
- T FP if $\forall v$, if $v \vDash T$ than $v \vDash \varphi$
- φ is a tantology/valid if $\phi F \varphi$ or $\forall v . \quad v \neq \varphi$
- φ / Γ is satisfiable if there is a valuation v s.t. $\quad v \vDash \varphi(v \vDash \Gamma)$.
Validity Problem Given a formula φ, determine if φ is valid/tantologg
Satiofialility Problem Given φ, determine of φ is satisfiable
Is $p \rightarrow(q \rightarrow p) \quad(p, q$ propositions $)$ valid?

$p \varphi$	q	$p \rightarrow(q \rightarrow p)$	$\varphi \rightarrow(\psi \rightarrow \varphi)$
F	F	T	T
F	T	T	F
T	F	T	T
T	T	T	T

Algorithm for Satrofiabitity and Validity
Construct the truth Table
Analysis: \#row in 2^{n} where n io
size of the formula

p	q	$(p \rightarrow q) \rightarrow p$
F	F	säninfinble
F	T	F
T	F	F
T	T	T

Proporition φ is valid of 7φ is unsatigatable
Compactress Theorm
Finitely Satiofiable A set of formulas T is finitely satiofiable if every fïnte subaset of P is satiofiable
Compactres Theoram T is sationable if T is finitely satiofiable.
\Leftrightarrow If T satiofiable $\Rightarrow \exists v \quad v \neq T$
For any finte subact $\Gamma_{0} \subseteq T \quad v \neq \Gamma_{0}$ T is fintely satiofiable.
$(\Leftrightarrow T$ io fimtely sothofinble
Propositions can be enmmeratid as $p_{1}, p_{2} \ldots p_{n} \ldots$
Probosition: Let Δ be any set of formulao and φ be formula. It Δ is kimtele,

Satisfiable then cither $\Delta U\{\varphi\}$ io finitely satisfiable or $\Delta U\{7 \varphi\}$ is finitely satisfiable.
Proof Assume that $\Delta U\{\varphi\}$ and $\Delta U\{2 \varphi\}$ are both not finitely sat.
\exists finite subset $\Delta_{0} \subseteq \Delta \cup\{\varphi\}$ and

$$
\Delta_{1} \subseteq\{\neg \varphi\} \cup \Delta \text { sit. }
$$

Δ_{0}, Δ_{1} are unsatisfiable.

$$
\Pi=\left(\Delta_{0} \cup \Delta_{1}\right) \backslash\{\varphi, \tau \varphi\}
$$

- T is finite set

$$
-\Gamma \subseteq \Delta
$$

- T is satrofiable
\exists valuation v s.t $\quad v F T$
Either $\quad v[\varphi \mathbb{C}=T \Rightarrow v \vDash \Gamma \cup\{\varphi\}$

$$
\begin{gathered}
\Rightarrow \quad v F \Delta_{0} \text { (because } \\
\Delta_{0} \subseteq T \cup\{\varphi \xi)
\end{gathered}
$$

Or

$$
\begin{aligned}
v[\varphi]=F & \Rightarrow v \vDash T \cup\{\neg \varphi\} \\
& \Rightarrow v \vDash \Delta_{1} \quad\left(\Delta_{1} \subseteq T \cup\{\neg \varphi\}\right)
\end{aligned}
$$

Contradiction.
Assume T is finitely satisfiable Enumerate $P_{1}, P_{2}, P_{3} \ldots$

$$
\begin{aligned}
& \Delta_{0}=\Gamma \\
& \Delta_{i+1}=\left\{\Delta_{i} \cup\left\{p_{i}\right\} \text { if } \Delta_{i} \cup\left\{p_{i}\right\}\right. \text { io }
\end{aligned}
$$

$\Delta_{i} \cup\left\{T p_{i} \xi \quad 0 \cdot w\right.$.

- $\forall i \Delta_{i}$ is finitely satisfiable

Prove by induction
Define $\quad \Delta=\bigcup_{i \in \mathbb{N}} \Delta_{i}$

- Δ is finely satisfiable

Suppose Δ^{\prime} is a finite subset of Δ
$\forall i, j \quad i<j, \quad \Delta_{i} \leq \Delta_{j}$
$\exists i \quad \Delta^{\prime} \subseteq \Delta_{i} \Rightarrow \Delta^{\prime}$ satisfiable

$$
\begin{aligned}
& \Delta_{0}=\Gamma \quad \Delta_{1}=\left\{\begin{array}{l}
\Gamma \cup\left\{p_{1}\right\} \\
\Gamma \cup\left\{7 p_{1}\right\}
\end{array}\right. \\
& \Delta_{2}=\left\{\begin{array}{l}
\Delta_{1} \cup\left\{p_{2}\right\} \\
\Delta_{1} \cup\left\{7 p_{2}\right\}
\end{array}\right.
\end{aligned}
$$

Define $v(p)= \begin{cases}T & \text { if } p \in \Delta \\ F & \text { if } \neg p \in \Delta\end{cases}$
Clam: $\quad v \neq T$
Prof: Consider $\varphi \in \Gamma \quad\binom{$ want to show }{$v \neq \varphi}$ Let $P=$ set propositions that appear in φ

$$
\begin{aligned}
& P^{7}=\{\neg p \mid p \in P\} \\
& \Gamma_{0}=\{\varphi\} \cup(p \cap \Delta) \cup\left(p^{7} \cap \Delta\right)
\end{aligned}
$$

Γ_{0} is finite subset of Δ
$\Rightarrow \Gamma_{0}$ is satisfiable $\Rightarrow v^{\prime} \neq \Gamma_{0}$
$\forall q \in P$

$$
\begin{array}{lll}
v^{\prime}(q)=T & \text { if } & q \in \Gamma_{0} \\
v^{\prime}(q)=F & \text { isth } & 7 q, \in \Gamma_{0}
\end{array}
$$

v and v^{\prime} agree on P
By relevance lemma, $\quad v \vDash \varphi$
Graph (undirected simple) $G=(V, E)$ $E \subseteq V_{x} V$ s.t E is irreflexive ($\left.\forall v .(v, v) \in E\right)$ and E is symmetric ($\forall u, v .(u, v) \in E$ if $(v, u) \in E)$
k-Coloring of a graph $G=(V, E)$ is $c: V \rightarrow\{1, \ldots k\}$

$$
\text { s.t } \forall u, v,(u, v) \in E \Rightarrow c(u) \neq c(v)
$$

Planar Graph is graph drawn on poser such that no two edges cross.
4-cotor Theotem Every finite planar graph com be colored wang 4 colors.
Proposition For any graph G (finule/unfinite)
there is a set of formulas $\Gamma_{G, k}$ s.t.
$\Pi_{G, k}$ is satisfiable if G can b colored vang k-colors.
Proof Take $r_{u i}$ to denote "vertex "a ceto arbor:"
T Gr to b the sett of formulas

- For every vertex u.

$$
r_{u_{1}} V^{\prime} r_{u_{2}} V \ldots r_{u_{k}}
$$

- For any vertex n and colors i, j

$$
\neg r_{u i} V \neg r_{u j}
$$

- For every edge $(n, v) \in E$, and $\forall i$

$$
\neg r_{u_{i}} \vee \neg r_{v_{i}}
$$

Proposition Every planar (infinite) graph con b colored using 4 colors.
Proof: G planar graph $T_{G, 4}$ is finitely satisfiable $\Gamma_{G_{r} 4}$ is satisfiable

