
Second Order Logic

Mahesh Viswanathan

Fall 2018

Second order logic is an extension of first order logic that reasons about predicates. Recall that one of
the main features of first order logic over propositional logic, was the ability to quantify over elements that
are in the universe of the structure. Second order logic not only allows one quantify over elements of the
universe, but in addition, also allows quantifying relations over the universe.

1 Syntax and Semantics

Like first order logic, second order logic is defined over a vocabulary or signature. The signature in this
context is the same. Thus, a signature is τ = (C,R), where C is a set of constant symbols, and R is a
collection of relation symbols with a specified arity. Formulas in second order logic will be over the same
collection of symbols as first order logic, except that we can, in addition, use relational variables. Thus, a
formula in second order logic is a sequence of symbols where each symbol is one of the following.

1. The symbol ⊥ called false and the symbol =;

2. An element of the infinite set V1 = {x1, x2, x3, . . .} of variables;

3. An element of the infinite set V2 = {X1
1 , x

1
2, . . . X

k
j , . . .} of relational variables, where the superscript

indicates the arity of the variable;

4. Constant symbols and relation symbols in τ ;

5. The symbol → called implication;

6. The symbol ∀ called the universal quantifier ;

7. The symbols (and) called parenthesis.

As always, not all such sequences are formulas; only well formed sequences are formulas in the logic. This
is defined as follows.

Definition 1. A term t over signature τ is either a (first order) variable or a constant symbol in τ .
A well formed formula (wff) over signature τ is inductively defined as follows.

1. ⊥ is a wff.

2. If t1, t2 are terms then t1 = t2 is a wff.

3. If ti is a term for 1 ≤ i ≤ k and R is a k-ary relation symbol in τ then Rt1t2 · · · tk is a wff.

4. If ti is a term for 1 ≤ i ≤ k and Xk is a k-ary relational variable then Xkt1t2 · · · tk is a wff.

5. If ϕ and ψ are wffs then (ϕ→ ψ) is a wff.

6. If ϕ is a wff and x is a variable then (∀xϕ) is a wff.

1

7. If ϕ is a wff and Xk is a relational variable then (∀Xkϕ) is a wff.

As in the case of first order logic, it is convenient to introduce other standard logical operators that
can be defined syntactically defined in terms of the formulas given in Definition 1. In addition, to boolean
connectives, and first order existential quantification (which are defined exactly as for first order logic), we
can also define existential second-order quantification as

∃Xkϕ = ¬(∀Xk¬ϕ).

Again, in order to avoid writing to many parenthesis, we will assume the following precedence of operators
(from increasing to decreasing): ¬, ∧, ∨, →, ∀ (both first-order and second-order).

Example 2. Let us look at some example formulas in second order logic. Let us start by looking at the
vocabulary of graphs, which is τG = {E} and consists of a single binary relation which denotes the edge
relation in the graph. We could write a formula that expresses the fact that the edge relation E encodes a
graph that is 3-colorable as follows.

∃X1
1∃X1

2∃X1
3 (∀x(X1

1x ∨X1
2x ∨X1

3x)∧
∀x∀y(Exy → (¬(X1

1x ∧X1
1y) ∧ ¬(X1

2x ∧X1
2y) ∧ ¬(X1

3x ∧X1
3y))))

The formula says that there are sets X1
1 , X

1
2 , and X1

3 (i.e., unary relations) that correspond to vertices
colored 1, 2, and 3, respectively, such that every vertex gets one of the 3 colors, and adjacent vertices get
different colors.

Consider writing a formula to express the fact that the graph has a path from s to t. One way to express
this is by saying that s and t belong to the transitive closure of E. But how do we denote the transitive
closure of E? Well, it turns out that any binary relation that contains E, is reflexive and “closed” with
respect to composition with E, contains the transitive closure! Therefore, we express the existence of a path
from s to t as

∀P 2(Closed(P 2)→ P 2st)

where Closed(P 2) is the formula ∀x∀y(((((x = y) ∨ Exy)→ P 2xy) ∧ ((Exy ∧ P 2yz)→ P 2xz)).
Let us now consider the signature of orders τO = {≤} that has one binary relation namely, the ordering

≤. Let us write the sentence “every bounded, non-empty set has a least upper bound”; the formula below
is direct translation of each of the adjectives in this property.

∀X1(((∃xX1x) ∧ (∃y∀x(X1x→ x ≤ y)))→ (∃z∀y(∀x(X1x→ x ≤ y))↔ (z ≤ y)))

The semantics of formulas in second-order logic, like in the case of first order logic, are defined in a
structure. Recall that a structure is a universe along with an interpretation of the constant symbols and
relation symbols in the signature. To define whether a formula holds in a structure, we also need an
assignment, which interprets the free variables. For first order logic, an assignment was simply a mapping
of variables to elements in the universe of the structure. For second order logic, however, the presence of
relational variables, means that an assignment must also give an interpretation of these variables as relations
(of the appropriate arity) over the structure. This is formally defined as follows.

Definition 3. For a τ -structure A, an assignment α over A is a pair of functions (α1, α2) where α1 : V1 →
u(A) and α2 : V2 → ∪k[u(A)]k that assigns to every k-ary relational variable Xk a relation α2(Xk) ⊆ [u(A)]k.
If t is a constant symbol c, we will take α(t) to be cA.

For an assignment α = (α1, α2) over A, α[x 7→ a] is the assignment where α1 is changed as follows.

αi[x 7→ a](y) =

{
αi(y) for y 6= x
a when x = y

We are now ready to define the semantics of a (second order) formula in a structure under an assignment.
The definition is similar to the one for first order logic, and is also defined inductively on the structure of
the formula.

2

Definition 4. The relation A |= ϕ[α] is inductively defined as follows.

• A 6|= ⊥[α] for all A and α

• A |= t1 = t2[α] iff α1(t1) = α1(t2)

• A |= Rt1 · · · tn[α] iff (α1(t1), α1(t2), . . . α1(tn)) ∈ RA

• A |= Xkt1 · · · tn[α] iff (α1(t1), α1(t2), . . . α1(tn)) ∈ α2(X)

• A |= (ϕ→ ψ)[α] iff A 6|= ϕ[α] or A |= ψ[α]

• A |= (∀xϕ)[α] iff for every a ∈ u(A), A |= ϕ[α[x 7→ a]]

• A |= (∀Xkϕ)[α] iff for every S ∈ [u(A)]k, A |= ϕ[α[X 7→ S]]

As in first order logic, Definition 4 suggests that the assignment of values to variables (first order and
relational) only matters for the “free” variables, and not those that are quantified. We extend the definition
of free and bound occurences to relational variables as well.

Definition 5. In wffs ∀xψ and ∀Xkψ′, ψ and ψ′ is said to be in the scope of the quantifiers ∀x and ∀Xk,
respectively.

Every occurrence of variables x and Xk in ∀xψ and ∀Xkψ, respectively, are said to be bound. Any
occurrence of variables (first order or relational) that is not bound is said to be free.

As in first order logic, the semantics given in Definition 4 ensures that the satisfaction relation only
depends on the values assigned to free variables.

Theorem 6. For a formula ϕ and assignments α and β that agree on all the free variables and free relational
variables of ϕ, A |= ϕ[α] iff A |= ϕ[β].

Sentences are, as always, formulas with no free (first order) variables or relational variables. Thanks to
Theorem 6, this means that for sentences, the assignment does not determine its satisfaction.

Proposition 7. For a sentence ϕ, and any two assignments α1 and α2, A |= ϕ[α1] iff A |= ϕ[α2]. Therefore,
we write A |= ϕ if for any assignment α, A |= ϕ[α].

Satisfiability and validity of second order formulas is defined in the same way as for first order logic —
ϕ is satisfiable if there is a structure A and assignment α such that A |= ϕ[α]; and ϕ is valid if for every
structure A and assignment α, A |= ϕ[α].

For any logic, the fundamental computational questions are satisfiability and validity. We observed that,
in the case of propositional logic, satisfiability is NP-complete while validity if co-NP-complete. In contrast,
for first order logic, validity if RE-complete, and (therefore) satisfiabiity is not recursively enumerable. What
does the landscape look like for second order logic? Clearly, the satisfiability problem for second order logic
is not recursively enumerable — since first order logic formulas are special second order logic formulas, the
non-recursive enumerability proof can be extended. But what about validity? Is there a sound and complete
proof system that demonstrates the recursive enumerability of the validity problem? It turns out that there
is no such proof system. The “incompleteness” of second order logic can be seen as a consequence of Gödel’s
incompleteness theorem — checking membership in Th(N, 0, 1,+, ·) can be reduced to the validity problem
of second order logic. Here we present a simpler proof that doesn’t establish incompleteness, but rather the
non-recursive enumerability of validty.

Theorem 8. The validity problem for second order logic — given a formula ϕ, determine if ϕ is valid — is
not recursively enumerable.

3

Proof. Recall that the satisfiability problem of first order logic is not recursively enumerable; this holds even
for formulas over a finite vocabulary. We will reduce this to the validity problem of second order logic, and
thus complete the proof. Consider a finite vocabulary τ and a formula ϕ over τ . Consider the formula

ψ = ∃Xk
R · · · ∃xc · · ·ϕ[R 7→ Xk

R, c 7→ xc]

In ψ, for each relation symbol R of arity k, we have a new relational variable Xk
R that is existentially

quantified, and for each constant symbol c, we have anew (first order) variable xc that is existentially
quantified. Within the scope of these quantifiers, we have the formula ϕ where every relation symbol R ∈ τ
has been syntactically replaced by its corresponding variable Xk

R, and every constant c ∈ τ has been replaced
by xc.

It is easy to see that ϕ is satisfiable if and only if ψ is valid. This completes the proof.

2 Monadic Second Order Logic

In addition to first order logic, another important fragment of second order logic is monadic second order
logic (MSO). While first order logic can be seen as the fragment that does not allow any relational variables,
MSO is the fragment where all relational variable are “monadic”, i.e., of arity 1. Thus, in MSO one can only
quantify over sets, as opposed to more general relations.

Definition 9. Monadic second order logic is the fragment of second order logic where all relational variables
have arity 1. Since all relational variables are unary, by convention, we will drop the superscript that indicates
the variables arity.

Example 10. Consider the signature of graphs τG = {E}. Observe that sentence characterizing 3-colorable
graphs in Example 2 is monadic. The formula given to express the fact the graph has an s-t path is in
Example 2 however not monadic; it uses a binary relational variable P 2. However, this property can be
expressed in MSO. Instead of saying that s and t are in the transtive closure of the relation E, we will
instead say that t belongs to any set that contains s and is closed under taking edges in the graph. Here is
the precise definition.

∀R((Rs ∧ Closed(R))→ Rt)

where Closed(R) is the formula ∀x∀y((Rx ∧ Exy)→ Ry).
Consider now trying to express the fact that a graph has an independent set of size at leat k. This is

equivalent to saying that there is a set of vertices that has at least k distinct elements such that no pair in
the set is connected by an edge. This can be written in MSO as follows.

∃I(∀x∀y((¬(x = y) ∧ Ix ∧ Iy)→ ¬Exy) ∧ ∃x1 · · · ∃xk(
∧
i 6=j

¬(xi = xj) ∧
∧
i

Xxi))

2.1 Monadic Second Order Logic on Words

We will study MSO on restricted class of structures. In particular, of particular interest is the study of MSO
on words. What this means is, for alphabet Σ, the signature is fixed to be τW = {<,S, {Qa}a∈Σ} where
<,S are binary relation symbols, and Qa is unary relation symbol for every a in alphabet Σ. Further, any
structure is of the form, where the universe is the set of positions in the word, and the relations S,<, and
Qa are interpreted the way “standard” manner.

For example, let us consider Σ = {0, 1} and the word w = 010110. The w can be represented as a
structure as follows. The signature (since σ = {0, 1}) is τ = {<,S,Q0, Q1}. The structure for w is

W = ({1, 2, 3, 4, 5, 6},
<W= {(1, 2), (1, 3), . . . (1, 6), (2, 3), . . . (2, 6), (3, 4), (3, 5), (3, 6), (4, 5), (4, 6), (5, 6)},
SW = {(1, 2), (2, 3), (3, 4), (4, 5), (5, 6)},
Q0 = {1, 3, 6},
Q1 = {2, 4, 5}).

4

Given the above example, and our intuition behind viewing words as structures, we make the following
assumptions about the structure representation W of a word w.

• W will be taken to be the set {1, 2, . . . n} where n is the length of the string w.

• <W , SW will be the standard ordering and successor relations on {1, 2, . . . n}.

• We will drop the superscript W and refer to relations of W using the relation symbol. Thus, we will
abuse notion and refer to <W as <.

Notice these assumptions about our conventions are not restrictive. Further, there is a 1-to-1, onto mapping
from words to the structures that represent them. Thus, we will interchangably use “word” to mean both
the string and its structure representation.

Let us look at some example properties about words that can be expressed in MSO.

Example 11. Here are some simple example properties expressed in MSO.

• “x is the first position in the string.”
first(x) = ¬∃ySyx

• “x is the last position in the string.”
last(x) = ¬∃ySxy

• The relation < can be defined in terms of S; thus, for MSO over words, we may assume that the
signature does not contain <.

¬(x = y) ∧ ∀X((Xx ∧ ∀y1∀y2((Xy1 ∧ Sy1y2)→ Xy2))→ Xy)

• “The length of the string is even.”

∃X((∀x∀ySxy → (Xx↔ ¬Xy)) ∧ (∃u∃v(first(u) ∧Xu ∧ last(v) ∧ ¬Xv)))

Example 12. Assume that words encode executions of a program with two threads. Label ci denotes thread
i is in the critical section, and wi denotes that thread i is waiting to enter the critical section.

• Mutual Exclusion: Both threads are not in the critical section at the same time.

∀x¬(Qc1x ∧Qc2x)

• Starvation Freedom: If thread 1 is waiting then it eventually enters the critical section.

∀x(Qw1x→ ∃y((x < y) ∧Qc1y))

• Strong Starvation Freedom: If thread 1 is waiting then it enters the critical section before thread 2
does for a second time.

∀x(Qw1
x→ (∃y((x < y) ∧Qc1y∧
¬(∃x1∃x2∃x3((x ≤ x1) ∧ (x1 < x2) ∧ (x2 < x3) ∧ (x3 < y)

∧Qc2x1 ∧ ¬Qc2x2 ∧Qc2x3)))))

We will consider the classical decision problems for MSO, but when restricted to words. What that means
is the following. An MSO sentence ϕ (over the signature of words) is said to be satisfiable if there some word
structure W such that W |= ϕ. On the other hand, ϕ is valid if for every word structure W, W |= ϕ. Thus,
satisfiability and validity are interpreted over word structures.

5

