
P. Madhusudan, Mahesh Viswanathan

Logic in Computer Science

Rough course notes

October 11, 2021

Contents

1 Propositional Logic . 1
1.1 Syntax . 3
1.2 Semantics . 6
1.3 Satisfiability and Validity . 9
1.4 Compactness Theorem . 16

1.4.1 Compactness using König’s Lemma . 16
1.4.2 Compactness using Henkin Models . 19
1.4.3 An Application of Compactness: Coloring Infinite Planar

Graphs . 20

2 Proof Systems . 23
2.1 A Frege-style Proof System . 24

2.1.1 Completeness Theorem . 26
2.2 Resolution . 27

2.2.1 Proving Tautologies with Resolution . 30
2.2.2 Completeness of Resolution . 32

2.3 Craig’s Interpolation Theorem and Proof Complexity 34
2.3.1 Craig’s Interpolation Theorem . 34
2.3.2 Size of Interpolants . 35
2.3.3 Interpolants from Refutations . 38
2.3.4 Lower bounds on Resolution Refutations 44

3 First Order Logic . 49
3.1 Syntax . 49
3.2 Semantics . 51

3.2.1 Satisfiability, Validity, and First order theories 55
3.3 Overview . 56

4 Quantifier Elimination and Decidability . 59
4.1 Dense Linear Orders without Endpoints . 61
4.2 Linear Arithmetic . 64

v

vi Contents

4.2.1 Fourier-Motzkin . 65
4.2.2 Ferrante-Rackoff . 68

4.3 Other theories that admit quantifier elimination 70

5 Lower Bounds for the Validity Problem . 71
5.1 Number Lines . 72
5.2 Church-Turing Theorem . 74
5.3 Trakhtenbrot’s Theorem . 78

A Computability and Complexity Theory . 81
A.1 Turing Machines . 82
A.2 Church-Turing Thesis . 85
A.3 Recursive and Recursively Enumerable Languages 87
A.4 Reductions . 89
A.5 Complexity Classes . 92
A.6 Relationship between Complexity Classes . 95
A.7 P and NP . 97

A.7.1 Alternate characterization of NP . 98
A.7.2 Reductions, Hardness and Completeness 99

Chapter 1
Propositional Logic

Modern logic is a formal, symbolic system that tries to capture the principles of
correct reasoning and truth. To describe any formal language precisely, we need
three pieces of information — the alphabet describes the symbols used to write
down the sentences in the language; the syntax describes the rules that must be
followed for describing “grammatically correct” sentences in the language; and
finally, the semantics gives “meaning” to the sentences in our formal language. You
may have encountered other contexts where formal languages were introduced in
such a manner. Here are some illustrative examples.

Example 1.1 Binomial coefficients are written using natural numbers and parenthe-
ses. However, not every way to put together parenthesis and natural numbers is a
binomial coefficient. For example, (1, (1), or

(2) are examples of things that are no
binomial coefficients. Correctly formed binomial coefficients are of the form

(8+ 9
8

)
,

where 8 and 9 are natural numbers. We could define the meaning of
(8+ 9
8

)
to be the

natural number (8+ 9)!
8! 9! . On the other hand, we could define the meaning of

(8+ 9
8

)
to

be the number of ways of choosing 8 elements from a set of 8 + 9 elements. Though
both these ways of interpreting binomial coefficients are the same, they have a very
different presentation. In general, one could define semantics in different ways, or
even very different semantics to the same syntactic objects.

Example 1.2 Precise definitions of programming languages often involve character-
izing its syntax and semantics. Turtle is an extremely simple programming language
for drawing pictures. Programs in this language are written using F, +, and −. Any
sequence formed by such symbols is a syntactically correct program in this language.
We will interpret such a sequence of symbols as instructions to draw a picture — F
is an instruction to draw a line by moving forward 1 unit; + is an instruction to turn
the heading direction 60◦ to the left; − is an instruction to turn the heading direction
60◦ to the right. Figure 1.1 shows example programs and the pictures they draw
based on this interpretation.

Even though Turtle is a very simple programming language, some very interesting
curves can be approximated. Consider the following iterative procedure that produces

1

2 1 Propositional Logic

F F + F − −F + F F + F − −F + F + F + F − −F + F − −F + F − −F + F + F + F − −F + F

Fig. 1.1 Example Turtle programs and the pictures they draw.

a sequence of programs. Start with the program F. In each iteration, if % is a program
at the start of the iteration, then construct the program %′ obtained by replacing each
F in % by F + F − −F + F. So at the beginning we have program F, in the next
iteration the program is F + F − −F + F, and in the iteration after that it will be
F + F − −F + F + F + F − −F + F − −F + F − −F + F + F + F − −F + F, and so on.
The programs in this sequence draw pictures that in the limit approach the Koch
curve.

Example 1.3 Regular expressions define special collections of strings called regular
languages. Regular expressions over an alphabet Σ are built up using Σ, parentheses,
∅, Y, ·, +, and ∗. Inductively, they are defined as the smallest set that satisfy the
following rules.

• ∅ and Y are regular expressions.
• For any 0 ∈ Σ, 0 is a regular expression.
• If A1, A2 are regular expressions then so are (A1 · A2), (A1 + A2), and (A∗1).

Each regular expression A, semantically defines a subset ofΣ∗ 1 that wewill denote
by JAK. The semantics of regular expressions is defined inductively as follows.

• J∅K = ∅, and JYK = {Y}.
• For 0 ∈ Σ, J0K = {0}.
• Inductively, J(A1 + A2)K = JA1K ∪ JA2K, J(A1 · A2)K = JA1K · JA2K and J(A∗1)K = JA1K∗,

where · (on the right hand side) denotes the concatenation of two languages, and
∗ denotes the Kleene closure of a language.

We will now define one of the simplest logics encountered in an introductory dis-
crete mathematics class called propositional or sentential logic. Propositional logic
is a symbolic language to reason about propositions. Propositions are declarative
sentences that are either true or false. Examples of such include “Springfield is the
capital of Illinois”, “1+1 = 2”, “2+2 = 0”. Notice that propositions don’t need to
be true facts and their truth may depend on the context. For example, “2+2 = 0” is
not true under the standard interpretation of + as integer addition, but is true if +
denotes addition modulo 4. Non-examples of propositions include questions (like
“What is it?”), commands (like “Read this!”), and things like “Location of robot”.

1 For a finite set Σ, Σ∗ denotes the collection of (finite) sequences/strings/words over Σ. For = ∈ N,
we use Σ= to denote the set of sequences/strings/words over Σ of length exactly =.

1.1 Syntax 3

The logic itself will be symbolic and abstract away from English sentences like the
ones above. We will introduce a precise definition of this logic, much in the same
way as Example 1.3, defining the syntax and semantics inductively.

1.1 Syntax

We will assume a (countably infinite) set of propositions Prop = {?8 | 8 ∈ N}. The
formulas of propositional logic will be strings over the alphabet Prop ∪ {(,),¬,∨}.
Here ¬ is negation, and ∨ is disjunction.
Definition 1.4 The set of well formed formulas (wff) in propositional logic (over the
set Prop) is the smallest set satisfying the following properties.
1. Any proposition ?8 ∈ Prop is a wff.
2. If i is a wff then (¬i) is a wff.
3. If i and k are wffs then (i ∨ k) is a wff.

Examples of wffs include ?1, (¬?1), (?1 ∨ ?2), ((¬(?1 ∨ ?3)) ∨ (?1 ∨ ?4)). On the
other hand the following strings are not wffs: (?1¬), (∨?1), (?1∨).

Inductive definitions of the kind in Example 1.3 or Definition 1.4 are quite com-
mon when defining the syntax of formulas in a logic or of programming languages.
Therefore, in computer science, one often uses a “grammar-like” presentation for the
syntax. For example, wffs i in propositional logic are given by the following BNF
grammar.

i ::= ? | (¬i) | (i ∨ i) (1.1)

where ? is an element of Prop. Reading such grammars takes some getting used to.
For example, the rule (i ∨ i) doesn’t mean that disjunctions can only be used when
the two arguments are the same. Instead it says that if we take two elements that
belong to the syntactic entity i (i.e., wffs), put ∨ between them with surrounding
parenthesis, thenwe get another element belonging to the same syntactic entity i.We
will sometimes use such a grammar representation to describe syntax in a succinct
manner.

Inductive Definitions

What is the set identified by inductive definitions like Definition 1.4 and (1.1) ?
Is there a unique single minimal set that satisfies the conditions in Definition 1.4?
After all sets can be incomparable with respect to the ⊆ relation. And what does the
grammar given in (1.1) mean? Finally, do Definition 1.4 and (1.1) identify the
same set?

Let us begin by first defining the set described by (1.1) . Equation (1.1) defines
the set (= ∪8∈N(8 , where the sets (8 (for 8 ∈ N) are given as follows.

(0 = Prop
(8+1 = (8 ∪ {(¬i) | i ∈ (8} ∪ {(k ∨ i) | k, i ∈ (8} for 8 ≥ 0

4 1 Propositional Logic

Note that (= ∪8∈N(8 is an infinite union. You can think of (as the limit of the
increasing sequence of sets (0 ∪ (1 ∪ · · · ∪ (=. Another way to think of (is as the
set of all i that belong to some (8 . That is,

(= {i | i ∈ (8 , for some 8}.

Another way to interpret the sets (and (8 is as follows. (8 denotes the set of formulas
that can be derived from the grammar rules within 8 steps, and (is the set of formulas
that can be derived from the grammar rules in some finite number of steps.

Given the above meaning, it’s natural to prove properties about the set of expres-
sions (using induction on 8. More precisely, if we want to show a property % is true
about (, then we:

• Establish % to be true for every expression in (0.
• For every 8 ≥ 0, we assume that % holds for every expression in (8 and prove it

holds for all expressions in (8+1.

The above shows that % holds on (8 , for every 8 ∈ N, and hence % holds for every
formula in (.

Let us now consider Definition 1.4 and argue that it is well defined. Before
showing that there is a unique smallest set satisfying conditions (1), (2), and (3) of
Definition 1.4, let us argue that there is at least one set satisfying (1), (2), and (3).
Take the set of all possible strings built over the alphabet Prop∪ {(,),¬,∨}. This set
clearly satisfies all the conditions. But why should there be a smallest set? Observe
that if two sets � and � satisfy the conditions in Definition 1.4, then so does � ∩ �.
More generally, if {�8}8∈� is a (possibly infinite) collection of sets satisfying (1), (2),
and (3), then so does the set ∩8∈� �8 . Thus, the intersection of all sets which satisfy
the conditions, is the unique, smallest (with respect to set inclusion) set identified by
Definition 1.4. Hence, it is well defined.

Let (denote the set identified by grammar in (1.1) and) the set defined in
Definition 1.4. We will argue that these two sets are the same. First, let us show that
(satisfies conditions (1), (2), and (3) of Definition 1.4. Observe that, by definition,
for every 8, (8 ⊆ (8+1. Hence, the sets increase with index, i.e., for every 8 < 9 ,
(8 ⊆ (9 ; this can be formally established by induction, and we leave this as an
exercise. Since Prop ⊆ (0, this means Prop ⊆ (8 for every 8, and therefore (satisfies
condition (1). Next, consider any i, k ∈ (. By definition of (, this means there is
are 8, 9 ∈ N such that i ∈ (8 and k ∈ (9 . Taking : = max(8, 9), we can conclude
that {i, k} ⊆ (: . Thus, by definition, (¬i) and (i ∨ k) both belong to (:+1, and
hence are in (. Therefore, (satisfies conditions (2) and (3) of Definition 1.4. Finally,
since (satisfies all conditions of Definition 1.4 and) is the smallest set with these
properties, we can conclude that) ⊆ (.

To prove the other inclusion (that (⊆)), we will prove that for every 8, (8 ⊆) by
induction. In the base case observe that (0 = Prop ⊆) , since) satisfies condition
(1). Assume as induction hypothesis, that for all 9 ≤ 8, (9 ⊆) . In the induction step,
we need to establish the claim that (8+1 ⊆) . Let i ∈ (8+1 be an arbitrary element.
By the definition of (8+1, there are 3 cases to consider. If i ∈ (8 then by induction
hypothesis i ∈) . If i = (¬k) for some k ∈ (8 , then by induction hypothesis k ∈) ,

1.1 Syntax 5

and since) satisfies condition (2), i = (¬k) ∈) . Finally, if i = (k1 ∨k2) for some
k1, k2 ∈ (8 then by induction hypothesis, k1, k2 ∈) and since) satisfies condition
(3), i = (k1 ∨ k2) ∈) . This completes the proof that (⊆) , and therefore, (=) .

The above argument, establishing that the smallest set satisfying some closure
conditions is the same as the set of objects derived from grammar rules, can be
generalized to any grammar (not just context-free grammars. In general, if one
defines a set as the smallest set (that satisfies conditions of the form “if these
elements belong to (than these other elements must belong to (”, then the smallest
set is well-defined. But if you also have conditions saying “if these elements belong
to (, these elements should not belong to (,” then the “smallest” set may not be a
well-defined.

Inductive or recursive definitions are ubiquitous in computer science, and reason-
ing about such definitions is naturally done using some form of induction. In fact, the
prevalence of induction in computer science is because of the ubiquity of recursive
definitions. Here are some other examples of recursive definitions.

• Consider the operational semantics of a program. The set of states/configurations
that the program can reach is best defined recursively. It is the smallest set ' of
states such that (a) ' contains the initial states of the program, and (b) if a state B is
in ' and the program can transition in one step from B to B′, then B′ ∈ '. Because
of the recursive nature of this definition, reasoning about programs often involves
induction. For example, to show that a program does not throw an exception, one
needs to prove that any reachable state is one that does not throw an exception.
This is typically established using induction.

• Consider lists in programs. The cons operator constructs a new list by adding an
element to the head of another list. Lists over the elements � can then be defined
as the smallest set ! such that (a) ! contains nil, the empty list, and (b) if ℓ ∈ !
and 4 ∈ � , then cons(4, ℓ) is in ! as well.

• The set of natural numbers can also be defined recursively. Let us denote by succ,
the successor function 2. Then the set of natural numbers is the smallest set N
such that (a) N contains 0, and (b) for every = ∈ N, succ(=) belongs to N.

Other logical operators and Operator Precedence

Conjunction and implication are logical operators that arise quite often when ex-
pressing properties. These operators can be defined in terms of ¬ and ∨. Let i and
k be wffs. (i ∧ k) (read “i and k”) denotes the formula (¬((¬i) ∨ (¬k))). And
(i→ k) (read “i implies k”) denotes the formula ((¬i) ∨ k). Another useful wff
is > (read “true”); it denotes the formula (? ∨ (¬?)), where ? is (any) proposition.
Finally the wff ⊥ (read “false”) is the formula (¬>).

2 Intuitively, given a number =, succ(=) is the next number, namely, = + 1. However, this interpre-
tation is only in our minds. succ is just some function.

6 1 Propositional Logic

Writing formulas strictly according to the syntax presented is cumbersome be-
cause of many parentheses and subscripts. Therefore, we will make the following
notational simplifications.

• The outermost parentheses will be dropped. Thus we will write ?3 ∨ (?2 ∨ ?1)
instead of (?3 ∨ (?2 ∨ ?1))

• We will sometimes omit subscripts of propositions. Thus we will write ? instead
of ?1, or @ instead of ?2, A instead of ?3, or B instead of ?4, and so on.

• The following precedence of operators will be assumed: ¬, ∧, ∨,→. Thus ¬? ∧
@ → A will mean (((¬?) ∧ @) → A).
Definition 1.4 forwffs in propositional logic has the nice property that the structure

of a formula can be interpreted in a unique way. There is no ambiguity in its
interpretation. For example, if ¬?1 ∨ ?2 were a wff, then it is unclear whether we
mean the formula i = ((¬?1) ∨ ?2) or k = (¬(?1 ∨ ?2)) 3 — in i ∨ is the
topmost operator, while in k ¬ is the topmost operator. Our syntax does not have
such issues. This will be exploited often in inductive definitions and in algorithms.
This observation can be proved by structural induction, but we skip its proof.

Theorem 1.5 (Unique Readability)
Any wff can be uniquely read, i.e., it has a unique topmost logical operator and

well defined immediate sub-formulas.

1.2 Semantics

We will now provide a meaning or semantics to the formulas. Our definition will
follow the inductive definition of the syntax, just like in Example 1.3. The semantics
of formulas in a logic, are typically defined with respect to a model, which identifies
a “world” in which certain facts are true. In the case of propositional logic, this world
or model is a truth valuation or assignment that assigns a truth value (true/false) to
every proposition. The truth value truth will be denoted by T, and the truth value
falsity will be denoted by F.

Definition 1.6 A (truth) valuation or assignment is a function v that assigns truth
values to each of the propositions, i.e., v : Prop→ {T, F}.

The value of a proposition ? under valuation v is given by v(?).
We will define the semantics through a satisfaction relation, which is a binary

relation |= between valuations and formulas. The statement v |= i should be read as
“v satisfies i” or “i is true in v” or “v is a model of i”. It is defined inductively
following the syntax of formulas. In the definition below, we say v 6 |= i when v |= i
does not hold.

Definition 1.7 For a valuation v and wff i, the satisfaction relation, v |= i, is defined
inductively based on the structure of i as follows.

3 For the formulas here, we are not using the precedence rules given before.

1.2 Semantics 7

• v |= ? if and only if v(?) = T.
• v |= (¬i) if and only if v 6 |= i.
• v |= (i ∨ k) if either v |= i or v |= k.

Example 1.8 Let us look at a couple of examples to see how the inductive definition
of the satisfaction relation can be applied. Consider the formula i = ¬(¬? ∨ ¬@) ∨
(¬? ∨ ¬@). Recall with respect to the notational simplifications we identified, i is
the formula ((¬((¬?) ∨ (¬@))) ∨ ((¬?) ∨ (¬@))). Consider the valuation v1 that
sets all propositions to T. Now v1 |= i can be seen from the following observations.

v1 |= ? because v1 (?) = T
v1 6 |= ¬? semantics of ¬
v1 |= @ because v1 (@) = T
v1 6 |= ¬@ semantics of ¬
v1 6 |= ¬? ∨ ¬@ semantics of ∨
v1 |= ¬(¬? ∨ ¬@) semantics of ¬
v1 |= ¬(¬? ∨ ¬@) ∨ (¬? ∨ ¬@) semantics of ∨

Consider v2 that assigns all propositions to F. Once again v2 |= i. The reasoning
behind this observation is as follows.

v2 6 |= ? because v2 (?) = F
v2 |= ¬? semantics of ¬
v2 |= ¬? ∨ ¬@ semantics of ∨
v2 |= ¬(¬? ∨ ¬@) ∨ (¬? ∨ ¬@) semantics of ∨

The semantics in Definition 1.7 defines a satisfaction relation between valuations
and formulas. However, one could defined the semantics of propositional logic
differently, by considering the formula as a “program” or “circuit” that computes
a truth value based on the assignment. This approach is captured by the following
definition of the value of a wff under a valuation.

Definition 1.9 The value of a wff i under valuation v, denoted by vJiK, is inductively
defined as follows.

vJ?K = v(?)

vJ(¬i)K =
{
F if vJiK = T
T if vJiK = F

vJi ∨ kK =
{
F if vJiK = vJkK = F
T otherwise

Example 1.10 Let us consider i = ¬(¬? ∨ ¬@) ∨ (¬? ∨ ¬@) and v1 which assigns
all propositions to T. v1JiK can be computed as follows.

8 1 Propositional Logic

v1J?K = T because v1 (?) = T
v1J¬?K = F semantics of ¬
v1J@K = T because v1 (@) = T
v1J¬@K = F semantics of ¬
v1J¬? ∨ ¬@K = F semantics of ∨
v1J¬(¬? ∨ ¬@)K = T semantics of ¬
v1J¬(¬? ∨ ¬@) ∨ (¬? ∨ ¬@)K = T semantics of ∨

Definitions 1.7 and 1.9 are both equivalent in some sense. This is captured by the
following theorem.

Theorem 1.11 For any truth valuation v and wff i, v |= i if and only if vJiK = T

The proof of Theorem 1.11 is by structural induction on the formula i. It is left
as an exercise for the reader.

It is convenient to associate with every wff the set of truth valuations under which
the formula holds.

Definition 1.12 The models of wff i is the set of valuations that satisfy i. More
precisely,

JiK = {v | v |= i}.

Observe that as per the definition, J⊥K = ∅.

The relevance lemma says that whether i holds under a valuation depends only on
how the valuation maps the propositions that syntactically occur in the formula. This
is intuitively obvious; surely, whether (?∧@) ∨A holds is independent of whether the
proposition B is mapped to true/false.For a wff i, the set of propositions appearing
in i, denoted occ(i), is inductively defined as follows.

occ(?) = {?}
occ(¬i) = occ(i)
occ(i ∨ k) = occ(i) ∪ occ(k)

The relevance lemma is then as follows.

Lemma 1.13 (Relevance Lemma)
Let v1 and v2 be truth valuations such that for all ? ∈ occ(i), we have v1 (?) =

v2 (?), i.e., v1 and v2 agree on the truth values assigned to all propositions in occ(i).
Then v1 |= i if and only if v2 |= i.

Proof By structural induction on i.

Base Case i = ? Observe that, v1 |= i iff v1 (?) = T = v2 (?) iff v2 |= i.
Induction Step i = (¬k) Since occ(k) ⊆ occ(i), we have by induction hypoth-

esis, v1 |= k iff v2 |= k. Therefore, by the semantics of ¬, v1 |= i iff v2 |= i.
Induction Step i = (k1 ∨ k2) Since prop(k8) ⊆ prop(i) (for 8 ∈ {1, 2}), we

have by induction hypothesis, v1 |= k8 iff v2 |= k8 . Therefore, by the semantics of
∨, v1 |= i iff v2 |= i. �

1.3 Satisfiability and Validity 9

Lemma 1.13 implies that, to determine if a formula holds in a valuation, we
only need to consider the assignment to the finitely many propositions occurring
in the formula. Thus, instead of thinking of valuations as assigning truth values to
all (infinitely many) propositions, we can think of them as functions with a finite
domain.

1.3 Satisfiability and Validity

Two formulas that are syntactically different, could however, be “semantically equiv-
alent”. But what do we mean by semantic equivalence? Intuitively, this is when the
truth value of each formula in every valuation is the same.

Definition 1.14 (Logical Equivalence)
A wff i is said to be logically equivalent to k iff any of the following equivalent

conditions hold.

• for every valuation v, v |= i iff v |= k,
• for every valuation v, vJiK = vJkK,
• JiK = JkK.

We denote this by i ≡ k.

Let us consider an example to see how we may reason about two formulas being
logically equivalent.

Example 1.15 Consider the wffs i1 = ? ∧ (@ ∨ A) and i2 = (? ∧ @) ∨ (? ∧ A),
where ?, @ and A are propositions. Though i1 and i2 are syntactically different, they
are semantically equivalent. To prove that i1 ≡ i2, we need to show that they two
formulas evaluate to the same truth value under every valuation. One convenient way
to organize such a proof is as truth table, where different cases in the case-by-case
analysis correspond to different rows. Each row of the truth table corresponds to a
(infinite) collection of valuations based on the value assigned to propositions ?, @
and A; the columns correspond to the value of different (sub)-formulas under each
valuation in this collection. For example, a truth table reasoning for i1 and i2 will
look as follows.

? @ A @ ∨ A i1 ? ∧ @ ? ∧ A i2
F F F F F F F F
F F T T F F F F
F T F T F F F F
F T T T F F F F
T F F F F F F F
T F T T T F T T
T T F T T T F T
T T T T T T T T

10 1 Propositional Logic

Notice that since the columns corresponding to i1 and i2 are identical in every row,
and every valuation corresponds to some row in the table, it follows that i1 and i2
are logically equivalent.

Let us now consider i′1 = k1 ∧ (k2 ∨k3) and i′2 = (k1 ∧k2) ∨ (k1 ∧k3), where
k1, k2 and k3 are arbitrary wffs. Once again i′1 and i′2 are logically equivalent, no
matter what k1, k2 and k3 are. The reasoning is essentially the same as above. The
rows of the truth table now classify valuations based on the value of formulas k1, k2
and k3 under them.

k1 k2 k3 k2 ∨ k3 i1 k1 ∧ k2 k1 ∧ k3 i2
F F F F F F F F
F F T T F F F F
F T F T F F F F
F T T T F F F F
T F F F F F F F
T F T T T F T T
T T F T T T F T
T T T T T T T T

Truth table based reasoning, as carried out in Example 1.15, is a very convenient
way to organize proofs of propositional logic. We will often use it. Example 1.15
highlights another important observation. Let i and k be logically equivalent for-
mulas. Let i′ and k ′ be formulas obtained by substituting propositions occurring in
i and k by arbitrary formulas. Then i′ ≡ k ′.

Definition 1.16 (Logical Consequence)
Let Γ be a (possibly infinite) set of formulas and let i be a wff. We say that i

is a logical consequence of Γ (denoted Γ |= i) iff for every valuation v, if for every
k ∈ Γ, v |= k then v |= i. In other words, any model that satisfies every formula in
Γ also satisfies i.

We could equivalently have defined it as Γ |= i iff
⋂
k∈ΓJkK ⊆ JiK.

Example 1.17 Consider the set Γ = {k1 → k2, k2 → k1, k1 ∨ k2}, where k1 and
k2 are arbitrary formulas. We will show that Γ |= k1. Once again, we will use a truth
table to classify valuations into row based on the value that k1 and k2 evaluate to.
Such a truth table looks as follows.

k1 k2 k1 → k2 k2 → k1 k1 ∨ k2
F F T T F
F T T F T
T F F T T
T T T T T

Notice that there is only one rowwhere columns 3, 4, and 5 are all T; this corresponds
the valuations where k1 and k2 evaluate to T, and under every such valuation, all
formulas in Γ are satisfied. In this row, since k1 also evaluates to T, we have that
Γ |= k1.

1.3 Satisfiability and Validity 11

It is worth observing one special case of Definition 1.16 — when Γ = ∅. In
this case, every valuation satisfies every formula in Γ (vaccuously, since there are
none to satisfy). Therefore, if ∅ |= i, then every truth assignment satisfies i. Such
formulas are called tautologies, and they represent universal truths that hold in every
model/world/assignment.

Definition 1.18 (Tautologies)
A wff i is a tautology or is valid if for every valuation v, v |= i. In other words,

∅ |= i. We will denote this simply as |= i.

Example 1.19 We will show i = k1 → (k2 → k1) is a tautology, no matter what
formulas k1 and k2 are. The proof is once again organized as truth table, and we
show that in all rows the formula i evaluates to T.

k1 k2 k2 → k1 k1 → (k2 → k1)
F F T T
F T F T
T F T T
T T T T

The last important notion we would like to introduce is that of satisfiability.

Definition 1.20 (Satisfiability)
A formula i is satisfiable if there is some valuation v such that v |= i. In other

words, JiK ≠ ∅. If a formula is not satisfiable, we say it is unsatisfiable.

Example 1.21 i = (? ∨ @) ∧ (¬? ∨ ¬@) is satisfiable because the valuation v that
maps ? to T and @ to F satisfies i, i.e., v |= i.

Based onDefinitions 1.18 and 1.20, it is easy to see that there is a close connection
between satisfiability and validity.

Proposition 1.22 A wff i is valid if and only if ¬i is unsatisfiable.

Proof Let v be any valuation. If i is valid, we know that v |= i. Therefore, by the
semantics of ¬, we have v 6 |= ¬i. Thus ¬i is unsatisfiable. Conversely, if ¬i is
unsatisfiable, then v 6 |= ¬i. Again, by the semantics of ¬, v |= i. Thus, i is valid. �

We conclude this section by considering two fundamental computational prob-
lems — satisfiability and validity.

Satisfiability Given a formula i, determine if i is satisfiable.
Validity Given a formula i, determine if i is a tautology.

The satisfiability and validity problems have very simple algorithms to solve
them. To check if i, over propositions {?1, . . . ?=}, is satisfiable (is a tautology),
compute vJiK for every truth assignment v to the propositions {?1, . . . ?=}. The
running time for this algorithm is $ (2=). One of the most important open questions
in computer science is whether this is the best algorithm for these problems. The
following theorem by Cook and Levin, supports the belief that this exponential
algorithm is unlikely to be improved in the worst case.

12 1 Propositional Logic

Theorem 1.23 (Cook-Levin)
The satisfiability problem for propositional logic is NP-complete.

Proof Any proof showing a problem to be NP-complete has two parts. First is an
argument that the problem belongs to NP and the second that it is hard.

Membership in NP. Given a formula i, the NP-algorithm to check satisfiability
is as follows — Guess a truth assignment v, evaluate i on the truth assignment,
and accept if vJiK = T; otherwise reject. Guessing (nondeterministically) a truth
assignment takes time which is linear in the number of propositions in i, which is
linear in the size of i, and computing vJiK also takes time that is linear in the size
of i, where the evaluation algorithm computes the value in a “bottom-up” fashion.
Thus, the total running time is polynomial.

NP-hardness. Consider � ∈ NP. Let " = (&,Σ, Γ, X, @0, @acc, @rej,t,B) be a non-
deterministic TM recognizing � in time =ℓ , where & is the set of control states, Σ is
the input alphabet, Γ is the tape alphabet, X is the transition function, @0 is the initial
state, @acc is the unique accepting state, @rej is the unique rejecting state, t is the
blank symbol, and B is the left end marker symbol that appears on the leftmost cell
of each tape. Without loss of generality, we assume that @acc and @rej are the only
halting states of " . We will also assume that " has a read only input tape, and a
single read/write work tape.

For an input G, we will construct (in polynomial time) a formula 5" (G) such that
" accepts G (i.e., G ∈ �) iff 5" (G) is satisfiable. 5" (G) will encode constraints on
a computation of " on G such that a satisfying assignment to 5" (G) will describe
“how " accepts G”. That is, 5" (G) will encode that

• " starts in the initial configuration with input G,
• Each configuration follows from the previous one in accordancewith the transition

function of " ,
• The accepting state is reached in the last step.

Let us formalize this intuition by giving a precise construction. We begin by identi-
fying the set of propositions we will use, and their informal interpretation.

Propositional Variables. The propositions of 5" (G) will be as follows.

Name Meaning if set to T Total Number
InpSymb(1, ?) Input tape stores 1 at position ? $ (|G |)
TapeSymb(1, ?, 8) Work tape stores 1 in cell ? at time 8 $ (|G |2ℓ)
InpHd(ℎ, 8) Input head in cell ℎ at time 8 $ (|G | · |G |ℓ)
TapeHd(ℎ, 8) Work tape’s head in cell ℎ at time 8 $ (|G |2ℓ)
State(@, 8) State is @ at time 8 $ (|G |ℓ)

Abbreviations. In order to define 5" (G), the following abbreviations will be useful.

•
∧<
:=1 -: means -1 ∧ -2 ∧ · · · ∧ -<

1.3 Satisfiability and Validity 13

• ∇(-1, -2, . . . -<) will denote a formula that is satisfiable iff exactly one of
-1, . . . -< is set to true. In other words,

∇(-1, -2, . . . -<) = (-1 ∨ -2 ∨ · · · ∨ -<) ∧
∧
:≠;

(¬-: ∨ ¬-;)

Overall Reduction. The overall form of 5" (G) will be as follows.

5" (G) = iinitial ∧ iconsistent ∧ itransition ∧ iaccept

where

• iinitial says that “configuration at time 0 is the initial configuration with input G”
• iconsistent says that “at each time, truth values to variables encode a valid config-

uration”
• itransition says that “configuration at each time follows from the previous one by

taking a transition”
• iaccept says that “the last configuration is an accepting configuration”

We now outline what each of the above formulas is.

Initial Conditions Let G = 0102 · · · 0=

iinitial = State(@0, 0)
“At time 0, state is @0”

∧InpSymb(B, 0) ∧ TapeSymb(B, 0, 0)
“Leftmost cells contain B”∧=

?=1 InpSymb(0? , ?)
“At time 0, cells 1 through = hold G”∧=ℓ

?=1 TapeSymb(t, ?, 0)
“At time 0, all work tape cells are blank”

InpHd(0, 0) ∧ TapeHd(0, 0)
“At time 0, all heads at the leftmost position”

Consistency Assume that the tape alphabet is Γ = {11, 12, . . . 1C } and the set of
states is & = {@0, @1, . . . @<}.

14 1 Propositional Logic

iconsistent =
∧=ℓ

8=0 ∇(State(@0, 8), . . . State(@<, 8))
“At any time 8, state is unique”∧=ℓ

8=0 TapeSymb(B, 0, 8)
“At any time, leftmost cell contains B”∧=ℓ

8=0
∧=ℓ

?=0 ∇(TapeSymb(11, ?, 8), . . . TapeSymb(1C , ?, 8))
“work tape cells contain unique symbols”∧=ℓ

8=0 ∇(InpHd(0, 8), . . . InpHd(=, 8))
“At any time, input head is in one cell”∧=ℓ

8=0 ∇(TapeHd(0, 8), . . . TapeHd(=ℓ , 8))
“At any time, work tape head is in one cell”

Transition Consistency Consider a non-halting state @ (i.e., @ ∉ {@acc, @rej}),
input symbol 28= and tape symbol 2F . Let the transition at state @, when reading
these symbols be given by

X(@, 28=, 2F) = {(@ (1) , 3 (1)8= , 2
(1)
F , 3

(1)
F), . . . (@ (B) , 3 (B)8= , 2

(B)
F , 3

(B)
F)}.

Here (@ (8) , 3 (8)
8=
, 2
(8)
F , 3

(8)
F) ∈ X(@, 28=, 2F) means that if " is in state @ and reads

28= on the input tape and 2F on the work tape, then one possible transition is to
state @ (8) , moving the input head in direction 3 (8)

8=
, writing 2 (8)F on the work tape,

and moving the work tape head in direction 3 (8)F . Direction −1 denotes moving
the head left and +1 denotes moving the head right. We will first define a formula
Δ
8, ?8= , ?F
@,28= ,2F that says that at time 8 if the state is @ and the symbol read on the input

tape is 28= and on the work tape is 2F at positions ?8=, ?F , respectively, then at
time 8 + 1 the state, symbols written and new head position is one of the tuples
described by the X function.

Δ
8, ?8= , ?F
@,28= ,2F = (State(@, 8) ∧ InpHd(?8=, 8) ∧ InpSymb(28=, ?8=, 8)∧

TapeHd(?F , 8) ∧ TapeSymb(2F , ?F , 8)) →
∇(Ch1

8, ?8= , ?F
,Ch2

8, ?8= , ?F
, . . .ChB8, ?8= , ?F)

where

ChC8, ?8= , ?F = State(@ (C) , 8 + 1) ∧ InpHd(?8= + 3 (C)8= , 8 + 1)∧
TapeSymb(2 (C)F , ?F , 8 + 1) ∧ TapeHd(?F + 3 (C)F , 8 + 1)

For a halting state @ (i.e., @ ∈ {@acc, @rej}), we define Δ8, ?8= , ?F@,28= ,2F as saying that the
state, symbols, and head positions don’t change. In other words,

Δ
8, ?8= , ?F
@,28= ,2F = (State(@, 8) ∧ InpHd(?8=, 8) ∧ InpSymb(28=, ?8=)∧

TapeHd(?F , 8) ∧ TapeSymb(2F , ?F , 8)) →
(State(@, 8 + 1) ∧ InpHd(?8=, 8 + 1)

∧TapeSymb(2F , ?F , 8 + 1) ∧ TapeHd(?F , 8 + 1))

when @ is a halting state.

1.3 Satisfiability and Validity 15

Now Transition Consistency itself can be defined as follows.

itransition =
∧=ℓ

8=0
∧=
?8==0

∧=ℓ

?F=0{∧
1≠2 ¬TapeHd(?F , 8) →

¬(TapeSymb(1, ?F , 8) ∧ TapeSymb(2, ?F , 8 + 1))
“If head is not in some position, then symbol does not change”∧@<

@=@0

∧1C
28==11

∧1C
2F=11

Δ
8, ?8= , ?F
@,28= ,2F }

“If head is in some position, then a transition is taken”

Acceptance
iaccept = State(@acc, =ℓ)

We can argue that " accepts G if and only if 5" (G) is satisfiable. Further 5" (G)
can be constructed in time that is polynomial in the size of G; the size of " also plays
a role but that is fixed. �

The Cook-Levin Theorem (Theorem 1.23) is an important result in computer
science. It was the first result establishing the intractibility of a problem. Moreover,
it also implies the intractibility of the validity problem. This is because there is a
formula i is valid if and only if ¬i is unsatisfiable.

Proposition 1.24 A formula i is valid if and only if ¬i is unsatisfiable.

Proof The proposition can be established by the following sequence of observations.
i is valid iff for every valuation v, vJiK = T (definition of validity) iff for every
valuation v, vJ¬iK = F (from the semantics of ¬) iff ¬i is unsatisfiable (definition
of unsatisfiability). �

Using Proposition 1.24 we establish the coNP-hardness of validity.

Theorem 1.25 The validity problem for propositional logic is coNP-complete.

Proof Observe that there is a simple NP algorithm to check that a formula i is not
valid — Guess a valuation v, and check that vJiK = F. Since checking non-validity
has a NP algorithm, it means that the validity problem has a coNP algorithm, and is
therefore, in coNP.

To prove the coNP-hardness of the validity problem, we make the following
observations. First, for any two problems � and �, if � ≤P � then � ≤P �.
Thus, from the NP-hardness of the satisfiability problem (Theorem 1.23), we can
conclude that the problem of checking if a formula is unsatisfiable is coNP-hard.
Since unsatisfiability is coNP-hard, it follows that validity is also coNP-hard based
on the observation in Proposition 1.24. �

16 1 Propositional Logic

1.4 Compactness Theorem

The compactness theorem is an important property about propositional logic. In this
section, we will look at a couple of different proofs of this theorem.

A (finite or infinite) set of formulas Γ is satisfiable if there is a valuation v such
that for every i ∈ Γ, v |= i (or vJiK = T); we will denote this by v |= Γ. A set of
formulas Γ is finitely satisfiable if every finite subset Γ0 of Γ is satisfiable. These two
notions, satisfiability and finite satisfiability, are equivalent — this is the content of
the compactness theorem.

Theorem 1.26 (Compactness)
A set of formulas Γ is satisfiable if and only if Γ is finitely satisfiable.

Observe that if Γ is satisfiable then the satisfying assignment (say v) also satisfies
every subset of Γ and therefore also every finite subset of Γ. Thus if Γ is satisfiable
then it is also finitely satisfiable. The challenge is, therefore, in proving the converse
— that finite satisfiability implies satisfiability. If Γ is a finite set, then clearly finite
satisfiability implies satisfiability because Γ itself is a finite subset of Γ. So the
interesting case is when Γ is infinite. We will provide a couple of very different
proofs for this result.

Before moving on to present our proofs for Theorem 1.26, we highlight an im-
portant consequence of the theorem.

Corollary 1.27 Let Γ be a (possibly infinite) set of formulas and let i be a formula.
If Γ |= i then there is a finite subset Δ ⊆ Γ such that Δ |= i.

Proof Let Γ |= i. Then Γ∪ {¬i} is unsatisfiable. By Theorem 1.26, there is a finite
subset Δ′ ⊆ Γ ∪ {¬i} that is unsatisfiable. Taking Δ = Δ′ \ {¬i}, we observe that
Δ ⊆ Γ and Δ ∪ {¬i} is unsatisfiable. Thus, Δ |= i. �

It is useful to note that the above argument works even when ¬i ∉ Δ′.

1.4.1 Compactness using König’s Lemma

We present a simple and elegant proof of the compactness theorem that uses König’s
Lemma. This proof approach works only for propositional logic, and does not extend
to first order logic. Let us begin by recalling König’s lemma for binary trees.

A binary tree is said to have paths of arbitrary length if for each natural number
=, there is a path in the tree whose length is ≥ =. An infinite path in the binary tree
is an infinite sequence of vertices of the tree such that successive vertices in the
sequence are connected by an edge. Observe that if a binary tree has an infinite path
then it also has paths of arbitrary length. This is because for every =, the prefix of
the infinite path with = + 1 vertices, is a path in the binary tree of length =. König’s
Lemma says that the converse of this is also true.

1.4 Compactness Theorem 17

Fig. 1.2 The bold path in the tree, corresponds to the (partial) assignment v(?0) = T, v(?1) =
F, v(?2) = T.

Lemma 1.28 (König)
A binary tree with paths of arbitrary length has an infinite path.

Proof Suppose D is a vertex that does not have paths of arbitrary length starting from
it, then by definition, there must be a number < such that all paths starting from D

are of length at most <. Now, if a vertex D has the property that none of its children
E have paths of arbitrary length starting from them, then D also cannot have paths of
arbitrary length starting from it. The contrapositive of this statement is that if D is
vertex with paths of arbitrary length starting from it, then at least one of its children
E also has paths of arbitrary length.

Suppose a binary tree has paths of arbitrary length. Then the root is a vertex that
has paths of arbitrary length starting from it. The infinite path is given by E0, E1, . . .
where E0 is the root. E8+1 is the left child of E8 , if the left child has paths of arbitrary
length, and E8+1 is the right child of E8 otherwise. �

Let us fix the set of propositions in our logic to be Prop = {?8 | 8 ∈ N}. Truth as-
signments to Prop can be thought of as (infinite) paths in the complete, infinite binary
tree — vertices at level 8 correspond to proposition ?8 and if the path takes the left
child at level 8, then it corresponds to the assignment setting ?8 to 0; otherwise it sets
?8 to 1. Finite paths in this tree, correspond to partial assignments. So a path of length
8 corresponds to an assignment that sets values to propositions {?0, ?1, . . . ?8−1}.
For example, in Fig. 1.2 , the bold path corresponds to the (partial) assignment v
that sets v(?0) = T, v(?1) = F, and v(?2) = T. Recall that, whether a formula i
holds in an assignment, depends only on the truth values assigned to the propositions
that appear in i (Lemma 1.13). Thus, partial assignments can determine the truth of
formulas that only mention the propositions that have been assigned. For example,
the partial assignment indicated by the bold path in Fig. 1.2 can determine the truth
of any formula that only mentions ?0, ?1, and ?2.

18 1 Propositional Logic

Proof (Of Theorem 1.26) Let Γ be a set of formulas that is finitely satisfiable. Log-
ical equivalence (≡) partitions Γ into equivalence classes. Take Γ′ to be a subset of Γ
that contains exactly one representative from each equivalence class. That is, Γ′ ⊆ Γ
such that

• For every i ≠ k ∈ Γ′, i 6≡ k, and
• For every i ∈ Γ, there is k ∈ Γ′ such that i ≡ k.

Since Γ′ ⊆ Γ, Γ′ is also finitely satisfiable.
Recall that occ(i) is defined to be the set of propositions that appear in i. For

8 ≥ 0, define Γ8 to be

Γ8 = {i ∈ Γ′ | occ(i) ⊆ {?0, ?1, . . . ?8−1}}.

Observe thatΓ8 defines an non-decreasing sequence of sets, i.e., for every 8,Γ8 ⊆ Γ8+1.
Also, Γ′ = ∪8≥0Γ8 . The most important observation about Γ8 is that it is a finite set
— since Γ′ has only one formula from each equivalence class of ≡, each formula in
Γ8 corresponds to a unique subset of assignments of {?0, . . . ?8−1} to {F, T}. Thus,
we have |Γ8 | ≤ 228 . Since Γ′ is finitely satisfiable, Γ8 is satisfiable for every 8.

Define)Γ as the following set of (partial) truth assignments.

)Γ =
⋃
8>0
{v : {?0, . . . ?8−1} → {F, T} | v |= Γ8}.

Recall that we say v |= Γ8 if v satisfies all formulas in Γ8 . Consider an assignment
v ∈)Γ with domain {?0, ?1, . . . ?8−1}. By definition v |= Γ8 . For 9 < 8, since
Γ 9 ⊆ Γ8 , v |= Γ 9 . Further, Γ 9 only has propositions {?0, . . . ? 9−1}, we also have
v′ |= Γ 9 , where v′ is the restriction of v to the domain {?0, . . . ? 9−1}. So v′ ∈)Γ.
Viewed as paths in the infinite binary tree (see Fig. 1.2), v is a path of length 8, v′
its prefix of length 9 . What we observe is that)Γ is “closed” under prefix of paths.
Thus, if we restrict our attention to the assignments in)Γ then they form a subtree
of the infinite binary tree.

Let us consider)Γ. In the previous paragraph we observed that it forms a subtree
of the infinite binary tree. It has paths of arbitrary length; this is because every Γ8
is satisfiable, and an (partial) assignment satisfying Γ8 is a path of length 8 in the
tree. Since)Γ is a binary tree, by König’s lemma, it has an infinite path. The infinite
path corresponds to a (full) truth assignment, say v∗. Further, since every prefix of
v∗ is a (finite) path in)Γ, it means that the prefix of length 8 (viewed as a partial
assignment) satisfies Γ8 . Therefore, for every 8, v∗ |= Γ8 , and hence v∗ |= Γ′. Now,
since every formula i ∈ Γ is logically equivalent to some formula k ∈ Γ′, it means
v∗ |= Γ. Thus, Γ is satisfiable. �

1.4 Compactness Theorem 19

1.4.2 Compactness using Henkin Models

The proof of the compactness theorem we present in the section, relies on construct-
ing a truth assignment for a set of formulas Γ through the process of saturation,
where we add formulas to the set Γ as long as it remains finitely satisfiable. This is
an approach proposed by Henkin.

Let us fix Γ to be a finitely satisfiable set of formulas. We begin by making an
important observation about such sets, namely, it can always be extended by adding
a formula or its nagation, while preserving the property of finite satisfiability.

Lemma 1.29 Let Γ be finitely satisfiable, and let i be any formula. Then either
Γ ∪ {i} or Γ ∪ {¬i} is finitely satisfiable.

Proof Assume (for contradiction), neither Γ∪{i} nor Γ∪{¬i} is finitely satisfiable.
By definition of finite satisfiability, this means that there are finite subsets Γ0 ⊆
Γ ∪ {i} and Γ1 ⊆ Γ ∪ {¬i} that are not satisfiable. Consider the (finite) set Δ =
(Γ0 ∪ Γ1) \ {i,¬i}. Observe that since Δ ⊆ Γ, Δ is satisfiable. Let v be a satisfying
truth assignment for Δ. Then either v |= i or v |= ¬i. Therefore, either v |= Γ0 or
v |= Γ1, which contradicts our assumption that both Γ0 and Γ1 are unsatisfiable. �

The set of all formulas of propositional logic are countable, i.e., there is a 1-to-1,
onto function 5 : N → F , where F is the set of all propositional logic formulas.
Therefore, we can enumerate all the formulas in propositional logic. Let i0, i1, . . .
be an enumeration of all formulas. Let us, inductively, define a sequence of sets of
formulas as follows.

Δ0 = Γ

Δ= =

{
Δ=−1 ∪ {i=−1} if this is finitely satisfiable
Δ=−1 ∪ {¬i=−1} otherwise

Observe that the sequence is non-decreasing, i.e., for every =, Δ= ⊆ Δ=+1. Further,
by induction on =, using Lemma 1.29, we can conclude that Δ= is finitely satisfiable
for all =. Finally, define

Δ =
⋃
=∈N

Δ=.

Since Δ= is finitely satisfiable for all = ∈ N, we can conclude that Δ is also finitely
satisfiable.

Proposition 1.30 Δ is finitely satisfiable.

Proof Consider any finite subset - = {k1, . . . k<} of Δ. Observe, by definition Δ,
for each 8, there is some =8 such that k ∈ Δ=8 . Taking = = max{=1, . . . =<}, observe
that - ⊆ Δ=. Since Δ= is finitely satisfiable, - is satisfiable. This means that Δ is
finitely satisfiable. �

Finite satisfiability of Δ implies that Δ is a complete set.

Proposition 1.31 For any formula i, ¬i ∈ Δ if and only if i ∉ Δ.

20 1 Propositional Logic

Proof Without loss of generality assume that i is the =th formula, i.e., i = i=. Now
by definition, in step = of the construction of Δ, if i ∉ Δ then ¬i ∈ Δ. On the other
hand, if {i,¬i} ⊆ Δ then since {i,¬i} is not satisfiable, Δ would not be finitely
satisfiable. But since Δ is finitely satisfiable, it must be the case that at most one out
of i and ¬i belong to Δ. �

We are now ready to complete the proof of Theorem 1.26. That is, we will show
that Γ (which is finitely satisfiable) is satisfiable. Consider the truth assignment v
defined as follows.

v(?) =
{
T if ? ∈ Δ
F if ¬? ∈ Δ

Note that v is well-defined because by Proposition 1.31, for any proposition ?, exactly
one among ? and ¬? is in Δ. v shows that Δ is satisfiable, because of the following
result.

Proposition 1.32 For any formula i ∈ Δ, v |= i.

Proof Consider an arbitrary i ∈ Δ. Let % = occ(i) and %¬ = {¬? | ? ∈ %}.
Consider the set

* = (Δ ∩ %) ∪ (Δ ∩ %¬) ∪ {i}.

Since * is a finite subset of Δ, by Proposition 1.30, we have * is satisfiable. Let v′
be a truth assignment such that v′ |= *. Observe that for every ? ∈ Δ∩ %, v′(?) = T
and for every ¬? ∈ Δ ∩ %¬, v′(?) = F. Therefore, v and v′ agree on all propositions
in %. By Lemma 1.13, since v′ |= i, we have v |= i. �

Proposition 1.32 establishes the fact that v |= Δ. Since Γ ⊆ Δ, v |= Γ. Therefore,
Γ is satisfiable.

1.4.3 An Application of Compactness: Coloring Infinite Planar Graphs

In this section we present an application of the compactness theorem. We will
show that all infinite planar graphs are 4-colorable. We begin by recalling the graph
coloring problem, and its connection to propositional logic.

Definition 1.33 (Graphs)
An undirected graph � = (+, �) is a set of vertices + , and a set of edges

� ⊆ + × + , such that � is symmetric (i.e., (D, E) ∈ � iff (E, D) ∈ �) and irreflexive
(i.e., (D, D) ∉ � for any D ∈ +).

Definition 1.34 (Coloring)
A :-coloring of graph � = (+, �) is a function 2 : + → {1, 2, . . . :} such that if

(D, E) ∈ � then 2(D) ≠ 2(E). If � has a :-coloring then � is said to be :-colorable.

The problem of determining whether a graph is :-colorable can be “reduced” to
checking the satisfiability of a set of formulas.

1.4 Compactness Theorem 21

Proposition 1.35 For any graph� = (+, �) (with possibly infinitely many vertices),
there is a set of formulas Γ�,: such that � is :-colorable iff Γ�,: is satisfiable.

Proof For each vertex D ∈ + and 1 ≤ 8 ≤ : , take the proposition AD8 to denote
“vertex D has color 8”. Γ�,: is the following set of formulas.

• For each D ∈ + , the formula AD1 ∨ AD2 ∨ · · · ∨ AD: . Intuitively these formulas
capture the constraint that every vertex gets at least one of the : colors.

• For each D ∈ + and 1 ≤ 8, 9 ≤ : with 8 ≠ 9 , the formula ¬AD8 ∨ ¬AD 9 . These
formulas capture the constraint that a vertex does not get two different colors.

• For each edge (D, E) ∈ � and color 1 ≤ 8 ≤ : , the formula ¬AD8 ∨ ¬AE8 . These
formulas ensure that adjacent vertices do not get the same color.

For a coloring 2, define the valuation v2 such that v2 (AD8) = T iff 2(D) = 8.
Similarly for a valuation v, define a function 2v (D) = 8 iff v(AD8) = T. Observe that

• If 2 is a valid :-coloring of � then v2 satisfies Γ�,: , and
• If v satisfies Γ�,: then 2v is a valid :-coloring of �.

Proof of the above observations is left as exercise. �

Finite, planar graphs are graphs with finitely many vertices such that there is a
drawing of the graph on the plane where the edges do not cross. A celebrated result
about finite, planar graphs is that 4 colors are sufficient to color the graph.

Theorem 1.36 (Appel-Haken)
Every finite planar graph is 4-colorable.

We will show that the compactness theorem in fact shows that Theorem 1.36 can
be extended to infinite graphs as well.

Corollary 1.37 All infinite planar graphs are 4-colorable.

Proof Let � be an infinite planar graph. Consider the set of formulas Γ�,4 con-
structed in Proposition 1.35. Observe that Γ�,4 is finitely satisfiable. This can be
seen as follows. Let Γ0 be any finite subset of Γ�,4. Let �0 be the graph induced by
the vertices D such that the proposition ?D8 appears in Γ0 for some 8. Now, �0 is a
finite, planar graph and so by Theorem 1.36 has a 4-coloring 2. Then by the proof
of Proposition 1.35, the valuation v2 satisfies Γ�0 ,4. Since Γ0 ⊆ Γ�0 ,4, we have v2
satisfies Γ0.

Since Γ�,4 is finitely satisfiable, by the compactness theorem, Γ�,4 is satisfiable.
Let v be a satisfying assignment for Γ�,4. Again, by Proposition 1.35, 2v is a valid
4-coloring of �. �

Chapter 2
Proof Systems

If logic is the science of valid inference, then proofs embody its heart. But what
are mathematical proofs? They are a sequence of statements where each statement
in the sequence is either a self evident truth, or “logically” follows from previous
observations. Thus, sound derivation principles are identified by correct proofs.

Example 2.1 Euclid’s Elements sets out axioms (or postulates), which are self evident
truths, and proves all results in geometry from these truths formally. Euclid lays out
five axioms for geometry.

A1 A straight line can be drawn from any point to any point.
A2 A finite line segment can be extended to an infinite straight line.
A3 A circle can be drawn with any point as center and any given radius.
A4 All right angles are equal.
A5 If a straight line falling on two straight lines makes the interior angles on the

same side less than two right angles, the straight lines, if produced indefinitely,
will meet on that side on which the angles are less than two right angles.

Using these axioms, Euclid proves a number of results in geometry. He uses
previously proved propositions in the proofs of later observations. An example of
such a result, is the proof that the sum of the interior angles of a triangle is 180◦.

Claim The interior angles of a triangle sum to two right angles.

Proof Consider the diagram in Fig. 2.1 . The proposition is proved using the
following sequence of statements.

1. Extend one side (say) BC to D [A2]
2. Draw a line parallel to AB through point C; call it CE [P31]
3. Since AB is parallel to CE, BAC = ACE and ABC = ECD [P29]
4. Thus, the sum of the interior angles = ACB + ACE + ECD = 180◦

References [P31] and [P29] in steps 2 and 3, allude to previously propositions 31
and 29, proved in the book. �

23

24 2 Proof Systems

� �

�

�

�

Fig. 2.1 Proof that the sum of the internal angles of a triangle are 180◦

Example 2.1 highlights the basic elements of identifying good proofs—one needs
to identify axioms, and the principle by which new conclusions can be drawn from
previously established facts. A formal proof system for a logic identifies such axioms
and rules of inference. We will introduce two such proof systems for propositional
logic — a Frege-style proof system, and resolution — to give a flavor of different
types of proof systems.

2.1 A Frege-style Proof System

Proof systems are most convenient presented as a collection of rules of the form

Γ

i

where Γ is a set of formulas (schemas) and i is a formula (schema). Such rules can
be interpreted as follows — if every formula in Γ can be established then i can be
concluded from these observations. One special case is when Γ = ∅. In this case
the formula below the line can be concluded without establishing anything; in other
words, it is an axiom. Instead of explicitly writing ∅ above the line, we simply don’t
write anything, and present this axiom in the form

i

Before presenting our first proof system, observe that all propositional logic
formulas can be expressed using just implication and ⊥. To see this observe that ¬i
is the same as i→ ⊥ and i ∨ k is (i→ ⊥) → k. Our first proof system, shown in
Fig. 2.2 , assumes that are formulas are written using implication and ⊥.

Our first proof system has 3 axiom schemas and one rule of inference. The
formulas i, k, and d in Fig. 2.2 , can be any formulas. For example, taking i = ?
and k = ?, we get ? → (? → ?) as an instantiation of the first axiom schema,
while taking i = ? and k = ? → ?, we get ? → ((? → ?) → ?) as a different
instantiation of the same schema. The rule of inference in this proof system, is a very
commonly used rule. It, therefore, has a special name; it is called modus ponens.

2.1 A Frege-style Proof System 25

i → (k → i) (i → (k → d)) → ((i → k) → (i → d))

((i → ⊥) → ⊥) → i

i i → k

k

Fig. 2.2 A Frege-style Proof System

Proofs in our (formal) proof system,will be like the usual proofs inmathematics—
they will be a sequence of statements. However, instead of using english statements,
here they will simply be well formed formulas of propositional logic. The statement
(or formula) being proved is the last one in the sequence. The sequence of formulas
in a proof should be consistent with the axioms and rule of inference of the proof
system, for it to be valid proof. This is captured in the definition below.
Definition 2.2 (Proofs)

A proof of i from a set (possibly infinite) of hypotheses Γ is a finite sequence of
wffs k1, k2, . . . k< such that k< = i, and for every : ∈ {1, 2, . . . <}, either
• k: ∈ Γ, or
• k: is an axiom, or
• k: follows from k8 and k 9 , with 8, 9 < : , by modus ponens.
The length of such a proof is the number of wffs in the sequence, namely, <. If there
is a proof of i from Γ, we denote this by Γ ` i. When Γ = ∅, we write this as ` i
(as opposed to ∅ ` i).

Let us look at some proofs in our system.

Example 2.3 Let us construct a proof of @ → ? from the hypothesis {?}. Such a
proof is as follows.

1. ? → (@ → ?) Axiom 1, taking i = ?, and k = @
2. ? Hypothesis in set Γ
3. @ → ? Modus Ponens on lines 1 and 2

Thus, {?} ` @ → ?.
We will now show that ` ⊥ → ((? → @) → (? → ?)).

1. (? → (@ → ?)) → ((? → @) → (? → ?))
Axiom 2, taking i = ?, k = @ and d = ?

2. ? → (@ → ?)
Axiom 1, taking i = ?, and k = @

3. (? → @) → (? → ?)
Modus ponens on lines 1 and 2

4. ((? → @) → (? → ?)) → (⊥ → ((? → @) → (? → ?)))
Axiom 1, taking i = (? → @) → (? → ?), and k = ⊥

5. ⊥ → ((? → @) → (? → ?))
Modus ponens on lines 3 and 4

26 2 Proof Systems

Finally, let us show ` ? → ?.

1. (? → ((? → ?) → ?)) → ((? → (? → ?)) → (? → ?))
Axiom of 2, taking i = ?, k = ? → ? and d = ?

2. (? → ((? → ?) → ?))
Axiom 1, taking i = ?, and k = ? → ?

3. (? → (? → ?)) → (? → ?)
Modus ponens on lines 1 and 2

4. ? → (? → ?)
Axiom 1, taking i = ?, k = ?

5. ? → ?

Modus ponens on lines 3 and 4

In proof systems, like the one we are considering in this section, there is a very
useful theorem that makes writing proofs easy. This is called the deduction theorem.
Some proof systems have it as an explicit rule.
Theorem 2.4 (Deduction Theorem)

If Γ ∪ {i} ` k then Γ ` i→ k.
First, observe that the converse of Theorem 2.4, is clearly true, i.e., if Γ ` i→ k

then Γ ∪ {i} ` k. Establishing this left as an exercise. The proof of the deduction
theorem is a more difficult exercise. The informal outline of the proof is as follows.
Assume that d1, d2, . . . d< is a proof of k from Γ∪ {i}. One shows by induction on
8 that, for each line 8, we have Γ ` i→ d8 .

The deduction theorem simplifies the task of writing down proofs in our proof
system.
Example 2.5 Consider the task of showing ` (i → k) → ((k → d) → (i → d)),
where i, k, and d are arbitrary wffs. Our approach to solving this problem, would
instead be to instead establish {i → k, k → d, i} ` d. If we succeed, we will get
the desired result by using the deduction theorem a few times.

1. {i→ k, k → d, i} ` i→ k Hypothesis
2. {i→ k, k → d, i} ` i Hypothesis
3. {i→ k, k → d, i} ` k Modus Ponens on lines 1 and 2
4. {i→ k, k → d, i} ` k → d Hypothesis
5. {i→ k, k → d, i} ` d Modus Ponens on lines 3 and 4
6. {i→ k, k → d} ` i→ d Deduction Theorem
7. {i→ k} ` (k → d) → (i→ d) Deduction Theorem
8. ` (i→ k) → ((k → d) → (i→ d)) Deduction Theorem

2.1.1 Completeness Theorem

Proofs in a formal proof system like the one in Fig. 2.2 try capture the notion of
correct logical inference. But what do wemean by “correct logical inference”? There

2.2 Resolution 27

are two aspects to such a question. First, any conclusion drawn by a proof must be
logically correct, i.e., consistent with the semantics we defined. In other words, we
should not be able to conclude any false facts using a proof. This is often referred to
as the soundness of the proof system. The second is that the proof system must be
rich enough to be able to prove all true facts. This is called the completeness of the
proof system. We make this connection between provability and the semantics we
gave precise in the following theorem.

Theorem 2.6 (Soundness and Completeness)
For any set of formulas Γ (possibly even infinite) and any wff i the following two

properties hold.

Soundness If Γ ` i then Γ |= i.
Completeness If Γ |= i then Γ ` i.

Thus, any formula proved without any hypotheses is a tautology, and every tau-
tology has a proof from the empty set of hypotheses in our proof system. We will
not prove Theorem 2.6. We will instead prove such a soundness and completeness
theorem for the second proof system that we will introduce for propositional logic.
Proving soundness is usually easy. It requires making sure that the axioms and proof
rules are consistent with the semantics of the logic. In this case it requires showing
that every axiom in the proof system is indeed a tautology, and modus ponens is
consistent with logical consequence. Proving completeness is typically hard.

2.2 Resolution

Notice that the proofs for formulas that we constructed in Examples 2.3 and 2.5 are
very symbolic and mechanical — one doesn’t need to understand what the formula
we are trying to prove is saying or what the meaning of the hypotheses is. Instead the
proofs are constructed by looking at the pattern of formulas. This raises the prospect
of trying to mechanize the process of searching for proofs of formulas. However,
the proof system in Sect. 2.1 is not good for this purpose. This is because at any
point during the construction of the proof, one can extend it by using any one of
the axiom schemas. Since each axiom schema can be instantiated in infinitely many
possible ways, this makes mechanization difficult. A proof system that is amenable to
mechanization is one that has very few choices at any step of the proof construction.
Resolution is such a proof system. Resolution has no axioms and only one rule of
inference.

Resolution is a method for refutations, i.e., it proves that a formula is “not true”
or more precisely unsatisfiable; recall that a formula i is unsatisfiable if v 6 |= i for
all valuations v. Thus unlike the proof system in Sect. 2.1 which proves validity of
a formula directly, resolution works by showing that the negation of the formula is
unsatisfiable. One can imagine resolution refutations like a proof by contradiction,
where one assumes the negation of what one is trying to establish, and trying to
show that that is impossible.

28 2 Proof Systems

Resolution works when the formulas are represented in conjunctive normal form
(CNF). We begin, therefore, by introducing conjunctive normal form formulas. CNF
formulas are built using propositions and their negations, and the logical operators
of ∧ and ∨. It will be convenient to think of ∨ and ∧ being present implicitly (see
Definition 2.7 below) instead of explictly in the syntax.

Definition 2.7 (Conjunctive Normal Form)
Conjunctive normal form formulas are defined as follows.

• A literal is a proposition ? or its negation ¬?.
• A clause is a disjunction of literals. We will think of a clause as a set of literals,

implicitly assuming that the literals are disjuncted. In this interpretation, a truth
valuation satisfies a clause if some literal in the set evaluates to 1 under the truth
valuation.

• The empty clause is the clause containing no literals. By definition, no truth
assignment satisfies the empty clause.

• A formula is said to be in conjunctive normal form (CNF) if it is conjunction
of clauses. Again, we will think of a CNF formula as a set of clauses, with
the conjunction being implicit in the syntax. With this interpretation, a truth
valuation satisfies a CNF formula if it satisfies every clause in the set representing
the formula.

CNF formulas as sets of sets of literals

In Definition 2.7, clauses are represented as sets of literals, and CNF formulas as sets
of clauses.Why is this well-defined? The reason is because∨ and∧ are both idempo-
tent, commutative, and associative. Idempotence means that disjuncting/conjuncting
a formula with itself is equivalent to the formula. In other words, for any wff i we
have

i ∨ i ≡ i i ∧ i ≡ i.

Idempotence of disjunction and conjunction ensures that representing them as sets
which don’t have repeated elements is faithful with the semantics. Commutativity
and associativity mean that the order in which formulas are disjuncted/conjuncted
does not change its semantics. That is, for any formulas i, k, and d,

i ∨ k ≡ k ∨ i i ∧ k ≡ k ∧ i
(i ∨ k) ∨ d ≡ i ∨ (k ∨ d) (i ∧ k) ∧ d ≡ i ∧ (k ∧ d).

Thus, commutativity and associativity ensure that sets (which are ordered collec-
tions) are faithful representations of disjunctions and conjunctions of formulas.

CNF formulas are formulas in a restricted form. However, they are not semanti-
cally restrictive. That is, every wff i can be shown to be equivalent to a formula k
in CNF — we can push negations all the way in using DeMorgan’s Laws, and then

2.2 Resolution 29

distribute ∨ over ∧. We will look at this conversion process more closely later in this
chapter. Let us look at some examples of CNF and non-CNF formulas.

Example 2.8 The formulas (?1∧@1) ∨ (?2∧@2), ¬(?∧@) are examples of formulas
that are not in CNF—neither formula has∧ as the topmost connective. The formulas
(?1 ∨ ?2) ∧ (?1 ∨ @2) ∧ (@1 ∨ ?2) ∧ (@1 ∨ @2) and ¬? ∨¬@ are formulas in CNF as
they are conjunctions of clauses.

We will represent CNF formulas as set of set of literals, without explict conjunc-
tions and disjunctions. For example, {{?1, ?2}, {?1, @2}, {@1, ?2}, {@1, @2}} is the
way the formula (?1 ∨ ?2) ∧ (?1 ∨ @2) ∧ (@1 ∨ ?2) ∧ (@1 ∨ @2) will be represented.
Similarly, {{¬?,¬@}} will be the representation of ¬? ∨ ¬@.

The resolution proof system is a sequence of transformations that preserve satis-
fiability, until the empty clause (which is by definition not satisfiable) is obtained.
The transformations involve the single rule of inference that constructs the resolvent
of two clauses.

Definition 2.9 (Resolvent) The only rule in the resolution proof system is as follows.

� ∪ {?} � ∪ {¬?}
� ∪ �

The conclusion � ∪ � is called the resolvent of � ∪ {?} and � ∪ {¬?} with respect
to proposition ?.

Two clauses may have multiple resolvents depending on which proposition one
chooses to resolve with respect to. The resolvent of two clauses may be the empty
clause if � and � are empty sets. Let us look at some examples to clarify this
definition.

Example 2.10 Consider the clauses {?,¬@,¬A} and the clause {¬?,¬@}. The resol-
vent of these two clauses (with respect to ?) is the clause {¬@,¬A}.

On the other hand, if we consider clauses {?,¬@} and {¬?, @}, we have two
possible resolvents. If we resolve with respect to ?, we get {@,¬@}, and if we resolve
with respect to @, we get {?,¬?}.

Definition 2.11 (Refutations)
A resolution refutation of a (possibly infinite) set of clauses Γ is a sequence of

clauses �1, �2, . . . �< such that each clause �: is either in Γ or a resolvent of two
clauses �8 and � 9 (8, 9 < :), and the last clause �< in the refutation is the empty
clause.

Example 2.12 The set of clauses Γ = {{?, @}, {¬?, A}, {¬@, A}, {¬A}} has the fol-
lowing resolution refutation.

30 2 Proof Systems

1. {¬?, A}
2. {¬A}
3. {¬?} Resolvent of 1 and 2
4. {¬@, A}
5. {¬@} Resolvent of 2 and 4
6. {?, @}
7. {@} Resolvent of 3 and 6
8. {} Resolvent of 5,7

2.2.1 Proving Tautologies with Resolution

Asmentioned before, resolution refutations establish the unsatisfiability of a formula
given in CNF. To prove that a formula is a tautology using resolution, we need to use
Proposition 1.24. That is, to prove that i is a tautology, we need to convert ¬i into
CNF. This can be done as follows.

1. Push negations inside using DeMorgan’s Laws. Recall that DeMorgan’s laws
say the following.

¬(k1 ∧ k2) ≡ ¬k1 ∨ ¬k2 ¬(k1 ∨ k2) ≡ ¬k1 ∧ ¬k2

2. Remove double negations, because ¬¬k ≡ k
3. Distribute ∨ over ∧, using the distributive law, which says

k1∨(k2∧k3) ≡ (k1∨k2)∧(k1∨k3) (k1∧k2)∨k3 ≡ (k1∨k3)∧(k2∨k3)

Example 2.13 Let i = (¬?1 ∨ ¬@1) ∧ (¬?2 ∨ ¬@2). We can convert ¬i to CNF as
follows.

1. Pushing negations inside using DeMorgan’s Laws, we get

(¬¬?1 ∧ ¬¬@1) ∨ (¬¬?2 ∧ ¬¬@2)

2. Removing double negations, we get

(?1 ∧ @1) ∨ (?2 ∧ @2)

3. Distributing ∨ over ∧, we get

(?1 ∨ ?2) ∧ (?1 ∨ @2) ∧ (@1 ∨ ?2) ∧ (@1 ∨ @2)

The above method while semantically correct, can be expensive. The main reason
is that when we distribute∨ over∧, the resulting formula can be exponentially larger.
For example, if we have the formula

2.2 Resolution 31

=∨
8=1
(?8 ∧ @8)

and we distribute ∨ over ∧, we will get a CNF formula where each clause is of the
form (A1 ∨ A2 ∨ · · · ∨ A=), where A8 is either ?8 or @8 . This will result in a formula
with 2= clauses (as we have two choices for each A8).

The exponential blowup can be avoided by using a translation proposed by Tsejtin.
Tseĳtin’s method does not construct a logically equivalent CNF formula. Instead,
for the formula ¬i, it constructs a CNF formula k with the property that ¬i is
satisfiable if and only if k is satisfiable. This weaker correspondence between ¬i
and k is sufficient in this context; we will have i is a tautology if and only if k is
unsatisfiable.

Tsejtin’s Method.

Let us describe the conversion of formula ¬i. The first step is to introduce new
extension propositions Gk for each subformula k of i as follows.

• For each proposition in i, the extension proposition G? is the same as ?.
• For each negated subformula ¬k, G¬k is taken to be the literal ¬Gk .
• For all other subformulas k, Gk is a new proposition.

Having identified the extension propositions, the CNF formula that we will construct
corresponding to ¬i is as follows. Here, we will use the representation of CNF
formulas as sets of sets of literals. So for i, we define Γi to be the following set of
clauses.

• The singleton clause {¬Gi}
• For each subformula k ∧ d, we add the CNF formula equivalent to “Gk∧d ↔
Gk ∧ Gd. In other words, we will have the clauses

{¬Gk∧d, Gk} {¬Gk∧d, Gd} {Gk∧d,¬Gk ,¬Gd}

• For each subformula k ∨ d, we add the CNF formula equivalent to “Gk∨d ↔
Gk ∨ Gd. In other words, we will have the clauses

{Gk∨d,¬Gk} {Gk∨d,¬Gd} {¬Gk∨d, Gk , Gd}

Observe that the number of subformulas of a given formula i is linear in the size of
i. Thus the number of extension propositions we introduce is linear in i. Further,
for each subformula, we are introducing only a constant (3 to be precise) number of
clauses. This means that resulting set of clauses Γi is linear in the size of i.

Example 2.14 Let us apply Tsejtin’s construction to the formula in Example 2.13.
Recall that i = (¬?1 ∨ ¬@1) ∧ (¬?2 ∨ ¬@2). The first step is to identify the new
extension propositions we need. In this case there are only 3 that we will add —
Gi corresponding to i, G1 corresponding to (¬?1 ∨ ¬@1), and G2 corresponding to

32 2 Proof Systems

(¬?2 ∨¬@2). Our CNF formula Γi will be obtained by adding 3 clauses for each of
these interesting subformulas corresponding to Gi , G1 and G2. Thus, we have Γi is
the following set 

{¬Gi},
{¬Gi , G1}, {¬Gi , G2}, {Gi ,¬G1,¬G2},
{G1, ?1}, {G1, @1}, {¬G1,¬?1,¬@1},
{G2, ?2}, {G2, @2}, {¬G2,¬?2,¬@2}


In the above description, we have replaced ¬¬? by ? for ? ∈ {?1, @1, ?2, @2}.

2.2.2 Completeness of Resolution

Wewill now prove that resolution is a “correct” proof system. In other words, we will
prove the soundness and completeness of resolution. What that means for resolution
is that a set of clauses Γ has a resolution refutation if and only if Γ is unsatisfiable.
Note that we will establish this for any set Γ, including those that are infinite. Recall
that a set of clauses Γ is satisfiable if there is a truth assignment v such that for every
clause � ∈ Γ, there is some literal ℓ ∈ � such that vJℓK = T.

Theorem 2.15 (Soundness)
If a set of clauses Γ has a resolution refutation, then Γ is unsatisfiable.

Proof The crux of the proof of the soundness theorem, is to establish the “correct-
ness” of the resolution proof rule. That is captured by the following lemma.

Lemma 2.16 (Resolution Lemma)
Let Δ be a set of clauses and let � be the resolvent of two clauses �, � ∈ Δ. Then

for any assignment v, v |= Δ if and only if v |= Δ ∪ {�}. �

Proof (Of Lemma 2.16) Observe that if v |= Δ ∪ {�}, then clearly v |= Δ.
Consider a truth assignment such that v |= Δ. Without loss of generality, let us

assume there is a proposition ? such that ? ∈ � and ¬? ∈ � . If v(?) = T then since
v |= � , there must be a literal ℓ ∈ � (obviously ℓ ≠ ¬?) such that vJℓK = T. Since
ℓ ∈ �, we have v |= �. On the other hand, if v(?) = F then since v |= �, there
must be a literal ℓ ∈ � (obviously ℓ ≠ ?) such that vJℓK = T. Since ℓ ∈ �, we have
v |= �. �

Using Lemma 2.16, we are ready to complete the proof of Theorem 2.15. Let
�1, �2, . . . �< be a resolution refutation of Γ. Let us define a sequence of sets of
clauses inductively as follows.

Γ0 = Γ Γ8 = Γ8−1 ∪ {�8}

Thus,Γ8 = Γ∪{�1, �2, . . . �8}. Since�< = {},Γ< is clearly unsatisfiable. Therefore,
by Lemma 2.16 (and induction), Γ = Γ0 is also unsatisfiable. �

2.2 Resolution 33

Theorem 2.17 (Completeness)
If a set of clauses Γ is unsatisfiable then there is a resolution refutation of Γ.

We will present a proof of the completeness theorem due to David and Putnam.
For finite Γ, the proof is constructive. That is, when Γ is unsatisfiable, it gives a
specific construction of a refutation for Γ.

Proof Let Γ be an unsatisfiable set of clauses. By the compactness theorem (The-
orem 1.26), there is a finite subset Δ ⊆ Γ that is unsatisfiable; this can be seen
by taking i = ⊥ in Corollary 1.27. We will prove the completeness theorem by
induction on the number of propositions appearing in Δ. Before outlining the proof,
it is useful to point out that since Δ is unsatisfiable, it must be a non-empty set of
clauses. This is because an empty set of clauses is (by definition) satisfiable.

For the base case, observe that if Δ contains no propositions, then Δ contains the
empty clause. Then the refutation for Δ is simply {}.

Let us now consider the induction step. Let us call a clause � trivial if there is a
proposition ? such that {?,¬?} ⊆ �. Trivial clauses are valid, and hence they can be
removed from Δ without affecting its satisfiability. Thus, without loss of generality,
we will assume that Δ does not have any trivial clauses. Let ? be a proposition that
appears in Δ. With respect to proposition ?, Δ can be partitioned into 3 sets.

Δ
?

0 = {� ∈ Δ | � ∩ {?,¬?} = ∅}
Δ
?
+ = {� ∈ Δ | ? ∈ �}
Δ?− = {� ∈ Δ | ¬? ∈ �}

Thus, Δ?0 are clauses where ? does not appear, Δ?+ are those where ? appears
positively, and Δ?− are those where ? appears negatively. Let us construct a new set
of clauses as follows.

Δ? = Δ
?

0 ∪ {� ∪ � | � ∪ {?} ∈ Δ
?
+ and � ∪ {¬?} ∈ Δ?− }

Thus, Δ? has all the clauses in Δ?0 and all resolvents of clauses from Δ
?
+ and Δ?− .

Observe that ? no longer appears in Δ? . If we can argue that Δ? is unsatisfiable then
we can complete the proof by using the induction hypothesis — the refutation for Δ
is just all the steps to create Δ? followed by a refutation for Δ? .

To finish the proof, we need to establish the following lemma.

Lemma 2.18 If Δ? is satisfiable then so is Δ. �

Proof (Of Lemma 2.18) Let v be a truth assignment that satisfies Δ? . Let v′ be
the truth assignment that is identical to v, except that it flips the assignment to ?.
Observe that since v and v′ only differ on the assignment to ?, they agree on all the
propositions appearing in Δ? . Therefore, v′ also satisfies Δ? .

Let us assume without loss of generality, that v(?) = T and v′(?) = F. We will
show that either v or v′ satisfies Δ. Observe that both v and v′ satisfy Δ?0 (because ?
does not appear in Δ?0). Also, v satisfies Δ

?
+ (because all clauses in Δ?+ have ?) and

v′ satisfies Δ?− (because all clauses in Δ?− have ¬?). Now if v satisfies Δ?− , v satisfies

34 2 Proof Systems

Δ. Similarly, if v′ satisfies Δ?+ then v′ satisfies Δ. So the problem is if neither of
these hold. In that case that is a clause � ∪ {?} ∈ Δ?+ that is not satisfied by v′ and
there is a clause � ∪ {¬?} ∈ Δ?− that is not satisfied by v. But then their resolvent
� ∪ � ∈ Δ? is not satisfied by either v or v′, which contradicts our assumption that
both v and v′ satisfy Δ? . �

With the proof of Lemma 2.18, we have completed the proof of Theorem 2.17.�

2.3 Craig’s Interpolation Theorem and Proof Complexity

Craig’s Interpolation theorem is a classical result in logic that holds for many dif-
ferent logics. The theorem has been used in different contexts in the broad area
of formal methods and verification — in hardware and software specification; rea-
soning about large knowledge databases; type inference; combination of theorem
provers for different first order theories; model checking of finite and infinite state
systems through the construction of abstractions. In this section we look at some of
its connections to theoretical computer science and complexity theory in particular.
We will introduce the theorem for propositional logic, and its connection with proof
lengths for propositional logic formulas.

2.3.1 Craig’s Interpolation Theorem

Beforewe state and prove the interpolation theorem, it will be convenient to introduce
some notation. A list of propositions ?1, ?2, . . . ?= will be denoted by −→? when
the actual number of propositions in the list is unimportant. A formula i over
propositions ?1, ?2, . . . ?=, @1, @2, . . . @< will be sometimes denoted as i(−→? ,−→@),
making explicit the propositions that may syntactically appear in i. Finally, for a
truth valuation v and a list of propositions −→? , v �−→? will denote the restriction of v to
the propositions −→? ; note that v has an infinite domain, the domain of v �−→? is finite
and restricted to −→? .

Theorem 2.19 (Craig)
Suppose |= i(−→? ,−→@) → k(−→@ ,−→A). Then there is a formula [(−→@) such that

|= i(−→? ,−→@) → [(−→@) and |= [(−→@) → k(−→@ ,−→A). [is said to the interpolant of i and
k.

Before presenting the proof of Theorem 2.19, let us examine its statement. There
are different equivalent ways of presenting this result. Recall that |= i→ k iff i |= k.
Therefore, we could say that if k is a logical consequence of i then [is a formula
that captures the reason why, using only the common propositions. In this case, since
i |= [, we could think of [as an “abstraction” of i (as [“forgets” the constraints i
imposes on −→?) that is sufficient to ensure k. Another formulation of Craig’s theorem

2.3 Craig’s Interpolation Theorem and Proof Complexity 35

is as follows. Suppose i(−→? ,−→@)∧k(−→@ ,−→A) is unsatisfiable (or equivalently, i |= ¬k),
then there is a formula [(−→@) over the common propositions such that i |= [and
[∧k is unsatisfiable (i.e., [|= ¬k). Informally, [is an abstraction of i that captures
why i ∧ k is unsatisfiable. We will consider this formulation of Craig’s theorem in
terms of unsatisfiability, when we revisit resolution later in this section.

Proof (Of Theorem 2.19) The proof of Craig’s Interpolation Theorem is quite sim-
ple in this context of propositional logic. Let us define

" = {v �−→@ | vJiK = T}.

Observe that since the domain (and range) of all functions in " is finite, " is a finite
set. Let us, without loss of generality, take " = {v1, v2, . . . v=}. The interpolant [
will essentially say that “one among the assignments in " hold”. Formally,

[(−→@) = ∨=8=1 (@
(8)
1 ∧ @

(8)
2 ∧ · · · ∧ @

(8)
:
)

where
@
(8)
9
=

{
@ 9 if v8 (@ 9) = T
¬@ 9 otherwise

and −→@ is @1, . . . @:

Clearly from the definition of " and [, we have i(−→? ,−→@) |= [(−→@). Let us now
argue that [(−→@) |= k(−→@ ,−→A). Consider an arbitrary valuation v such that vJkK = F.
Since we have i |= k, it must be that vJiK = F. Consider any assignment v′ such that
v �−→@ ,−→A = v′ �−→@ ,−→A . Since v and v′ agree on the propositions appearing in k, we have
v′JkK = F. Again, since k is a logical consequence of i, it must be that v′JiK = F.
Thus, no matter how the assignment to propositions −→? is changed from v, we will
not be able to satisfy i. This means that v �−→@ ∉ " . Thus, by our construction of [,
vJ[K = F. This establishes that [|= k. �

Example 2.20 Let us look at a simple example that illustrates the construction of
the interpolant in the proof of Theorem 2.19. Consider i = ? ∧ (@1 ∨ @2) and let
k = (@1∨ @2∨ A). It is easy to see that |= i→ k. The set " constructed in the proof
in this case would be " = {vTT, vTF, vFT}, where v8 9 is the function

v8 9 (@1) = 8 and v8 9 (@2) = 9

Given " , the proof constructs the follow formula as interpolant.

[= (@1 ∧ @2) ∨ (@1 ∧ ¬@2) ∨ (¬@1 ∧ @2).

2.3.2 Size of Interpolants

The interpolant [constructed in the proof of Theorem 2.19 is exponential in the
number of common variables, and therefore, could be exponential in the size of the
formulas i and k. Can this be improved? Small interpolants can have a big impact in

36 2 Proof Systems

the contexts where interpolants are used, like in formal verification. Or can we prove
that, in the worst case, the interpolant needs to be exponential in the size of the input
formulas? Unfortunately, like many questions in theoretical computer science, this
remains open and unresolved — we cannot prove or disprove that the construction
in the proof of Theorem 2.19 is the best. However, in this section, we will show that
it is unlikely that we can construct polynomial sized interpolants for all formulas.
Or more precisely, we will show that resolving whether there exist polynomial sized
interpolants for all formulas, is closely related to other open questions in complexity
theory.

In order to present these results on the size of interpolants, we need to introduce
new circuit complexity classes. Circuit complexity for a problem is based on a non-
uniform model of computation. The idea is the following. Imagine you have the
ability to choose a different algorithm for each input length; how much resource
would you need? The “programs” for each input length are circuits, and different
aspects of these circuits correspond to different computational resources one may
care about. Running time in this context, roughly corresponds to circuit size. This
leads us to analogs of P, NP, coNP in the context of non-uniform complexity, which
are defined next.

Definition 2.21 (Circuits)
A Boolean Circuit � is a sequence of assignments �1, �2, . . . �=, where each �8

is one of the following forms.

%8 = F
%8 = T
%8 = ?
%8 = % 9 ∧ %: , 9 , : < 8
%8 = % 9 ∨ %: , 9 , : < 8
%8 = ¬% 9 , 9 < 8

where each %8 is a variable that appears on the left-hand side in only �8 . The size of
such a circuit, denoted |� |, is =.

The variable %8 is said to be an input variable if the line �8 corresponding to it
is of the form %8 = ?. The input variables of � will be denoted by � (�). Given an
assignment v : � (�) → {F, T}, the value of � under v is the value assigned to the
variable %= in the last line. There is a natural order on the variables (based on which
line they are assigned a value) which also imposes an order on the input variables.
Thus, an assignment � (�) → {F, T} can be thought of as a string G, where G [8] is
the value assigned to the 8th input variable. Under such an interpretation, the value
of � under string G, will be denoted by � (G).

Example 2.22 Circuits and formulas are two ways to represent Boolean functions. It
is instructive to see how they differ by looking at an example.

Consider the boolean function parity(G1, G2, . . . G=) which computes whether the
number of propositions in {G1, G2, . . . G=} set to T is odd or even. For example, we
could write down the formula for some simple cases.

2.3 Craig’s Interpolation Theorem and Proof Complexity 37

parity(G1, G2) = (G1 ∨ G2) ∧ ¬(G1 ∧ G2)
parity(G1, G2, G3) = (((G1 ∨ G2) ∧ ¬(G1 ∧ G2)) ∨ G3)

∧¬(((G1 ∨ G2) ∧ ¬(G1 ∧ G2)) ∧ G3)

More generally, we can inductively write down the formula for parity(G1, G2, . . . G=)
by observing that the parity of G1, G2, . . . G= is odd iff either (a) the parity of
G1, . . . G=−1 is even and G= is T, or (b) parity of G1, . . . G=−1 is odd and G= is F.
This results in the following definition.

parity(G1, G2, . . . G=−1, G=) = (parity(G1, G2, . . . G=−1) ∨ G=)
∧¬(parity(G1, G2, . . . G=−1) ∧ G=)

Observe that the formula we wrote down for parity(G1, G2, G3) is based on exactly this
definition. Observe that the size of the formula parity(G1, . . . G=) is double the size
of parity(G1, . . . G=−1). This means that the size of parity for = arguments is $ (2=).

A circuit for the same formula does not grow as rapidly. This is because it can
“reuse” previous computed answers. Let us look at the circuit corresponding to the
formula parity(G1, G2, G3) we wrote above.

G1 = ?
G2 = ?
G3 = ?
%4 = G1 ∨ G2
%5 = G1 ∧ G2
%6 = ¬%5
%7 = %4 ∧ %6
%8 = %7 ∨ G3
%9 = %7 ∧ G3
%10 = ¬%9
%11 = %8 ∧ %10

Notice that variable %7 stores parity(G1, G2) and it is reused without paying an extra
cost. More generally, if �=−1 is the circuit computing parity(G1, . . . G=−1) with last
line %:=−1 , the circuit �= computing parity(G1, . . . G=) is given by

�=−1
G= = ?
&1 = %:=−1 ∨ G=
&2 = %:=−1 ∧ G=
&3 = ¬&2
%:= = &1 ∧&3

Now if |�= | = |�=−1 | + 5. Therefore, in general, we get |�= | = $ (=). Thus the circuit
for the same syntactic formula can be exponentially smaller.

38 2 Proof Systems

Definition 2.23 A language � ⊆ {0, 1}∗ is said to be in P/poly iff there are constants
2, : ∈ N, and a (infinite) family of circuits {�8}8∈N such that (a) for every =,
|�= | ≤ 2=: , and (b) for every G, G ∈ � iff � |G | (G) = T.

A language � ⊆ {0, 1}∗ is said to be in NP/poly (coNP/poly) iff there are
constants 2, : ∈ N, and a (infinite) family of circuits {�8}8∈N such that (a) for every
=, |�= | ≤ 2=: , and (b) for every G, G ∈ � iff for some (all) A , � |G | (G, A) = T.

One can think of P/poly (or NP/poly or coNP/poly) as the collection of problems
that be solved in polynomial time (or nondeterministic polynomial time or co-
nondeterministic polynomial time) given a polynomially long advice string, namely,
the description of the appropriate circuit. Just like in the case of (uniform/regular)
complexity classes where it is open whether P ?

= NP ∩ coNP, the same question is
open in the non-uniform context as well. That is, a long standing open problem is
whether P/poly ?

= NP/poly ∩ coNP/poly.
Mundici’s theorem says that establishing the existence of interpolants with poly-

nomial circuit representation for all pairs of formulas, is equivalent to resolving the
P/poly versus NP/poly ∩ coNP/poly question. Thus, it is likely to be difficult to
establish.

Theorem 2.24 (Mundici)
If for any i and k such that i |= k there is an interpolant whose circuit size is

polynomial in i and k then

P/poly = NP/poly ∩ coNP/poly

Proof Consider a problem ! ∈ NP/poly ∩ coNP/poly. Thus, there are families of
circuits {�=}=∈N and {�=}=∈N such that for each =, �= and �= have size bounded by
a polynomial function of = and for any binary string F, F ∈ ! iff ∃?. � |F | (?, F) = T
iff ∀A. � |F | (F, A) = T. These observations are just a consequence of ! ∈ NP/poly
and ! ∈ coNP/poly.

Based on the previous paragraph, we have, for any =, if for some assignment of
values to −→@ , if ∃−→? . �= (−→? ,−→@) holds then it also the case that ∀−→A . �= (−→@ ,−→A) holds.
Therefore, we have �= (−→? ,−→@) |= �= (−→@ ,−→A). By our assumption on interpolants, we
have an interpolant (as a circuit) �= (−→@) such that |�= | is bounded by a polynomial
in |�= | and |�= |. Since |�= | and |�= | are bounded by polynomials in =, we have
|�= | is bounded by a polynomial in =. Further, since �= is an interpolant, we have if
∃−→? . �= (−→? ,−→@) holds then �= (−→@) holds, and if �= (−→@) holds then ∀−→A . �= (−→@ ,−→A)
holds. Thus, {�=} is a family of polynomially sized circuits deciding !, and thereby
demonstrating that ! ∈ P/poly. �

2.3.3 Interpolants from Refutations

Constructing small interpolants for all formulas is likely to be difficult. However,
it turns out that, if a formula �(−→? ,−→@) → �(−→@ ,−→A) has a short proof in some

2.3 Craig’s Interpolation Theorem and Proof Complexity 39

proof systems, then the proof can be used to construct an interpolant, whose size
is propositional to the original proof. One proof system that admits such a result is
resolution.

Theorem 2.25 Let the collection of clauses Γ = {�8 (−→? ,−→@)}:8=1 ∪ {� 9 (
−→@ ,−→A)}ℓ

9=1
have a resolution refutation of length =. Then there is a circuit � (−→@) such that∧

8 �8 (−→? ,−→@) |= � (−→@) and � (−→@) ∧
∧
9 � 9 (−→@ ,−→A) is unsatisfiable.

Further |� | is $ (=).

Proof Since Γ = {�8 (−→? ,−→@)}8 ∪{� 9 (−→@ ,−→A)} 9 is unsatisfiable, every truth valuation
v fails to satisfy at least one of the �8 (−→? ,−→@) or � 9 (−→@ ,−→A). We can also restate the
properties of an interpolant � as

|= ¬� (−→@) → ¬∧
8 �8 (−→? ,−→@) and

|= � (−→@) → ¬∧
9 � 9 (−→@ ,−→A)

Thus, � (−→@) can be thought of as a way of labelling truth valuations: those labelled
F will not satisfy some clause �8 (−→? ,−→@) and those labelled T will not satisfy some
� 9 (−→@ ,−→A).

The structure of the proof will be as follows. Let k1, k2, . . . k= be a resolution
refutation of Γ. Let the set of common variables −→@ = {@1, . . . @<}. Our circuit
for the interpolant will be a sequence of the form @1 = ?, @2 = ?, . . . @< = ?, %1 =
�1, %2 = �2, . . . %= = �= — the first < lines asserting that @8’s are variables, and
then having one line %8 = �8 corresponding to each line k8 of our refutation. It
will be convenient to consider expressions �8 on the right hand side that have more
than one logical connective. We will find it convenient to talk about the “circuit
corresponding to a line k8 in the refutation”. What we mean by this is look at the
sequence of assignments upto (and including) line %8 = �8; we will denote this as
circuit �8 . The value of �8 (with respect to a truth assignment) will simply be the
value variable %8 gets when we compute this circuit.

As mentioned above, we will construct the circuit line by line, corresponding to
the refutation. With each line k8 in the refutation, we can associate a set of truth
assignments, namely those that do not satisfy k8 , i.e., "8 = {v | vJk8K = F}. The
invariant we will maintain as we build the circuit line by line, is that �8 “correctly
labels” assignments belonging to "8 . That is, for v ∈ "8 , if �8 (v) = F then v does
not satisfy some clause �8 (−→? ,−→@) and if �8 (v) = T then v does not satisfy some
clause � 9 (−→@ ,−→A). Notice that the last line k= = {}, and so "= is the set of all truth
assignments. Thus, if the invariant is maintained, �= will indeed be an interpolant
because it will “correctly” label all assignments.

Let us now describe how we construct the circuit. For each line k4, we will add
a line %4 = �4. What �4 is will depend on the justification for the line k4 in the
refutation. Let us begin with the cases when k4 is a clause belonging to Γ. There are
two cases to consider.

40 2 Proof Systems

• Suppose k4 ∈ {�8 (−→? ,−→@)}:8=1. Observe that any v ∈ "4 does not satisfy a clause
in {�8 (−→? ,−→@)}:8=1 and could be safely labeled F. Thus, the line corresponding to
k4 will be %4 = F.

• If k4 ∈ {� 9 (−→@ ,−→A)}ℓ9=1, then each v ∈ "4 could be labeled T because it does not
satisfy k4 ∈ {� 9 (−→@ ,−→A)}ℓ9=1. Thus, we have %4 = T.

The next cases to consider are when k4 is a resolvent of two clauses. So let
k4 = d1 ∪ d2 and let it be the resolvent of clauses k0 and k1 in the refutation. We
need to consider different cases based on the proposition with respect to which k4 is
a resolvent. Let us begin by considering the case when the proposition being resolved
is one of the common variables. Without loss of generality, let us take k0 = d1∪{@}
and k1 = d2∪{¬@}. Consider an arbitrary assignment v ∈ "4, i.e., vJk4K = F. From
the soundness of the resolution proof rule, we know that either v ∈ "0 or v ∈ "1 .
If v(@) = F then v ∈ "0; it may also, in addition, be the case that v ∈ "1 , but that
is unimportant. We could label such assignments in the same manner as the labeling
corresponding to line k0, i.e., as per the value of variable %0. Similarly, if v(@) = T
then v ∈ "1 and so it can be labeled in the same manner as %1 . This gives us that
the line corresponding to k4 in this case should be %4 = (¬@ ∧ %0) ∨ (@ ∧ %1).

Let us now consider the case when k4 is a resolvent of k0 and k1 , but the
resolution step is taken with respect to a proposition (say B) that is either in −→? or in
−→A . Once again any v ∈ "4 must also belong to "0∪"1 , but now since B is not in −→@
it cannot be explicitly mentioned in the line %4 = �4, as we did in the previous case.
Again, without loss of generality, let us assume that k4 = d1 ∪ d2, k0 = d1 ∪ {B},
k1 = d2 ∪ {¬B}. Let v′ be the assignment that is identical to v, except that it flips
the assignment to B. Without loss of generality, we can assume that v(B) = F and
v′(B) = T, and for all other propositions C, v(C) = v′(C). Observe that v ∈ "0 and
v′ ∈ "1 . Further, �0 (v) = �0 (v′) and �1 (v) = �1 (v′); this is because �0 and �1
do not mention B. Let us consider two cases based on whether B ∈ −→? or B ∈ −→A .

• Suppose B ∈ −→? . Observe that in this case, for any 9 , vJ� 9K = v′J� 9K, because
B does not appear in � 9 . Now, since �0 and �1 satisfy our invariant, we have,
if �0 (v) = T(= �0 (v′)) then for some 9 , vJ� 9K = F(= v′J� 9K). Similarly, if
�1 (v′) = T(= �1 (v)) then for some 9 , v′J� 9K = F(= vJ� 9K). Thus, if either �0
or�1 label v, v′ by T, then�4 must do the same. Otherwise, both�0 and�1 label
v and v′ as F, and this common label is correct as per our invariant. Therefore,
we have %4 = %0 ∨ %1 in this case.

• Now let us consider B ∈ −→@ . In this case, for any 8, vJ�8K = v′J�8K. Using an
argument similar to the previous case, we can argue that if either �0 or �1
label v, v′ by F then �4 must do the same. Otherwise, �0 and �1 agree on the
label, and that is indeed the correct label. Therefore, dually, in this case we have,
%4 = %0 ∧ %1 .

The proof that the invariant is maintained follows inductively, from the arguments
we have made for each case. Thus,�= is indeed the interpolant. It is worth noting that
in �= we have a sequence of initial assignments @1 = ?, @2 = ?, . . . @< = ? that assert
that −→@ are input variables. This seems to suggest that the size of �= also depends on

2.3 Craig’s Interpolation Theorem and Proof Complexity 41

|−→@ | and hence on Γ. However, instead of asserting that all variables in −→@ are input
variables, we could assert only those variables in −→@ that appear in the refutation.
Thus, |�= | is indeed linear in the size of the refutation. �

Example 2.26 Let us look at an example to see how an interpolant can be constructed
from a refutation. Consider the set of clauses

Γ = {

�︷ ︸︸ ︷
{?, @}, {¬?, A},

�︷ ︸︸ ︷
{¬@, A}, {¬A}}.

Here ? is a proposition that only appears in the �-clauses, and @ and A are propositions
that appear in both � and � clauses. Γ is unsatisfiable, and we are looking for
an interpolant that only mentions the common variables @, A. Below we have the
refutation (on the left) alongside the circuit for the interpolant (on the right) as per
the proof of Theorem 2.25.

@ = ?
A = ?

{¬?, A} %1 = 0
{¬A} %2 = 1
{¬?} %3 = (¬A ∧ %1) ∨ (A ∧ %2)
{¬@, A} %4 = 1
{¬@} %5 = (¬A ∧ %4) ∨ (A ∧ %2)
{?, @} %6 = 0
{@} %7 = %3 ∨ %6
{} %8 = (¬@ ∧ %7) ∨ (@ ∧ %5)

Observations like Theorem2.25 have also been established for other proof systems
of propositional logic. That is, in these proof systems, a short proof for a fact
can be converted into a construction of a small interpolant. Theorem 2.25 can be
strengthened for certain special sets of clauses— one can show that in certain special
cases, not only is the interpolant small, but it is also monotonic.

Definition 2.27 (Monotone Circuits)
Amonotone circuit� is onewhere there are no assignments of the form %8 = ¬% 9 .

A monotone circuit enjoys the following monotonic property. Let us say v1 ≤ v2
if for all proposition ?, if v1 (?) = T then v2 (?) = T, i.e., v2 sets at least as many
propositions to T as v. The value of a monotonic circuit with respect to this ordering
on assignments is monotonic. In other words, if � is monotone, then for any v1, v2
such that v1 ≤ v2, we have � (v1) = T implies � (v2) = T.

Theorem 2.28 Let the collection of clauses Γ = {�8 (−→? ,−→@)}:8=1 ∪ {� 9 (
−→@ ,−→A)}ℓ

9=1
have a resolution refutation of length =. Further assume that either −→@ occur only
positively in �8s or −→@ occur only negatively in � 9s. Then there is amonotone circuit
� (−→@) such that

42 2 Proof Systems∧
8 �8 (−→? ,−→@) |= � (−→@) and � (−→@) ∧

∧
9 � 9 (−→@ ,−→A) is unsatisfiable.

In addition, |� | is $ (=).

Proof The construction of the interpolant is identical to that in the proof of Theo-
rem 2.25. All cases in that proof go through except for the case when the line k4 is a
resolvent with respect to proposition @ ∈ −→@ , i.e., the common variables. In this case,
in the proof of Theorem 2.25, the circuit was %4 = (¬@ ∧ %0) ∨ (@ ∧ %1), where k4
is the resolvent of lines k0 = d1 ∪ {?} and k1 = d2 ∪ {¬@}. This is not monotonic
because if the use of ¬@. To prove our result, we need to change the circuit in this
case. We will change it by forcing it to be monotone in the most naïve way — we
will remove the offending ¬@ and write %4 = %0 ∨ (@ ∧ %1).

The resulting construction is correct, but the inductive argument using the invari-
ant from Theorem 2.25 does not go through! Let us see what the problem is. Recall,
that for any line k4, we defined the set "4 = {v | vJk4K = F}. The invariant we
proved in Theorem 2.25 was for any valuation v ∈ "4, we have
• If vJ�4K = F then vJ�8K = F for some 8, and
• If vJ�4K = T then vJ� 9K = F for some 9 .

Let us try to prove this invariant by induction as in the proof of Theorem 2.25.
Consider the case that we just changed, i.e., of a resolvent with respect to a common
variable. So k4 = d1∪d2 is the resolvent of lines k0 = d1∪{@} and k1 = d2∪{¬@}.
And we have, %4 = %0 ∨ (@ ∧ %1). Consider a valuation v ∈ "4. The problem with
carrying out this inductive proof occurs when v(@) = T; the other case of v(@) = F
goes through rather simply. Then v ∈ "1 . Now if �0 (v) = F or �1 (v) = T then
�4 (v) = �1 (v) and correctness follows from the inductive assumptions on �1 . The
problem occurs when �0 (v) = T and �1 (v) = F.

The way to fix the problem is to prove a stronger invariant. In our old invariant,
we proved that our circuit for line 4 was correct on the truth assignments in "4 =
{v | vJk4K = F}. Our strengthening will show that the circuit for line 4 is correct on a
larger set of truth assignments. Depending on whether we consider the case when −→@
appears only positively in {�8 (−→? ,−→@)}8 or the case when −→@ occurs only negatively
in {� 9 (−→@ ,−→A)} 9 , the invariant (and the proof) is slightly different. We will present
the proof only for the case when −→@ occurs negatively in {� 9 (−→@ ,−→A)} 9 . We will state
the modified invariant for the other case, but leave the details to be filled out by the
reader.

To describe the invariant in the case when −→@ occurs negatively in {� 9 (−→@ ,−→A)} 9 ,
we need to introduce some notation. For a clause k, k �−→? ,−→@ be the clause obtained
by removing all literals involving propositions in −→A . On the other hand, k �−−→@ ,−→A is
the clause obtained from k by removing all literals of proposition −→? as well as all
positive literals of −→@ . Our stronger invariant will be for every valuation v

• if vJk �−→? ,−→@ K = F and �4 (v) = F then vJ�8K = F for some 8, and
• if vJk �−−→@ ,−→A K = F and �4 (v) = T then vJ� 9K = F for some 9 .

Notice that since {} �−→? ,−→@= {} �−−→@ ,−→A = {}, proving this new invariant guarantees
that �= (where = is length of the resolution refutation) is an interpolant.

2.3 Craig’s Interpolation Theorem and Proof Complexity 43

We now argue that the stronger invariant holds for the new construction. We
consider each case in order.

k4 ∈ {�8}8: In this case, we have k4 �−→? ,−→@= k4 and %4 = F. The invariant,
therefore, holds.

k4 ∈ {� 9 } 9 : Again we have k4 �−−→@ ,−→A = k4. Since %4 = T, the invariant holds.
Resolvent w.r.t −→@ : Let k4 = d1 ∪ d2 be the resolvent of lines k0 = d1 ∪ {@} and
k1 = d2 ∪ {¬@}. Recall we have %4 = %0 ∨ (@ ∧ %1).

1. Consider v such that vJk4 �−→? ,−→@ K = F and �4 (v) = F. In this case, if v(@) = T
then vJk1 �−→? ,−→@ K = vJk1K = F. Also, since �4 (v) = F, it must be that
�1 (v) = F, and so correctness follows by induction. On the other hand, if
v(@) = F then vJk0 �−→? ,−→@ K = vJk0K = F. Also, �0 (v) = F and correctness
follows by induction.

2. Consider v such that EJk4 �−−→@ ,−→A K = F and �4 (v) = T. If �0 (v) = T then
since vJk0 �−−→@ ,−→A K = vJd1 �−−→@ ,−→A K = F, the invariant follows by induction.
Notice, how the stronger invariant helped the proof go through in this case
which was problematic before. On the other hand, if vJ@ ∧ �1K = T then
v(@) = T. So vJk1 �−−→@ ,−→A K = F and then invariant holds by induction.

Resolvent w.r.t. −→? : Let k4 = d1 ∪ d2 be the resolvent of lines k0 = d1 ∪ {?} and
k1 = d2 ∪ {¬?}. Recall %4 = %0 ∨ %1 .

1. Suppose�4 (v) = F and vJk4 �−→? ,−→@ K = F. Then we know�0 (v) = �1 (v) = F.
Further either vJk0K = F or vJk1K = F. Thus, correctness of construction by
induction.

2. Suppose vJk4 �−−→@ ,−→A K = F and �4 (v) = T. Now k4 �−−→@ ,−→A = k0 �−−→@ ,−→A
∪k1 �−−→@ ,−→A , and so vJk0 �−−→@ ,−→A K = vJk1 �−−→@ ,−→A K = F. Further since �4 (v) =
T, either �0 (v) = T or �1 (v) = T. So correctness follows by induction.

Resolvent w.r.t. −→A : Proof similar to previous case.

The proof of correctness when −→@ appears positively in {�8 (−→? ,−→@)}8 is similar,
though the invariant is slightly different. For a clause k, take k �−→? ,+−→@ to be the
clause obtained by removing literals of −→A and negative literals of −→@ . In addition,
k �−→@ ,−→A is the clause obtained by removing literals of −→? . The invariant we will prove
about the construction is, for every v,

• if vJk �−→? ,+−→@ K = F and �4 (v) = F then vJ�8K = F for some 8, and
• if vJk �−→@ ,−→A K = F and �4 (v) = T then vJ� 9K = F for some 9 .

The proof is similar and skipped. �

Example 2.29 Let us consider the set of clauses Γ from Example 2.26.

Γ = {

�︷ ︸︸ ︷
{?, @}, {¬?, A},

�︷ ︸︸ ︷
{¬@, A}, {¬A}}.

44 2 Proof Systems

Notice that the common propositions, @ and A , appear only positively in �. The
refutation alongside the interpolant construction is as follows.

@ = ?
A = ?

{¬?, A} %1 = 0
{¬A} %2 = 1
{¬?} %3 = %1 ∨ (A ∧ %2)
{¬@, A} %4 = 1
{¬@} %5 = %4 ∨ (A ∧ %2)
{?, @} %6 = 0
{@} %7 = %3 ∨ %6
{} %8 = %7 ∨ (@ ∧ %5)

2.3.4 Lower bounds on Resolution Refutations

The results in Sect. 2.2 connecting resolution refutation lengths and size of inter-
polants, allows one to prove lower bounds on the length of resolution refutations for
formulas. In particular we can show that there are sets of clauses Γ for which the
shortest resolution refutations are exponential in the size of Γ. Thus, not every un-
satisfiable formula has a short proof in resolution. The specific example we consider
relates to cliques in graphs and their coloring. Let us recall these classical problems.

Recall that in Proposition 1.35, we showed that determining if a graph is :-
colorable can be reduced to checking the satisfiability of a set of formulas. More
specifically, let us fix the graph � = (+, �) to have = vertices. Any such graph can
be represented by an assignment to propositions {@DE | D, E ∈ {1, 2, . . . =}}, with the
interpretation that (D, E) ∈ � iff @DE is set to T. Using AD8 to denote “vertex D has
color 8”, there is a set of clauses color=,: (−→@ ,−→A) such that v |= color=,: (−→@ ,−→A) iff the
graph (over = vertices) represented by v �−→@ has a :-coloring given by v �−→A . The set
color=,: is almost identical to the construction given in the proof of Proposition 1.35.
The only difference is that we will use the clause ¬@DE ∨¬AD8 ∨¬AE8 , for every pair
of vertices D, E ∈ {1, 2, . . . =} and color 8 ∈ {1, 2, . . . :}, instead of ¬AD8 ∨ ¬AE8 for
every edge (D, E) as given in Proposition 1.35. Note that color=,: has $ (=2: + =:2)
clauses.

Whether a graph is :-colorable is related to the presence of graph structures called
cliques.

Definition 2.30 A :-clique in a graph � = (+, �) is a subset * ⊆ + such that
|* | = : and for every D, E ∈ *, with D ≠ E, we have (D, E) ∈ � .

Like graph coloring, the problem of determining if a graph has a :-clique can be
reduced to satisfiability.

2.3 Craig’s Interpolation Theorem and Proof Complexity 45

Proposition 2.31 For any =, : , there is a set of $ (=2:2) clauses clique=,: (−→? ,−→@)
such that v |= clique=,: (−→? ,−→@) iff the graph represented by v �−→@ has a :-clique given
by v �−→?
Proof The proof of this observation is similar to that of Proposition 1.35. We will
introduce propositions that encode the :-clique, and clauses will specify constraints
that characterize properties of a :-clique. Let proposition ?8D , for 8 ∈ {1, . . . :} and
D ∈ {1, . . . =}, denote that “the 8th vertex in clique is D”. Then clique=,: (−→? ,−→@) is
the following set of clauses.

• For each 1 ≤ 8 ≤ : , the clause ?81 ∨ ?82 ∨ · · · ∨ ?8=. These clauses capture the
constraint that the 8th vertex of the clique must be among {1, . . . =}.

• For each 1 ≤ 8 ≤ : , and 1 ≤ D, E ≤ = such that D ≠ E, the clause ¬?8D ∨ ¬?8E .
Intuitively, this says that the 8th vertex of the clique can be at most one vertex.

• For each 1 ≤ 8, 9 ≤ : with 8 ≠ 9 , and 1 ≤ D ≤ =, the clause ¬?8D ∨ ¬? 9D . These
clauses say that the 8th and 9 th vertex of the clique cannot be the same vertex D.

• For each 1 ≤ 8, 9 ≤ : and 1 ≤ D, E ≤ = with D ≠ E, we have the clause
¬?8D ∨ ¬? 9E ∨ @DE . These clauses together say that if D, E are vertices in the
clique then they have an edge between them.

The proof that these clauses satisfy the proposition is left to the reader. �

Observe that if a graph � has a :-clique then it cannot be colored using : − 1
colors. This is because each of the vertices in the clique must get different colors.
Thus a graph with a :-clique needs at least : colors. This leads us to the following
observation.

Proposition 2.32 For any =, : , clique=,: (−→? ,−→@)∪color=,:−1 (−→@ ,−→A) is unsatisfiable.

Proof A satisfying assignment for clique=,: (−→? ,−→@) ∪ color=,:−1 (−→@ ,−→A) is a graph
encoded by −→@ that has :-clique (identified by −→?) and can be colored using : − 1
colors (with the coloring encoded by −→A). This is clearly impossible. �

Since clique=,: (−→? ,−→@) ∪ color=,:−1 (−→@ ,−→A) is unsatisfiable, it must have a reso-
lution refutation. How long is its refutation? Our goal will be to prove that this is
exponential in =. Since the size of clique=,: (−→? ,−→@) ∪color=,:−1 (−→@ ,−→A) itself is poly-
nomial in =, this would be an example that has a “long” proof. In order to establish
this result, we present a celebrated result in circuit complexity whose proof can be
found in textbooks like [?].

Theorem 2.33 (Razborov, Alon-Bopanna)
Any monotone circuit that evaluates to T on =-vertex graphs containing a :-clique

and evaluates to F on =-vertex graphs that are : −1 colorable must have size at least
=Ω(
√
:) , when : ≤ = 1

4 .

Theorem 2.33 combined with Theorem 2.28 gives us the desired lower bound on
proof lengths.

Theorem 2.34 Any resolution refutation of clique=,: (−→? ,−→@) ∪ color=,:−1 (−→@ ,−→A)
must have length at least =Ω(

√
:) , when : ≤ = 1

4 .

46 2 Proof Systems

Proof Let there be a resolution refutation of length ℓ. Observe that −→@ appears
only positively in clique=,: (−→? ,−→@) and only negatively in color=,: (−→@ ,−→A). Thus,
clique=,: (−→? ,−→@) ∪ color=,:−1 (−→@ ,−→A) satisfies the conditions of Theorem 2.28, and
so there is a monotone interpolant of size$ (ℓ). The interpolant is a monotone circuit
satisfying conditions of Theorem 2.33. Thus, ℓ must be at least =Ω(

√
:) . �

Theorem 2.34 establishes that resolution proofs can be long as an exponential
function of the size of the input clauses. Historically, the above theorem was not the
first example of a proof that some formulas have long resolution proofs. The first
such result was established by Haken. He showed that the pigeon hole principle has
long resolution proofs. Recall that the pigeon hole principle says that if there are
= holes and = + 1 pigeons then some hole may contain more than one pigeon. Let
pigeonhole= be the propositional logic formula that says that every pigeon goes to a
hole and no hole contains more than one pigeon. Then pigeonhole= is unsatisfiable,
and Haken showed that any resolution refutation of this fact must be exponential
in =. The broad principle of using interpolation and lower bounds from monotonic
circuit complexity have been used to establish that other proof systems can also have
long proofs.

Understanding how long resolution proofs can be, and when they can be long,
helps our theoretical understanding of the limits of SAT solvers — what examples
they may work well and when they can take long. But a probably more important
reason for studying proof lengths in some proof system is because of its connections
to some fundamental questions in complexity theory. Essentially, the goal in proof
complexity is to understand if there is a proof system for propositional logic that has
the property that all facts have short proofs. Investigating whether this is true or not
has important implications in complexity theory. Let us see why.

Definition 2.35 A proof systemΠ is super if every tautology i has a proof inΠ such
that length of the proof is bounded by a polynomial function of |i|.

Now Theorem 2.34 says that resolution is not a super proof system. But are there
other proof systems that are super? This is intimately tied to another open question
in complexity theory.

Theorem 2.36 (Cook-Reckhow)
Propositional logic has a super proof systems if and only if NP = coNP.

Proof There are two directions to this proof. Assume that there is a super proof
system. Then the problem to determine if a given formula is valid, is in NP — the
NP algorithm simply guesses the proof and checks that it is a proof in our super
proof system. Since the problem of checking validity is coNP-complete, it follows
that coNP = NP; the NP algorithm for an arbitrary problem � ∈ coNP is simple
to reduce it to validity checking and then use the NP algorithm based on the super
proof system.

On the other hand, suppose NP = coNP then there is nondeterministic Turing
machine # , running in polynomial time, that checks if a given propositional logic
formula is valid. Proofs for a formula i in our new “super” proof system will simply

2.3 Craig’s Interpolation Theorem and Proof Complexity 47

be the nondeterministic choices that cause # to accept i; notice, that these proofs
will be polynomially long because # only has computations that are polynomially
long. �

In the light of Theorem 2.36, to resolve the NP versus coNP question, we need
to prove that there are no super proof systems for proposition logic. Cook proposed
an approach to tackling this problem. Consider concrete natural proof systems for
propositional logic, one by one, and show that they are not super. Then use the
intuition developed in this process to generalize and prove the absence of any super
proof system. Resolution was the first proof system shown to be not super. Since
then other proof systems have also been proved to be not super. However, there are
still natural proof systems for which we have not been able to prove exponential
lower bounds for proof lengths. One such proof system is the Frege proof system
we introduced. It is still open whether there are tautologies for which proofs in the
Frege proof system will be exponentially long.

Chapter 3
First Order Logic

Syntax, Semantics, and Overview

First order logic is a formal language to describe and reason about predicates.Modern
efforts to study this logic grew out of a desire to study the foundations of mathematics
in number theory and set theory. It has a careful treatment of functions, variables,
and quantification. First order logic deals with predicates as opposed to propositions
— declarative statements that are either true or false — which is the subject of study
in propositional logic. A predicate is a proposition that depends on the value of some
variables. For example truth of the statement “G is prime”, depends on the value G
takes (and of course also on the meaning of “is prime”). If G = 2 the statement “G
is prime” would be true and if G = 4 it would be false. Predicates may depend on
more than one variable. For example, the truth of %(G, H) Δ= G + H = 0 depends on
the values of both G and H.

One way to convert a predicate into a proposition by substituting values for
the predicate variables. For example, for the predicate % defined in the previous
paragraph, %(2,−2) denotes the proposition “2+(-2) = 0”. Another way to obtain
propositions in predicate logic is by using quantifiers, which allows one to express
statements like the predicate holds for all values of the variable, or the predicate
holds for some values of the variable. In this chapter, we introduce the syntax and
semantics of first order logic, and some of the questions we will explore in this book.

3.1 Syntax

First order logic formulas are defined over a vocabulary or signature that identifies
non-logical symbols, namely, the predicates, constants, and functions that can be
used in the formulas.

Definition 3.1 A vocabulary or signature is g = {C, F ,R}, where
• C = {21, 22, . . .} is a set of constant symbols,
• F = {F : }: is a collection of sets with F : = { 5 :1 , 5

:
2 , . . .} being the set of :-ary

function symbols, and

49

50 3 First Order Logic

• R = {R: }: is a collection of sets with R: = {':1 , '
:
2 , . . .} being the set of :-ary

relation symbols.

Note that any of the above sets of constants, :-ary function symbols or :-ary
relation symbols can be empty, finite, or infinite. A signature is purely relational
or simply relational if there are no constants or functions in the signature, i.e.,
C = F = ∅. A signature is finite if the total number of symbols in the signature is
finite.

We will typically consider signatures that are finite. When the arity of a function
or relation symbol is clear from the context, we will drop the superscript.

Formulas in first-order logic over signature g are sequences of symbols, where
each symbol is one of the following.

1. The symbol =
2. An element of the infinite setV = {G1, G2, G3, . . .} of variables
3. Constant symbols, function symbols and relation symbols in g
4. The symbol ¬ called negation
5. The symbol ∨ called disjunction
6. The symbol ∃ called the existential quantifier
7. The symbols (and) called parenthesis

As always, not all such sequences are formulas; only well formed sequences are
formulas in the logic. In order to define well formed formulas, we first need to define
the set of terms.

Definition 3.2 The set of terms over signature g = {C, F ,R} is inductively defined
as follows.

1. Every variable G ∈ V is a term.
2. Every constant symbol 2 in g is a term.
3. If 5 is a :-ary function in g and C1, C2, . . . C: are terms then 5 (C1, C2, . . . C:) is a

term.

We could capture this definition succinctly by the following BNF grammar.

C ::= G | 2 | 5 (C, C, . . . C)

where G is a variable, 2 is constant symbol and 5 is a function symbol.

Having defined terms, we can use them to define well formed formulas (wff) or
just formulas for short.

Definition 3.3 A well formed formula (wff) over signature g is inductively defined
as follows.

1. If C1, C2 are terms then C1 = C2 is a wff.
2. If C1, C2, . . . C: are terms and ' is a :-ary relation symbol in g then '(C1, C2, . . . C:)

is a wff.
3. If i is a wff then (¬i) is a wff.

3.2 Semantics 51

4. If i and k are wffs then (i ∨ k) is a wff.
5. If i is a wff and G is a variable then (∃Gi) is a wff.
More succinctly, we could capture the above definitions of terms and formulas by

the following BNF grammar.

i ::= C = C | '(C, C, . . . C) | (¬i) | (i ∨ i) | (∃Gi)

where G is a variable, C is term (given by Definition 3.2, and ' is a relation symbol,
and G is a variable.

Atomic formulas are wffs that do not have any logical operators, i.e., either of
the form C1 = C2 or '(C1, C2, . . . C:), where each C8 is term and ' is a :-ary relation
symbol. Finally, a literal is formula that either atomic or the negation of an atomic
formula.

It is useful to introduce logical operators in addition to those in Definition 3.3.
These operators can be “syntactically” defined in terms of the operators in Defi-
nition 3.3. As in propositional logic, we can define the Boolean connectives con-
junction as i ∧ k = (¬((¬i) ∨ (¬k))), implication as i → k = ((¬i) ∨ k),
true as > = (i ∨ (¬i)), and false as ⊥ = (¬>). Finally, we can define universal
quantification as (∀Gi) = (¬(∃G(¬i))).

To avoid too many parenthesis, and at the same time have an unambiguous inter-
pretation of formulas, we will assume the following precedence of operators (from
increasing to decreasing): ¬, ∧, ∨,→, ∀, ∃. Thus ∀G∀H G = H → ¬'(G, H) means
(∀G(∀H (G = H → (¬'(G, H))))). We will also drop the outermost parentheses, and
since ∧ and ∨ are associative, drop parentheses in formulas involving the conjunc-
tion/disjunction of multiple formulas.

Example 3.4 Consider signature g = {'} where ' is a binary relation symbol. The
following are formulas over this signature.
• Reflexivity: ∀G'(G, G)
• Irreflexivity: ∀G(¬'(G, G))
• Symmetry: ∀G∀H('(G, H) → '(H, G))
• Anti-symmetry: ∀G∀H(('(G, H) ∧ '(H, G)) → G = H)
• Transitivity: ∀G∀H∀I(('(G, H) ∧ '(H, I)) → '(G, I))
Non-examples of formulas include '(G) (' expects two arguments); G (a variable is
not a formula); ('(G, H) ∨ '(I, G) (mismatched parentheses); ∃G (G is quantified but
there is no formula provided as argument).

3.2 Semantics

The semantics of formulas in any logic is defined with respect to a model. In the
context of propositional logic, models were truth assignments to the propositions.
For first order logic, models will be objects that help identify the interpretation of
constants and relation symbols. Such models are called structures.

52 3 First Order Logic

0 0 1 0

1 0

1

Fig. 3.1 Example of labeled binary tree.

Definition 3.5 A structure A of signature g is A =

(�, {2A}2∈g , { 5 A} 5 ∈g , {'A}'∈g) where

• � is a non-empty set called the domain/universe of the structure,
• For each constant symbol 2 ∈ g, 2A ∈ � is its interpretation,
• For each :-array function symbol 5 ∈ g, 5 A : �: → � is its interpretation, and
• For each :-ary relation symbol ' ∈ g, 'A ⊆ �: is its interpretation.

The structure A is said to be finite if the universe � is finite. The universe of a
structure A will be denoted by D(A).

Many mathematical objects can be studied through the lens of logic. Let us look
at some example signatures and structures.

Example 3.6 Consider the signature g� = {�}, where � is a binary relation. We
use this signature to study graphs. A graph � = (+, �) modeled as a structure is
G = (�, �G), where the universe � is the set of vertices+ , and for a pair of vertices
D, E ∈ � (= +), �GDE 1 holds iff (D, E) ∈ � .

Example 3.7 Let g$ = {<, (} where < and (are binary relation symbols. A finite
order structure is O = ($, <O , (O), where $ is the universe of elements, < is
interpreted to be an ordering relation, and (as the “successor” relation.

Example 3.8 Let g� = {◦} where ◦ is a binary function. A group would be a
structure with a universe, where the operation ◦ is associative, has an identity, and
every element has an inverse.

Example 3.9 Labeled binary trees, where vertices are labeled by elements of Σ, can
be represented as a structure in the following manner. Let g) = {<, (0, (1, (&0)0∈Σ}
where <, (0, (1 are binary relation symbols, &0 is a unary relation symbol. A tree
(labeled by symbols in Σ) is a structure T = (), <T , (T0 , (

T
1 , (&

T
0)0∈Σ) where

elements of) are called vertices, < is the ancestor relation, (0 and (1 are the left
and right child relations, respectively, and &0 holds in all vertices labeled by 0.

For example, consider the binary tree shown in Fig. 3.1 . Let us see how this
tree is represented as a structure. The universe will consist of the vertices of the tree.
We could use any names for the vertices. But it is convenient to name them in a
manner that makes the edge relation explicit — the root will be Y, and for a vertex

1 For a relation symbol ', we will sometimes write 'A0102 · · · 0= instead of (01, 02, . . . 0=) ∈
'A .

3.2 Semantics 53

F, its left child will be F0, while its right child will be F1. Given this, the tree in
Fig. 3.1 corresponds to the following structure. T = ({Y, 0, 1, 00, 01, 10, 11}, <T=
{(D, DE) | E ≠ Y}, (T0 = {(D, D0) | D ∈ {Y, 0, 1}}, (T1 = {(D, D1) | D ∈ {Y, 0, 1}}, &0 =
{1, 00, 01, 11}, &1 = {Y, 0, 10}).

In order to define the semantics of a first order logic formula, we need a structure,
and an assignment. An assignment maps every variable to an element in the universe
of the structure.

Definition 3.10 For a g-structure A, an assignment over A is a function U : V →
D(A) that assigns every variable G ∈ V a value U(G) ∈ D(A).

Fixing the values of the variable, and the interpretation of the function symbols,
ensures that each term evaluates to value in D(A). For a term C, we will abuse
notation and define this value as U(C) and this can be defined inductively as follows.
• For a variable G, U(G) is simply the value U assigns to G.
• For constant symbol 2, U(2) = 2A .
• For term 5 (C1, C2, . . . C:), U(5 (C1, C2, . . . C:)) = 5 A (U(C1), . . . U(C:)).

For an assignment U over A, U[G ↦→ 0] is the assignment

U[G ↦→ 0] (H) =
{
U(H) for H ≠ G
0 for G = H

Wenowhave all the elements to define the semantics of a formula. The satisfaction
relation will be a ternary relation — A |= i[U] to be read as “i is true/holds in A
under assignment U”. The relation will be defined inductively on the structure of the
formula. In defining the relation, we will also sayA 6|= i[U] to mean thatA |= i[U]
does not hold.

Definition 3.11 The relation A |= i[U] is inductively defined as follows.

• A |= C1 = C2 [U] iff U(C1) = U(C2)
• A |= '(C1, . . . C=) [U] iff (U(C1), U(C2), . . . U(C=)) ∈ 'A
• A |= (¬i) [U] iff A 6|= i[U]
• A |= (i ∨ k) [U] iff A |= i[U] or A |= k [U]
• A |= (∃Gi) [U] iff for some 0 ∈ D(A), A |= i[U[G ↦→ 0]]

Example 3.12 Consider a structure (graph) over the vocabulary of graphs (g� =

{�}) G = ({1, 2, 3, 4}, �G = {(1, 2), (2, 3), (3, 4), (4, 1)}). For any assignment U,
G |= ∀G∃H� (G, H) [U] because

G |= ∃H� (G, H) [U[G ↦→ 1]] because
G |= � (G, H) [U[G ↦→ 1] [H ↦→ 2]],

G |= ∃H� (G, H) [U[G ↦→ 2]] because
G 6|= � (G, H) [U[G ↦→ 2] [H ↦→ 3]],

G |= ∃H� (G, H) [U[G ↦→ 3]] because
G 6|= � (G, H) [U[G ↦→ 3] [H ↦→ 4]], and

G |= ∃H� (G, H) [U[G ↦→ 4]] because
G 6|= � (G, H) [U[G ↦→ 4] [H ↦→ 1]] .

54 3 First Order Logic

Notice that in Example 3.12, the actual assignment to variables G and H did not
matter when determining the satisfaction of the formula in the graph. This is because
they are bound by the universal and existential quantifiers in the formula i. This
leads us to the important notion of bound and free variables in a formula. We begin
by defining the scope of a quantifier.

Definition 3.13 For a wff i = (∃Gk), k is said to be the scope of the quantifier ∀G.

Definition 3.14 Every occurrence of the variable G in i = (∃Gk) is called a bound
occurrence of G in i.

Any occurrence of G which is not bound is called a free occurrence of G in i.
The free variables in wff i will be denoted by free(i). The notation

i(G1, G2, . . . G=) will be used to indicate that free(i) ⊆ {G1, . . . G=}.

Let us look at an example to understand the subtle definition of bound and free
variables.

Example 3.15 Consider i = %(x, y) ∨ (∃G(∃H'(G, H)) ∨&(G, y)) the free variables
are shown in bold. Notice that a variable may occur both bound and free. As we
will establish soon, we can change the names of bound variables without affecting
the meaning of formulas. Thus k = %(x, y) ∨ (∃D(∃E'(D, E)) ∨ &(D, y)) is an
equivalent formula. Therefore, wewill typically assume that bound and free variables
are disjoint. In addition, since bound variables can be renamed without affecting its
meaning, we can also assume that every bound variable is in the scope of a unique
quantifier. Thus, instead of %(x, y)∨(∃D(∃E'(D, E))∨(∃E&(D, E))), wewill consider
the equivalent formula %(x, y) ∨ (∃D(∃E'(D, E)) ∨ (∃I&(D, I)))

The satisfaction of a formula in a structureA under assignment U only depends on
the values U assigns to the free variables; the values assigned to the bound variables
in U are unimportant.

Theorem 3.16 For a formula i and assignments U1 and U2 such that for every
G ∈ free(i), U1 (G) = U2 (G), A |= i[U1] iff A |= i[U2].

Theorem 3.16 can be proved by induction on the structure of the formula i. The
proof is left as an exercise for the reader. Theorem 3.16 suggests that if a formula has
no free variables, its truth is independent of the assignment. Formulas without any
free variables (i.e., those all of whose variables are bound) are an important class of
formulas and have special name.

Definition 3.17 A sentence is a formula i none of whose variables are free, i.e.,
free(i) = ∅.

An immediate consequence of Theorem 3.16 is that the truth of sentences is
independent of the assignment.

Proposition 3.18 For a sentence i, and any two assignments U1 and U2,A |= i[U1]
iff A |= i[U2].

3.2 Semantics 55

Proposition 3.18 is an immediate consequence of Theorem 3.16. Thus, for a
sentence i, we say A |= i whenever A |= i[U] for some U.

Definition 3.19 For a sentence i, A is said to be a model of i iff A |= i. We will
denote by JiK the set of all models of i.

3.2.1 Satisfiability, Validity, and First order theories

Satisfiability and validity/tautologies are defined in a manner similar to that for
propositional logic — a formula is satisfiable if there is some model and assignment
in which it is true, and it is valid if it is true in all models and assignments.

Definition 3.20 A formula i over signature g is said to be satisfiable iff for some
g-structure A and assignment U, A |= i[U].

A formula i over signature g is said to be logically valid iff for every g-structure
A and assignment U, A |= i[U]. We will denote this by |= i.

We can also define with a formula i is a logical consequence of a set of formulas
Γ in exactly the same way as we defined it for propositional logic.

Definition 3.21 For a set of formulas Γ, we say A |= Γ[U] iff for every i ∈ Γ,
A |= i[U].

We say i is a logical consequence of Γ, denoted by Γ |= i, if and only if for every
A and U, A |= Γ[U] implies that A |= i[U]. Thus, if ∅ |= i then |= i.

The following observation is an immediate consequence of the definition of
logical consequence.

Proposition 3.22 Γ ∪ {i} |= k iff Γ |= i→ k

Finally two formulas are (semantically) equivalent, if the hold in exactly the same
set of structures and assignments.

Definition 3.23 Formulas i andk are said to be logically equivalent (denoted i ≡ k)
if for every A and assignment U, A |= i[U] iff A |= k [U].

A first order theory) over signature g is any set of sentences over signature g. A
theory) is said to be inconsistent if there is a sentence i such that {i,¬i} ⊆) . If
) is not inconsistent then it is said to be consistent. Finally,) is complete if for every
sentence i over signature g either i ∈) or ¬i ∈) .

First order theories are typically identified by structures or axioms (i.e., sentences)
as follows. For a structureA, the first order theory ofA, denoted Th(A), is defined
as

Th(A) = {i a sentence | A |= i}.

Thus, Th(A) is the set of all sentences that are true in the structure A. Notice that,
since for any sentence i exactly one of i or ¬i is true in A (by definition of ¬),
it follows that Th(A) is consistent and complete for any structure A. For a set of

56 3 First Order Logic

structure C, the theory of C (Th(C)) is set of sentences that hold in all the structures
of C. That is,

Th(C) =
⋂
A∈C

Th(A).

A couple of observations about this definition are worth making. First if C is an
empty set then Th(C) is the set of all sentences and is therefore inconsistent. On
the other hand, for a non-empty set C, since Th(A) is consistent for every structure
A ∈ C, it follows that Th(C) is also consistent. However, it may or may not be
complete depending on what C.

Axioms or sets of sentences, are another way in which theories are defined. For
a set of sentences Γ, the theory of Γ is given by

Th(Γ) = {i a sentence | Γ |= i}.

We could define Th(Γ) in another way. Recall that for a sentence i, JiK is the set of
all structures in which i holds. We can extend this to a set of sentences Γ by defining
JΓK to be the set of structures in which every sentence in Γ holds. In other words,
JΓK = ∩i∈ΓJiK. Then Th(Γ) is nothing but Th(JΓK). Based on the discussion in the
preceding paragraph on the consistency of the theory of a set of structures, we can
conclude that Th(Γ) is consistent if and only if JΓK is non-empty. Depending on the
set Γ, Th(Γ) may or may not be complete.

3.3 Overview

There are a number of computational questions related to first order logic that we will
investigate in these notes. The main ones relate to whether a sentence is true in some
structure (satisfiability), in all structures (validity), and in all structures belonging to
some set C over a signature. These computational questions are much harder than
similar questions asked in the context of propositional logic.

Let us start with the question that is conceptually the simplest: Given a structure
A and sentence i, is A |= i or equivalently, is i ∈ Th(A)? In the context of
propositional logic the analogous question (given a truth assignment v and formula
i determine if v |= i is a computationally simple problem — we simply evaluate i
in v which can be done in time that is linear in the size of i. In first order logic, it is
not clear how this problem can be solved. IfA is a finite structure, we could simply
unwind the definition of satisfaction (as we did in Example 3.12) and check if the
sentence holds. WhenA is infinite, the challenge is that existential quantifiers would
require us to search in an infinite universe for a witness that the formula holds. But
this begs an even more basic question, if A is infinite, how is it given as input to
the problem? We will consider structures A that are “computable” in the sense that
interpretations to constant symbols can be computed, and given representations of
elements in the universe, one can compute the value of a function symbol on these
arguments and one can decide if any tuple formed by these elements belongs to the

3.3 Overview 57

interpretation of any relation symbol in the signature. Notice that we do not require
the universe D(A) itself to be a recursive set. We will not typically worry about these
computability assumptions on the structure A because we will consider “standard”
structures that are known to be computable in this sense. We will consider structures
involving numbers and arithmetic operations, like naturals, integers, rationals, reals,
equipped with the standard ordering relation and arithmetic operations of addition
and multiplication.

We will begin our study of computational questions related to first order logic by
investigating structuresA for which the set Th(A) is decidable. Decidability results
in this space are often proved by a general technique of quantifier elimination. A
theory Th(A) is said to admit quantifier elimination if for every formula i, there
is a quantifier-free formula i′ such that free(i′) ⊆ free(i) and i′ is equivalent to
i with respect to Th(A), i.e., Th(A) |= i ↔ i′ 2. If the process of constructing
the quantifier-free formula i′ is computable, and the problem of determining if
k ∈ Th(A) is decidable for quantifier-free formulas k, then composing these steps,
gives a decision procedure for checking if i ∈ Th(A); this is often the case, and
so if a theory admits quantifier elimination, then it is typically decidable. We will
see that Th((R, <)) and Th((R, 0, 1, +, <)) admit quantifier elimination and are
therefore decidable; here < denotes the natural ordering on numbers and + denotes
addition on numbers. In fact, Th((Q, <)) = Th((R, <)) and Th((Q, 0, 1, +, <)) =
Th((R, 0, 1, +, <)), and therefore these theories over the rational numbers are also
decidable. The observations Th((Q, <)) = Th((R, <)) and Th((Q, 0, 1, +, <)) =
Th((R, 0, 1, +, <)) demonstrate that there are non-isomorphic structures that are
indistinguishable in terms of the first order sentences that they satisfy. We will see
that Th((N, 0, 1, +, <)), which is known as Presburger’s arithmetic, is also decidable.
An evenmore surprising result is that Th((R, 0, 1, +,×, <)) (× denotesmultiplication
on numbers) admits quantifier elimination and is decidable. This is a celebrated result
due to Tarski and Seidenberg, and is beyond the scope of these notes. In contrast,
both Th((Q, 0, 1, +,×, <)) and Th((N, 0, 1, +,×, <)) are not recursively enumerable.
The later is a form of Gödel’s Incompleteness theorem, while the former is a result
due to Robinson. Notice that even though Th((Q, 0, 1, +, <)) = Th((R, 0, 1, +, <
)), Th((R, 0, 1, +,×, <)) ≠ Th((Q, 0, 1, +,×, <)). This can be seen as follows: the
sentence i = ∃G G × G = 1 + 1 is in Th((R, 0, 1, +,×, <)) (as we can take G =

√
2)

but does not belong to Th((Q, 0, 1, +,×, <)).
The classical decision problem is that of determining if a sentence i is valid. That

is, given a sentence i over signature g, determine if i holds in every g-structure. This
problem, on first glance, may seem very general and of little practical importance.
However, this is not true. It provides a framework to study general meta-theorems
in logic that are independent of a particular structure or class of structures. Equally
importantly, many computational questions can be reduced to this classical problem.
Suppose we want to reason about a class of structures, and the class of structures
can be described by a finite set of sentences or axioms Γ. For example, suppose we
want to study properties that are true about groups. Recall that groups are structures

2 i ↔ k is the formula (i → k) ∧ (k → i) .

58 3 First Order Logic

where the universe is equipped with a binary operation ◦ : (× (→ (that satisfies
the following properties.

1. Associativity: For every 0, 1, 2, 0 ◦ (1 ◦ 2) = (0 ◦ 1) ◦ 2.
2. Identity: There is an element 4 ∈ (such that for all 0, 0 ◦ 4 = 4 ◦ 0 = 0.
3. Inverse: For every 0, there is an element 0′ such that 0 ◦ 0′ = 0′ ◦ 0 = 4, where
4 is the identity.

Let Γ be the set of sentences encoding the properties of ◦ being associative, and
having an identity and inverses. Checking if a property iuniq that says that the identity
is unique—∀G∀H(iid (G) ∧iid (H)) → G = H, where iid (D) = ∀0 0◦D = 0∧D◦0 = 0
— holds in every group is equivalent to checking if Γ |= iuniq. This question is
equivalent to checking if |= (∧k∈Γk) → iuniq, which is the classical decision
problem.

One of the most important results is that the classical decision problem is re-
cursively enumerable. This is due Gödel’s completeness theorem which says that
there is a sound and complete proof system (like the ones we saw for propositional
logic in Chap. 2) for determining validity of first order logic sentences. Since
checking if a sequence of formulas constitutes formal proof in these proof systems
can be mechanized, the RE-procedure simply searches for a proof of validity. Unfor-
tunately, the problem is RE-hard, and hence undecidable. The RE-procedure for the
classical decision problem means that if Γ is an RE set of sentences then Th(Γ) is
also RE. Moreover, if Th(Γ) is consistent and complete then Th(Γ) is decidable! The
decision procedure for checking if i ∈ Th(Γ) simply dovetails the RE-procedures
for checking if i ∈ Th(Γ) and the procedure for checking ¬i ∈ Th(Γ). One of these
is guaranteed to succeed since the consistency and completeness of Γ guarantees
that exactly one out of i and ¬i belong to Th(Γ).

Chapter 4
Quantifier Elimination and Decidability

In this chapter, we will look at the computational problem of determining if a
formula belongs to the theory of a structure. The structures we will consider involve
numbers and arithmetic. We will mainly focus on structures when this problem is
decidable. The key idea behind the decidability algorithms in this chapter will be
quantifier elimination. Let us begin with this key definition. A formula i is said to
be quantifier-free if the quantifiers ∃ and ∀ do not appear in i.

Definition 4.1 (Quantifier Elimination)
A theory Γ over signature g admits quantifier elimination if for every formula i

over signature g, there is a quantifier free formula i∗ such that free(i∗) ⊆ free(i)
and i∗ is equivalent to i with respect to Γ. That is,

Γ |= i↔ i∗

where i↔ k = (i→ k) ∧ (k → i). Another way to say this is, for every structure
g-structure A such that A |= Γ, and every assignment U,

A |= i[U] iff A |= i∗ [U] .

There are a few points worth noting about Definition 4.1. First, the free variables
of quantifier-free formula i∗ is required to be a subset of the free variables of i.
Thus, in any structure A that satisfies Γ, the set of assignments U that satisfy i is
exactly the same as the set of assignments that satisfy i∗. Second, while there is no
requirement that the construction of i∗ from i be computable, it is often the case
that i∗ can be effectively constructed. Hence, if in addition, for any quantifier-free
sentence k (i.e., a Boolean combination of atomic formulas built using the constants
in the signature), the problem of determining if Γ |= k is decidable, then Th(Γ) is
decidable when Γ admits quantifier elimination. This is the approach we will use in
this chapter to establish the decidability of Th(A) for some structures A.

Finally, observe that if Γ is inconsistent, then it trivially admits quantifier elimi-
nation — any quantifier-free formula i∗ over the same free variables as i is (vaccu-

59

60 4 Quantifier Elimination and Decidability

ously) equivalent to i with respect to Γ. Let us look at a simple example of quantifier
elimination.

Example 4.2 Consider the structure (R, 0, 1, +,×, <). Consider the formula i with
free variables 0, 1, 2 given by ∃G 0 × G × G + 1 × G + 2 = 0. The formula i identifies
assignments to the variables 0, 1, 2 such that the polynomial 0G2 + 1G + 2 has real
roots. From high school algebra, we know that this happens when the discriminant
of the polynomial is non-negative. That is, the quantifier-free formula i∗ equivalent
to i is

4 × 0 × 2 ≤ 1 × 1

where by B ≤ C we mean the formula (B < C) ∨ (B = C).

We conclude this section by observing that to prove that a theory Γ admits
quantifier elimination, we only need to establish this for special formulas. If every
formula i of the form ∃Gk, where k is quantifier-free, there is a quantifier-free
formula i∗ such that free(i∗) ⊆ free(i) and i∗ is equivalent to i with respect
to Γ, then Γ admits quantifier elimination. The reason for this is that we can take
any formula, express ∀ quantification using ∃ and negation, and starting with the
innermost quantified formulas, systematically eliminate one quantifier at a time in
order to eliminate all quantifiers. Hence eliminating quantifiers from formulas with a
single existential quantifier is all that is needed to show that a theory admits quantifier
elimination. We can make one additional simplifying assumption, if needed. We can
assume that when doing quantifier elimination of i = ∃Gk, k is a conjunction of
literals, i.e., a conjunction of atomic formulas or their negation. The reason is that
for any arbitrary formula ∃Gd, where d is quantifier-free, we can always treat it as
a Boolean formula over atomic formulas, and write it in disjunctive normal form
— a formula is in disjunctive normal form (DNF) if it is a disjunction of one or
more conjunctions of literals — and every quantifier-free formula can be rewritten
into an equivalent DNF formula. Then, we notice that ∃ quantifier distributes over
disjunctions, and hence we can write the formula as a disjunction of formulae of the
form ∃Gd′, where d′ is a conjunction of literals. If we can do quantifier elimination
on such formulae, we can simply do this for each disjunct to obtain a quantifier-free
formula.

Proposition 4.3 Consider a theory Γ such that for every formula i of the form
∃G ∧=

8=1 U8 , where each U8 is a literal, there is a quantifier-free formula i
∗ such that

free(i∗) ⊆ free(i) and Γ |= i↔ i∗. Then Γ admits quantifier elimination.

Proof We will prove this by structural induction on the formulas. In the induction
below, for a formulak, wewill denote by qe(k) the equivalent quantifier-free formula
constructed by the proof.

Base Case If k is an atomic formula, then simply take qe(k) to simply be k itself.
Case k = ¬k1 It is easy to see that k is equivalent to the quantifier-free formula
¬qe(k1).

Case k = k1 ∨ k2 It is easy to see thatk is equivalent to the quantifier-free formula
qe(k1) ∨ qe(k2).

4.1 Dense Linear Orders without Endpoints 61

Case k = ∃G k1 Observe that k is equivalent to ∃G qe(k1). Converting qe(k1)
to DNF, suppose qe(k1) is equivalent to

∨:
8=1 W8 , where each W8 is a conjunction

of literals. Then ∃G qe(k1) is equivalent to
∨:
8=1 ∃GW8 . By our assumption, each

∃GW8 is equivalent to the quantifier-free formula qe(∃GW8). Thus, k is equivalent
to the quantifier-free formula

∨:
8=1 qe(∃GW8). �

4.1 Dense Linear Orders without Endpoints

The first structure we will look at is (R, <), where the universe is the set of real
numbers and we have one binary relation < which is interpreted as the standard
ordering relation on real numbers. We will show that Th((R, <)) admits quantifier
elimination and is decidable. The procedure to eliminate quantifiers relies on the
following properties of the ordering relation <.

∀G ¬(G < G) (Irreflexive)
∀G∀H (G < H) → ¬(H < G) (Asymmetric)
∀G∀H∀I ((G < H) ∧ (H < I)) → (G < I) (Transitive)
∀G∀H (G < H) ∨ (G = H) ∨ (H < G) (Total)
∀G∀H (G < H) → (∃I (G < I) ∧ (I < H)) (Dense)
∀G∃H (H < G) (No Min)
∀G∃H (G < H) (No Max)

The set of these 7 sentences will be denoted as the set DLOWE. The first 4 sentences
((Irreflexive) , (Asymmetric) , (Transitive) , and (Total)) state that < is a total,
strict, linear order. Equation (Dense) says that the ordering < is dense, i.e., between
any two elements one can always find a third element. The last two sentences ((No
Min) and (No Max)) state that there is no minimum or maximum element.

We now show that Th((R, <)) admits quantifier elimination. Observe that over
the signature {<}, the only atomic formulas are of the form H < I or H = I, where
H, I are variables. Our first observation shows that, in the presence of (Total) ,
Proposition 4.3 can specialized even further, and we can restrict our attention to
formulas without negation.

Proposition 4.4 Suppose every formula of the form ∃G ∧:
8=1 V8 , where each V8 is

atomic of the form G < H, G = H, or H < G, where H is a variable that is different
from G, is equivalent to a quantifier-free formula i∗ with respect to Th((R, <)). Then
Th((R, <)) admits quantifier elimination.

Proof By Proposition 4.3, to prove that Th((R, <)) admits quantifier elimination,
we only need to consider formulas of the form i = ∃G ∧=

8=1 U8 , where each U8 is a
literal. We first show that (Total) allows us to eliminate negation, and so

∧=
8=1 U8 is

equivalent to a positive Boolean combination (i.e., no negations) of atomic formulas.

62 4 Quantifier Elimination and Decidability

Observe that, by (Total) ,

¬(H = I) ≡ (H < I) ∨ (I < H)
¬(H < I) ≡ (H = I) ∨ (I < H)

Thus, negation can be eliminated, and
∧=
8=1 U8 is equivalent to a positive Boolean

combination of atomic formulas. We can convert this into disjunctive normal form,
push existential quantification inside, and see that

i ≡
ℓ∨
8=1
∃G

:8∧
9=1
V8 9 ,

where each V8 9 is an atomic formula. Thus, to prove that Th((R, <)) admits quantifier
elimination, we can focus our attention to formulas of the form ∃G ∧:

8=1 V8 , where
each V8 is atomic.

Consider k = ∃G ∧:
8=1 V8 , where each V8 is atomic. Observe that, by (Irreflexive)

, G < G ≡ ⊥. Thus, if any V8 = G < G then k is equivalent to the quantifier-free
formula ⊥. Next, since G = G is equivalent to >, if any V8 = (G = G), we can drop V8
from the conjunct. Finally, if one of the V8s is of the form H ⊲⊳ I, where ⊲⊳∈ {=, <}
and H, I ≠ G, then we can “pull out” V8 from the quantification. This is because

∃G (H ⊲⊳ I) ∧ d ≡ (H ⊲⊳ I) ∧ ∃G d.

Thus, without loss of generality, each V8 is of the form G < H, G = H or H < G, for
H ≠ G and so the proposition is established. �

Having established Proposition 4.4, we are ready to complete the proof. Consider
a formula i = ∃G ∧:

8=1 V8 , where each V8 is either G < H, G = H, or H < G, for H ≠ G.
We consider two cases.

• Consider the case when there is an 8 and variable H such that V8 = (G = H), i.e.,
one of the conjuncts is an equality constraint. Assume, without loss of generality,
V1 = (G = H). In this case, the value for G must be the same as H. We can substitute
G with H and eliminate the variable G. That is,

i ≡
:∧
8=2

V8 [G ↦→ H]

• Assume that none of the conjuncts V8 are equality constraints. That is, each V8 is
either G < H or H < G for some variable H ≠ G. In other words, we can write i as

i = ∃G
(∧
ℓ∈!

ℓ < G

)
∧

(∧
D∈*

G < D

)
where ! and * are sets of variables. Clearly, if there is a value of G that satisfies
i with respect to an assignment U, then for every ℓ ∈ ! and D ∈ *, U(ℓ) < U(D).

4.1 Dense Linear Orders without Endpoints 63

Conversely, when ! and * are non-empty, if for an assignment U, U(ℓ) < U(D)
for every ℓ ∈ ! and D ∈ *, then by picking G to be a value between the the
“largest” element in ! and the “smallest” element in* we can show that i holds
with respect to assignment U. This can always be accomplished, since < is dense.
Now, if either ! or * is empty, then i can be satisfied by picking a value for G
that is either very small or very large, which is possible since our structure has
no minimum or maximum. This reasoning shows that there is some G satisfying
the constraints if and only if every variable in ! takes a value that is less than the
value taken by every variable in*. Using this observation, we can say

i ≡
∧

ℓ∈!, D∈*
ℓ < D.

When ! or * is empty, the above formula is an empty conjunction, which by
convention is >.
We can summarize the above observations in the main theorem for this section.

Theorem 4.5 Th((R, <)) admits quantifier elimination.
The arguments in this section that establish Theorem 4.5, only rely on (Irreflexive)

, (Asymmetric) , (Transitive) , (Total) , (Dense) , (NoMin) , and (NoMax) , i.e., the
sentence in DLOWE. Thus, any structure over the signature {<} that satisfies all the
sentence in DLOWE admits quantifier elimination. For example, since the rationals
also satisfy all the properties inDLOWE, they also admit quantifier elimination.More
generally, we will say structureA over signature {<} is said to be dense linear order
without endpoints if A |= DLOWE. Two examples of dense linear orders without
endpoints are (R, <) and (Q, <). We can strengthen Theorem 4.5 as follows.

Theorem 4.6 If A is a dense linear order without endpoints, then Th(A) admits
quantifier elimination.

Observe that our argument for Theorem4.6 is constructive. Hence, given a formula
i over {<}, there is an algorithm that will construct the equivalent quantifier-free
formula i∗. Next, if i is a sentence, the equivalent quantifier-free formula i∗ is
also a sentence (no free variables), and therefore, just a Boolean combination of >
and ⊥, which can be checked to see if it is true. Thus, for example, Th((R, <)) and
Th((Q, <)) are decidable. It is worth observing that our procedure of constructing
the quantifier-free formula, relies only on the sentences in DLOWE, and so the
formula we construct is independent of the universe of the structure we are working
in. Thus, Th((R, <)) = Th((Q, <)) = Th(DLOWE). This shows that there can be
non-isomorphic structures (like (R, <) and (Q, <)) that have the same first order
theory. In general, as we shall later, for any infinite structure A, it will always be
the case that there are (infinitely many) different (non-isomorphic) structures B that
will have the same theory asA. We conclude this section with the main decidability
result.

Theorem 4.7 Th(DLOWE) is decidable. An immediate consequence of this is that
Th((R, <)) = Th((Q, <)) = Th(DLOWE) are decidable.

64 4 Quantifier Elimination and Decidability

Each quantifier eliminated by our algorithm results in a quadratic blowup (because
we construct a formula that compares each variable in ! with each variable in *).
Thus, if a sentence of size = has < quantifiers, its equivalent quantifier-free formula
has size$ (=2<) size. This analysis does not even take into account the fact that there
are steps involving the construction of a DNF formula to get removing negations,
etc. Thus our procedure has a doubly exponential complexity.

4.2 Linear Arithmetic

In this section, we will extend the results of Sect. 4.1 and consider properties
of numbers that involve addition along with ordering. We will look at the struc-
tures (R, 0, 1, +, <) and (Q, 0, 1, +, <), where 0 and 1 are constants representing the
numbers 0 and 1, respectively, and + is the binary function symbol representing
addition.

The main result of this section is captured by the following two theorems.

Theorem 4.8 The theories Th((R, 0, 1, +, <)) and Th((Q, 0, 1, +, <)) admit quanti-
fier elimination.

Since the processes of constructing quantifier-free equivalent formulas will be
effective, we will in fact get a decision procedure for these theories.

Theorem 4.9 The theories Th((R, 0, 1, +, <)) and Th((Q, 0, 1, +, <)) are decidable.

Wewill prove Theorem 4.8. From Proposition 4.3, to show that quantifiers can be
eliminated, we only need to show that quantifiers can be eliminated from formulas
i of the form ∃G k, where k is a quantifier-free formula. In other words, k is a
Boolean combination of atomic formulas. Using de Morgan’s laws, we can push
negations inside all the way to atomic formulas. Since < on both reals and rationals
satisfies (Total) , we can eliminate negations like in Proposition 4.4. Recall that in
our signature, atomic formulas are of the form D ⊲⊳ E, where ⊲⊳∈ {=, <} and D and E
are expressions that look like C1 + C2 + · · · C: with each C8 being either a variable H, or
constants 0 or 1. And,

¬(D = E) ≡ (D < E) ∨ (E < D) ¬(D < E) ≡ (D = E) ∨ (E < D).

Therefore, without loss of generality we may assume that k is a positive Boolean
combination of atomic formulas.

Consider an atomic formula of the form D ⊲⊳ E, where ⊲⊳∈ {<, =}. We will treat
these atomic formulas as equations/inequations over numbers, and use standard tricks
to “solve for the variable G”. That is, we will move all the terms involving variable G
to one side with constants and other variables on the other side, and then “divide” by
the coefficient of G. If G was present to begin with and does not get eliminated by this
process, this will give us a formula of the form G < D or G = D or G > D, where D is a
linear expression with rational coefficients involving the variables other than G. If G

4.2 Linear Arithmetic 65

gets eliminated or was not present to begin with, then we will get a constraint of the
form 0 ⊲⊳ D, where ⊲⊳∈ {<, =} and D is a linear expression with rational coefficients
involving variables other than G. Such constraints are technically not formulas in
our signature, since our only constants are 0 and 1 and scalar multiplication is not
a function symbol in our signature. However, this will just be an intermediate step.
Before we construct the quantifier-free formula, we will get back to something that
is in the legal syntax of our logic.

Let us look at an example to see what we mean by “solving for G”.

Example 4.10 Consider the constraint G + H + I + H + 1 < H + 1 + G + 1 + G + G. In this
solving for G, will result in the constraint

H

2
+ I

2
− 1

2
< G.

Similarly, the constraint G + H + G + G + I < 0 when solved for G will result in the
constraint

G < − H
3
− I

3
.

Based on the observations above, to show that Th((R, 0, 1, +, <)) admits quantifier
elimination, we need construct quantifier-free equivalent formula for formulas of the
form ∃G k, where k is a positive Boolean combination of constraints of the form
G < D, G = D, D < G, 0 = D or 0 < D where D is a linear expression with rational
coefficients not mentioning G. We will present two algorithms that will eliminate
quantifiers from such formulas. The first algorithm due to Fourier and Motzkin, is
very similar to the approach for dense linear orders without endpoints outlined in
Sect. 4.1 . The second is a more efficient algorithm due Ferrante and Rackoff.

4.2.1 Fourier-Motzkin

Analogous to Proposition 4.4, we can show that we need to eliminate quantifiers
only in formulas, where the quantifier-free formula in the scope of the quantifier is
a conjunction of constraints involving G.

Proposition 4.11 Suppose for every formula of the form ∃G ∧:
8=1 V8 , where each

V8 is of the form G < D, G = D, or D < G, where D is a linear expression with
rational coefficients involving variables other than G, is equivalent to a quantifier-
free formula i∗ with respect to Th((R, 0, 1, +, <)) (or Th((Q, 0, 1, +, <))). Then
Th((R, 0, 1, +, <)) (or Th((Q, 0, 1, +, <))) admits quantifier elimination.

Proof The proof is very similar to Proposition 4.4, and we recall the main ideas,
leaving the details to the reader to work out. First, based on the discussion preceding
this subsection, we need to eliminate the quantifier in a formula i of the form ∃G k,
where k is a positive Boolean combination of constraints of the form G < D, G = D,
D < G, 0 < D, or 0 = D, where G does not appear in D. We can rewrite k in disjunctive

66 4 Quantifier Elimination and Decidability

normal form, push the existential quantifier inside the disjunction, and finally pull
constraints of the form 0 < D and 0 = D out of the quantifier to get the result. �

Having established Proposition 4.11, the rest of the proof is similar to Sect. 4.1 .
Consider a formula i = ∃G ∧:

8=1 V8 , where each V8 is either G < D, G = D, or D < G,
for a linear expression D not involving G. We consider two cases.

• Consider the case when there is an 8 and expression D such that V8 = (G = D), i.e.,
one of the conjuncts is an equality constraint. Assume, without loss of generality,
V1 = (G = D). In this case, the value for G must be the same as D. We can substitute
G with D and eliminate the variable G. That is,

i ≡
:∧
8=2

V8 [G ↦→ D]

• Assume that none of the conjuncts V8 are equality constraints. That is, each V8 is
either G < D or D < G for some linear expression D. In other words, we can write
i as

i = ∃G
(∧
D∈!

D < G

)
∧

(∧
E∈*

G < E

)
where ! and* are sets of linear expressions. As in the case of dense linear orders,
we can argue that i holds if and only if, every expression in ! is smaller than
every expression in*. Thus,

i ≡
∧

D∈!, E∈*
D < E.

When ! or * is empty, the above formula is an empty conjunction, which by
convention is >.

The final formula constructed by the above steps has constraints of the form
D = E or D < E, where D and E are linear expressions with rational coefficients. Such
constraints are not in our signature. However, they can be rewritten into an equivalent
formula in our syntax — we multiple each side by the LCM of the denominators,
and rearrange terms to remove negative coefficients. We illustrate this through an
example.

Example 4.12 Consider the constraint

H

2
+ I

2
− 1

2
< − H

3
− I

3

involving expressions constructed in Example 4.10. The LCM of the denominators is
6. Multiplying both sides by 6, and rearranging terms, we get the following sequence
of steps.

4.2 Linear Arithmetic 67

H

2 +
I
2 −

1
2 < −

H

3 −
I
3

3H + 3I − 3 < −2H − 2I
5H + 5I < 3

H + H + H + H + H + I + I + I + I + I < 1 + 1 + 1

The last line is a formula in our syntax.

We conclude the section with an example that shows how the Fourier-Motzkin
approach eliminates quantifiers.

Example 4.13 Consider the formula

i = ∀G (0 < G) → (1 < G + H).

It is easy to see that the equivalent quantifier-free formula should be H ≥ 1, or
(1 = H) ∨ (1 < H). Let us see how the Fourier-Motzkin method constructs this
expression.

Converting the for all quantifier in terms of exists, we get i = ¬∃G ¬(0 < G →
1 < G + H). Consider k = ∃G ¬(0 < G → 1 < G + H). We can rewrite the implication
and push the negation inside to get

k ≡ ∃G (0 < G) ∧ ¬(1 < G + H).

Eliminating the negation using the totality axiom, solving for G, distributing the
disjunctions over the conjunction, pushing existential quantifiers in, we get

k ≡ ∃G (0 < G) ∧ ((1 = G + H) ∨ (G + H < 1))
≡ ∃G (0 < G) ∧ ((G = 1 − H) ∨ (G < 1 − H))
≡ ∃G [(0 < G) ∧ (G = 1 − H)] ∨ [(G < 0) ∧ (G < 1 − H)]
≡ [∃G (0 < G) ∧ (G = 1 − H)] ∨ [∃G (0 < G) ∧ (G < 1 − H)]

Let k1 = ∃G (0 < G) ∧ (G = 1 − H) and k2 = ∃G (0 < G) ∧ (G < 1 − H). We will
eliminate the quantifier in both k1 and k2 to get the formula for k.

Since k1 contains an equality constraint, we have

k1 ≡ 0 < 1 − H ≡ H < 1.

In k2, we have one upper bound constraint and one lower bound constraint. So, when
we eliminate the quantifier, we have

k2 ≡ 0 < 1 − H ≡ H < 1

Thus,
k ≡ k1 ∨ k2 ≡ (H < 1) ∨ (H < 1) ≡ (H < 1)

Now, i = ¬k ≡ ¬(H < 1) ≡ (1 = H) ∨ (1 < H), which is what we hoped.

68 4 Quantifier Elimination and Decidability

4.2.2 Ferrante-Rackoff

Let us fix a formula i of the form ∃G k, where k is a positive Boolean combination
of constraints of the form G < D, G = D, D < G, 0 = D or 0 < D where D is a
rational expression not mentioning G. Our goal is to elimnate the quantifier in i. The
Fourier-Motzkin algorithm relies on Proposition 4.11 which reduces the obligation
to remove quantifiers to very special formulas. However, this step requires rewriting
a formula to disjunctive normal form (see proof of Proposition 4.11), which can lead
to an exponential blow-up. The Ferrante-Rackoff method avoids this conversion.

The key idea behind this approach is as follows. Let (be the expressions arising
in constraints involving G in k. That is,

(= {D | ∃ constraint of the form G = D, G < D, D < G in k}.

Depending on the valuation of the free variables, the expressions in (will be some
rational numbers. Think of them on the “number line”. Now, G can be any number,
but if two expressions D1 and D2 evaluate to two “consecutive” values on the number
line, it doesn’t matter which value of G we pick in between D1 and D2. All of them
will make the atomic constraints in k evaluate the same way. So we can just pick
(D1 + D2)/2. Now, we don’t know what order the expressions in (will evaluate. But
we can simply instantiate G to (D + D′)/2 for every pair of expressions D, D′. Since,
we will also do this also for the pair D, D (in which case (D + D)/2 = D), this will
cover G being precisely equal to one of the expressions in (. For D, E ∈ (, define

k D+E
2
= k [G ↦→ D + E

2
]

and take
k< =

∨
D,E∈(

k D+E
2
.

To cover the range of numbers less than all the expressions, we can instantiate G to
anything smaller than all the expressions. But instead of doing this as a substitution,
we just imagine instantiating G to some large negative value, and see how the atomic
formulas in k will evaluate. Clearly, atomic formulas of the form G < D will evaluate
to >, G = D will evaluate to ⊥, and D < G will evaluate to ⊥. So we can replace the
atomic formulas by these values, and get a formula k−∞. That is,

k−∞ = k [(G < D) ↦→ >, (G = D) ↦→ ⊥, (D < G) ↦→ ⊥] .

Similarly, to cover the range of rationals larger than all the expressions, we
pretend instantiating G to a value much larger than the values of all the expressions.
The atomic formulas D < G evaluate to >, and the formulas of the form G = D and
G < D evaluate to ⊥. Replacing these gives the formula k+∞. That is,

k+∞ = k [(G < D) ↦→ ⊥, (G = D) ↦→ ⊥, (D < G) ↦→ >] .

4.2 Linear Arithmetic 69

We then take the disjunction of all the above formulas to eliminate G. In other
words,

i = ∃G k ≡ k−∞ ∨ k+∞ ∨ k<.

Like in the Fourier-Motzkin case, the formula as written above will not be in the
syntax of our logic. But as in Example 4.12, this can be rewritten in our syntax.

Let us look at an example to see how the Ferrante-Rackoff procedure works.

Example 4.14 Consider the formula i = ∀G (0 < G) → (1 < G + H), from
Example 4.13. Recall that the equivalent quantifier-free formula is H ≥ 1, or
(1 = H) ∨ (1 < H). As in Example 4.13, we can say that i = ¬k, where
k = ∃G ¬(0 < G → 1 < G + H) ≡ ∃G (0 < G) ∧ ((G = 1 − H) ∨ (G < 1 − H)).
Let d = (0 < G) ∧ ((G = 1 − H) ∨ (G < 1 − H)) and so k = ∃G d.

Let us first eliminate the quantifier in k. Based on the rewriting of k, we have
(= {0, 1− H}. The expressions we need to substitute G by are “−∞”, “+∞”, 0, 1− H,
and 1−H

2 . We have,

d−∞ = ⊥ ∧ (⊥ ∨ >) ≡ ⊥
d+∞ = > ∧ (⊥ ∨ ⊥) ≡ ⊥
d0 = (0 < 0) ∧ ((0 = 1 − H) ∨ (0 < 1 − H)) ≡ ⊥
d1−H = (0 < 1 − H) ∧ ((1 − H = 1 − H) ∨ (1 − H < 1 − H)) ≡ (0 < 1 − H) ≡ H < 1
d 1−H

2
= (0 < 1−H

2) ∧ ((
1−H

2 = 1 − H) ∨ (1−H2 < 1 − H)) ≡ (H < 1) ∧ ((H = 1) ∨ (H < 1)) ≡ (H < 1)

Thus, we have

k ≡ ⊥ ∨ ⊥ ∨ ⊥ ∨ (H < 1) ∨ (H < 1) ≡ (H < 1).

Since i = ¬k, we get i ≡ ¬(H < 1) ≡ (H = 1) ∨ (1 < H).

Our procedures for eliminating quantifiers Sections 4.2.1 and 4.2.2, rely on prop-
erties that hold in both (R, 0, 1, +, <) and (Q, 0, 1, +, <). Further, starting with any
sentence i, the procedure (say the one by Ferrante and Rackoff) will construct the
same quantifier-free formula i∗, whether we are working with reals or rationals.
Thus, Th((R, 0, 1, +, <)) = Th((Q, 0, 1, +, <)). No first order sentence can distin-
guish (R, 0, 1, +, <) and (Q, 0, 1, +, <).

Axiomatizations

One can ask, similar to dense linear orders without endpoints, whether there is a set
of axioms/sentences that capture the property of linear arithmetic of reals/rationals.
This is possible, but requires care. Chapter 3 of Calculus of Computation [?], presents
such an axiomatization in parallel with the quantifier elimination procedure, and
claims that they are the axioms for linear arithmetic. However, the axiomatization
presented there is not complete, as it does not have any axioms for the constant 1.

In general, it is true however that for theories of a single structure (or more
generally, for consistent and complete theories), the notions of the existence of a
recursive axiomatization and decidability are synonymous. One direction is easy

70 4 Quantifier Elimination and Decidability

— if the theory is decidable, we can simply take the theory itself as its recursive
axiomatization (sounds like we are cheating, but we are not). And if there is a
recursive axiomatization for a complete theory, it will follow, as we will show later
(Gödel’s strong completeness theorem), that the membership problem is recursively
enumerable, and hence by simultaneously checking if i or ¬i is in the theory, we
can show the problem is decidable.

4.3 Other theories that admit quantifier elimination

There are several other important theories that admit quantifier elimination that we
will not consider here.

Presburger arithmetic is PresA = Th((N, 0, 1, +, <)), and can be shown to be
decidable. However, PresA does not admit quantifier elimination. For example, one
can show that there is no quantifier-free formula that is equivalent to the formula
∃G G + G = H, which says H is even. However, we can extend the signature so that it
admits quantifier elimination. For each 2 ∈ N, we will introduce a unary predicate
2 |· such that 2 |G is true if G has a value that is a multiple of 2. This extended logic
does admit quantifier elimination, and leads to a decision procedure.

Another important theory that admits quantifier elimination is Th((R, 0, 1, +,×, <
)) and is decidable. This theorem is basically due to Tarski, and is called Tarski-
Seidenberg theorem.

Chapter 5
Lower Bounds for the Validity Problem

Church-Turing Theorem and Trakhtenbrot’s Theorem

The classical decision problem or Entscheidungsproblem is the following: Given a
sentence i over signature g, determine if i is valid. The problem was popularized by
David Hilbert (das Entscheidungsproblem, or the decision problem), in an attempt to
lead towards the formalization of mathematics. However, what computation meant
was not clear then. These were resolved in 1936, when Church postulated that
computability is captured by a class of functions using recursion schemes, and
proved that the classical decision problem was not solvable using this notion of
computability. A few months later, Alan Turing, in his paper that introduced Turing
machines (and started the field of theoretical computer science, or even computer
science), also examined the Entscheidungsproblem (mentioned in the title of the
paper), and showed validity of first-order logic is undecidable. Soon people realized
that the notions of computing defined by Turing and Church were the same—Turing
in fact showed equivalence in his paper — and the Church-Turing postulate was that
the notion of computability coincided with the notion of computability defined by
_-calculus and Turing machines. The undecidability of the Entscheidungsproblem is
credited now to both Church and Turing.

The classical decision problem, in fact, turns out to be RE-complete (and hence
undecidable).Wewill prove the hardness of this problem in this chapter.Membership
in RE will be shown later in what essentially constitutes proving Gödel’s complete-
ness theorem. In fact what we will show, which is the content of the completeness
theorem, is that for any recursive set of sentences Γ and sentence i, the problem of
determining if Γ |= i is in RE.

In this chapter, we will also consider another problem, namely that of validity
in finite models. That is, given a sentence i over a signature g, determine if for
every finite g-structure A, A |= i. We will show that this problem of validity in
finite models is coRE-complete. This result is due to Trakhtenbrot. The reason for
considering this problem here is because the proof of hardness is similar to showing
the hardness of the classical decision problem. coRE-hardness of validity in finite
models implies that checking validity in finite models is not in RE. Consequently,
there is no proof systems to establish validity in finite models! This fundamental

71

72 5 Lower Bounds for the Validity Problem

0

B B B

B B

B B

B B B B B B

Fig. 5.1 Pictorial representation of structures satisfying (Succ) (or the sentence inum). Such
structures must have a subset that is isomorphic to N. They may have additional elements that form
B-cycles or B-chains that are isomorphic to Z (integers).

incompleteness result is easier to understand than the incompleteness result for
arithmetic (Gödel’s first incompleteness theorem) which we will see later.

5.1 Number Lines

Before looking at the proof of hardness, let us informally discuss some of the
challenges in solving the validity problem/classical decision problem, and introduce
some ideas that are central to both hardness proofs. Notice that the RE-hardness
of the validity problem means that the problem of checking the non-validity of
sentence i, or in fact the satisfiability of ¬i, is not recursively enumerable. This, on
first reading, sometimes seems surprising. Recall that to show that i is not valid, we
need to demonstrate a structure A in which i does not hold, i.e., A |= ¬i. Can’t
the RE procedure for non-validity simply nondeterministically guess a structure A
and checking ifA |= ¬i? If one can prove that i is not valid if and only if there is a
finite structure A such that A |= ¬i, then this would indeed by a RE algorithm for
non-validity. Unfortunately, it is easy to see that this not true, i.e., there are sentences
k that satisfiable, but only in structures that are infinite. Let us look at an example.

Example 5.1 Consider the signature g = {0, B}, where 0 is a constant, and B is a
unary function standing for successor. Consider the sentence

isucc = (∀G¬(B(G) = 0)) ∧ (∀G∀H(B(G) = B(H)) → (G = H) (Succ)

which says that B is an injective function and that the constant 0 is not the successor
of any element. Consider a structure A in which isucc holds. Since 0 is not the
successor of any element, it follows that 0 ≠ B(0) in A. Continuing, since B is
injective, B(B(0)) ≠ B(0) ≠ 0, B(B(B(0))) ≠ B(B(0)) (≠ B(0) ≠ 0), and so on. We
can, therefore, show by induction, that for any 8 ≠ 9 , B8 (0) ≠ B 9 (0) (where B8 (0) is 8
applications of B to 0, assuming that B0 (0) = 0). Thus, A must be infinite, because
there must be a subset of its universe that is isomorphic to the natural numbers.

5.1 Number Lines 73

0 <

((((

((((((

Fig. 5.2 Pictorial representation of finite structures satisfying ifin−num. Such structures must have
a subset that is isomorphic to an initial segment of N. They may have additional elements that form
(-cycles.

Example 5.1 argues that any structure A satisfying isucc (Succ) must have
a subset of its universe that is isomorphic to the natural numbers. However, the
universe of A may have additional elements. The function B on these elements may
induce sub-structures that are isomorphic to Z (integers), or to cycles. A pictorial
representation of such a structure is shown in Fig. 5.1 , where the number of
additional cycles and Z-chains could be 0, finite, or infinite.

Having structure, a subset of whose universe is isomorphic to N is very useful.
This part of the universe can be used to model time or the number of steps of a Turing
machine. It can also be used to model the indices of tape cells. If the tape symbols
are encoded by numbers, then elements of this part of the universe can also be used
to model tape symbols. Our reduction will use structures that have a “number line”
as a sub-structure.

However, instead of using using a unary successor function to create a number
line, we will find it more convenient to consider structures that have a binary relation
(that will represent the graph of the successor function B. That is, our signature will
be {0, (}, where 0 is a constant as before, and (is a binary relation. We will want
our binary relation (to satisfy the following sentences.

∀G∃H ((G, H) (Serial)
∀G∀H∀I (((G, H) ∧ ((G, I)) → (H = I) (Functional)
∀G ¬((G, 0) (Zero)
∀G∀H∀I (((G, I) ∧ ((H, I)) → (G = H) (Injective)

The first two sentences state that (is the graph of a function, the third sentence states
that 0 is not the successor of any element, and the last sentence states that (is the
graph of an injective function.We will denote the conjunction of these 4 sentences as
inum. As observed before, structures satisfying inum will look as shown in Fig. 5.1 .

Our reason for using a successor relation (, as opposed to a successor function B,
to encode number lines is because this gives us the flexibility to use partial functions
to encode an initial segment of N. This will be used in proving the undecidability
of checking validity over finite models (i.e., Trakhtenbrot’s theorem). Consider the
sentence

74 5 Lower Bounds for the Validity Problem

∃< (∀G ¬((<, G)) ∧ (∀G ¬(G = <) → (∃H ((G, H))) (Max)

which says that all elements except a maximum (<) have a successor with respect
to relation (. Take ifin−num to be the conjunction of (Max) , (Functional) , (Zero)
, and (Injective) . Let A be finite structure such that A |= ifin−num. Observe that
the maximum < must be an element in the successor chain starting at 0. This is
because if < is not on the chain starting at 0, then since all elements except < have
a (-successor, the chain starting at 0 will be infinite as argued in Example 5.1, and
A would not be finite. Thus any finitemodel of ifin−num can be depicted as shown in
Fig. 5.2 . We will exploit this in our proof of Trakhtenbrot’s theorem.

5.2 Church-Turing Theorem

In this section we will prove the following theorem.

Theorem 5.2 (Church-Turing)
Given a sentence i over signature g, the problem of determining if i is valid is

RE-hard.

Our proof will reduce the RE-hard language MP to the problem of checking
validity. Recall that the universal Turing machine * recognizes the language MP.
Without loss of generality, we will make some simplifying assumptions about*. We
will assume that * has one work-tape (and an input tape); we can ignore the output
tape since we are not computing a function. We assume that the input alphabet of*
is Σ = {0, 1} and the tape alphabet is Γ = {0, 1,t,B}, where t is the blank symbol,
and B is the left end marker. Let & be the set of states of *, with @0 as the initial
state, and @acc as the unique accept state. The transition function X of* is such that
it ensures that input head of * never leaves the input portion of the input tape. This
is ensured by moving the head to the right (+1) when the left end marker (B) is read,
and moving the head left (−1) when a blank symbol (t) is read on the input tape.
A configuration of* is described by current state, current input and work-tape head
positions, and the contents of the work-tape.

Given binary string F, our reduction will construct a sentence iF such that
F is accepted by * if and only if iF is valid. The construction will mimic
the ideas in the proof of Theorem 1.23, where the sentence iF will describe
constraints that a computation of * on F satisfies. iF will be sentence over
the signature g = {0, (,State, InpHd, TapeHd, TapeSymb}, where 0 is a constant,
(,State, InpHd, TapeHd are binary relations, and TapeSymb is a ternary relation.
The intuition behind these relation symbols in g is as follows. 0 together with (will
encode a number line as in Sect. 5.1 . The remaining relation symbols are used to
encode configurations of *: State(@, C) holds if @ is the state at time C; InpHd(8, C)
and TapeHd(9 , C) hold if the input tape head is at cell 8 and work-tape head is at cell
9 , at time C; TapeSymb(0, 8, C) if the symbol in cell 8 at time C on the work-tape is 0.

5.2 Church-Turing Theorem 75

As outlined in Sect. 5.1 , we will use the structure induced by 0 and (to encode
time, cell numbers, states, and tape symbols.

Like in the proof of Theorem 1.23, the sentence iF will state that the relations
State, InpHd, TapeHd, InpSymb, TapeSymb encode the initial configuration at “time
0”, configurations at successive times follows the transition function X, and that
the accept state @acc is reached at some point. In order to state these properties
conveniently, we will find it convenient to make use of some auxiliary formulas that
we first introduce.

• The property “Variable G stores a value which is the 8th successor of 0” can be
written as

8(G) = ∃G1∃G2 · · · ∃G8((0, G1) ∧ ((G1, G2) ∧ · · · ∧ ((G8−1, G8) ∧ (G = G8).

The set of states& and the tape alphabet Γ are finite sets.Wewill assume that each
state is @ is encoded as a number in {0, 1, . . . |& | − 1} and symbol 0 is encoded as
a number in {0, 1, 2, 3}. For 1 ∈ & ∪ Γ, it would be useful to have a formula that
says that “variable G stores a value which the encoding of symbol 1”. Assuming
1 is encoded by number 8, this formula is

1(G) = 8(G).

• For a formula k(G,−→H) (with free variables G and −→H), we will find it convenient
talk about the formula when G is instantiated by 1 ∈ & ∪ Γ. We can write this as

k(1,−→H) = ∃G k(G,−→H) ∧ 1(G).

• For a finite set (of elements (either states or tape symbols), the formula that says
that a variable G takes a value in set (can be written as

(G ∈ () =
∨
1∈(

1(G).

• Finally, the property that “there is a unique value for G that satisfies k(G,−→H)” can
be written as

∃!G k(G,−→H) = ∃G k(G,−→H) ∧ (∀I k(I,−→H) → (I = G)).

Let us now write a few sentences that capture properties that a valid computation
of* on input F must satisfy. We begin with the condition that at time 0 the relations
must encode the initial configuration. That is, the work-tap the string B, the heads
pointing to cell 0 (which contains B, and the state being the initial state @0. Thus,

iinitial =State(@0, 0) ∧ InpHd(0, 0) ∧ TapeHd(0, 0)
∧ (∀2 ¬(2 = 0) → TapeSymb(t, 2, 0).

76 5 Lower Bounds for the Validity Problem

We demand that the interpretation of relations is consistent with an encoding of a
configuration. That is, at all times, the state, the head positions, and symbols in each
cell are unique.

iconsistent = ∀C (∃!G State(G, C)) ∧ (∃!G InpHd(G, C)) ∧ (∃!G TapeHd(G, C))
∧ (∀2∃!G TapeSymb(G, 2, C)).

Next, we require that configurations at successive time steps are consistent with
the transition function. This is themost complicated property towrite down.Consider
a transition X(?, 0, 1) = (@, 3in, 1′, 3F), i.e., * when in state ?, reading 0 on the
input tape, and 1 on the work-tape, moves to state @, writes 1′ on the work-tape, and
moves input head in direction 3in and work-tape head in direction 3F . Without loss
of generality, we will assume that we extend X so that when* reaches a halting state
@, X(@, ·, ·) is defined so that the machine stays in state @; this is so that our relations
can be defined for all times. For each such tuple (?, 0, 1, @, 3in, 1′, 3F), we will
have a sentence i (?,0,1,@,3in ,1′,3F) which captures when* takes a step according to
this transition. To describe this property let us introduce some notation. For a tape
symbol 0, let (0 denote the positions on the input tape where where symbol 0 is
written. So (B = {0}, (t = {|F | +1} 1, and (0 = {8+1 |F [8] = 0} when 0 ∈ {0, 1} 2.
Finally, given a direction 3 ∈ {−1, +1}, we write 3 (2, 2′) to indicate that cells 2
and 2′ are consistent with the head moving in direction 3. Thus, 3 (2, 2′) = ((2′, 2)
when 3 = −1, and 3 (2, 2′ = ((2, 2′) when 3 = +1. Given all this, we can write
i (?,0,1,@,3in ,1′,3F) as follows.

i (?,0,1,@,3in ,1′,3F) =∀C∀C ′∀2in∀2′in∀2F∀2′F
(((C, C ′) ∧ 3in(2in ,2′in)∧3F (2F ,2′F) ∧ State(?, C) ∧ InpHd(2in, C)
∧ TapeHd(2F , C) ∧ (2in ∈ (0) ∧ TapeSymb(1, 2F , C))
→ (State(@, C ′) ∧ InpHd(2′in, C ′) ∧ TapeHd(2′F , C ′)
∧ TapeSymb(1′, 2F , C ′)
∧ (∀2∀G (¬(2 = 2F) ∧ TapeSymb(G, 2, C)) → TapeSymb(G, 2, C ′))

Finally, the sentence that says that every move is consistent with *’s transition
function is given by

itransition =
∨

X (?,0,1)=(@,3in ,1′,3F)
i (?,0,1,@,3in ,1′,3F)

The last condition in our sentence iF is the one that says that * reaches the
accepting state @acc. This is easy to write as

iaccept = ∃C State(@acc, C).

1 Since we are assuming that the input head of* moves left when reading t, we can assume that
the head never moves beyond the first t symbol on the input tape. Thus we can take (t = { |F | +1}.
2 Our indices of strings start at position 0. So, F [0] is written in cell 1 as cell 0 contains B.

5.2 Church-Turing Theorem 77

Putting all of this together, iF needs to say that if 0 and (encode a number line,
the computation starts in the initial configuration and follows the transition function,
then* accepts. Using all the sentences we have defined, this is

iF = (inum ∧ iinitial ∧ iconsistent ∧ itransition) → iaccept. (5.1)

It is easy to see that, given F, the formula iF can be computed by a Turing
machine. To complete the proof, we need to argue that the reduction is correct. Let
us consider the easy case first. Assume that iF is valid. Consider structure A such
D(A) = N. The constant 0 is interpreted as the number 0, ((=, =′) holds exactly
when =′ = =+1. Next, we interpret the relations State, InpHd, TapeHd, TapeSymb in
manner that is consistent with *’s computation on string F. Observe that in such a
structureA, inum, iinitial, iconsistent, and itransition all hold. Thus, since iF is valid, it
must be the case that iaccept also holds in thismodel. Thismeans that the computation
of* on F reaches @acc and F ∈ MP.

Let us now assume that* accepts F. Let the accepting computation of* be

c0 ↦−→ c1 ↦−→ · · · ↦−→ c<.

Our goal is to argue that iF is valid. Consider a structure A in which inum, iinitial,
iconsistent, and itransition all hold. We need to argue that iaccept also holds. This
becomes challenging because A may have additional elements that are not part
of the main number line starting with 0 (see Fig. 5.1). Unfortunately, first order
logic is not expressive enough to ensure that A only contains elements of the main
number line. To understand this subtlety, let us attempt to reduceMP to validity. It is
tempting to think that all we need to do is to modify the sentence and demand that
State(@acc, C) does not hold for any C. That is, consider the sentence

kF = (inum ∧ iinitial ∧ iconsistent ∧ itransition) → (∀C ¬State(@acc, C)). (5.2)

The sentence kF is not valid even if*’s computation onF is non-halting— consider
a structure B where*’s computation faithfully encoded using State, InpHd, TapeHd,
and TapeSymb on the main number line starting from 0 but State(@acc, C) is true for
C that is not on the main number line!

Coming back, the key to showing iaccept holds in structure A is to argue that
when * accepts F and A satisfies the properties in the antecedent of iF , then A’s
interpretation of State, InpHd, TapeHd, and TapeSymb is faithful to the computation
on the main number line. More precisely, let the number 8 denote the 8th successor of
0 inA. We can prove by induction, that the interpretations of State(·, 8), InpHd(·, 8),
TapeHd(·, 8) and TapeSymb(·, ·, 8) in A encode the configuration c8 (i.e., the 8th
configuration of *’s computation on F). We leave the proof of this fact as an
exercise for the reader. Having proved this, it follows that State(@acc, <) must hold
in A and therefore, so does iaccept. This completes the proof of Theorem 5.2.

78 5 Lower Bounds for the Validity Problem

Discussion.

Our proof shows that validity is undecidable even if the signature has one constant,
4 relation symbols and no function symbols. We could strengthen the result to the
case when the signature has only one relation symbol — the 4 relation symbols in
our reduction are modeled as a single relation which has an additional argument
whose value determines which of our relations we are talking about. We could also
get rid of our constant symbol 0 — we just existential quantify to get the element
representing 0. Similarly, we could encode our entire reduction if our signature had
only a single function symbol. It is, therefore, hard to find reasonable restrictions on
the signature that make checking validity decidable. Note that quantifier alternation
does play a critical role in our reduction. One could ask if there are restructed
quantifier sequences that lead to decidability. A fairly complete characterization of
what is decidable and what is not can be found in the book “The Classical Decision
Problem” [?].

5.3 Trakhtenbrot’s Theorem

In computer science, computational problems often involve finite objects. In the
context of validity, it is therefore, natural to ask how difficult is the computational
problem where given a sentence i over structure g, we are asked to determine if i
is true in all finite structures. Given that the reduction in Sect. A.2 crucially relies
on the sentence inum which forces the structure to be infinite, does validity become
easier when considering only finite models? Clearly, satisfiability problem, which is
the complement of the validity problem, is easy on finite structures. To determine
if a sentence i is satisfiable in a finite structure, we can simply enumerate finite
models one by one, and check whether i holds in any of them. For a finite structure
A, determining if A |= i is decidable as we can simply go through our inductive
definition of satisfiability to answer this question. Surprisingly, validity on finite
structures is a very hard problem.

Theorem 5.3 (Trakhtenbrot)
Given a sentence i over signature g, the problem of determining if i is holds in

all finite structures is coRE-hard.

Thus, in some sense, Theorem 5.3 says reasoning about finite structures is hard.
If we want to prove theorems, then reasoning about infinite structures makes life
easier as by Gödel’s completeness theorem, when theorems are true (valid), we can
build machines that can identify that they are true. But over finite structures, there is
no such algorithm. There is no proof system to establish theorems that hold on finite
structures.

To prove Theorem 5.3 we will reduce MP to the problem of checking validity in
finite models. Recall that from Theorems A.24 and A.26, we can conclude thatMP is
coRE-hard and hence, establishing such a reduction, will prove Theorem 5.3. Again

5.3 Trakhtenbrot’s Theorem 79

if * is the universal Turing machine accepting MP, given an input F, our reduction
will construct a sentence dF such that F is not accepted by* if and only if dF holds
in all finite structures. Notice that our construction of dF must differ from iF in
(5.1) in some fundamental ways. This is because iF is trivially valid in all finite
structures — since inum has no finite models, iF is vaccuously true in any finite
structure!

Instead of using inum, wewill use ifinite−num. Recall that finite structures satisfying
ifinite−num look like those shown in Fig. 5.2 , and so they will have a substructure that
is isomorphic to an initial segment of N starting at 0. Notice that the sub-structure
starting from 0 has a maximum element, which is the only element that does not
have an (-successor. We will make use of this as follows. To say that * does not
accept F, we will say

inot−accept = ∀C (∀G ¬((C, G)) → ¬State(@acc, C). (5.3)

Notice that inot−accept requires that the state not be @acc at the unique element of the
structure that does not have an (-successor. On input F, our reduction will return
the following sentence.

dF = (ifinite−num ∧ iinitial ∧ iconsistent ∧ itransition) → inot−accept. (5.4)

The proof that this is a correct reduction, is similar to the proof used in The-
orem 5.2. Suppose * accepts F by computation that has : steps. Consider finite
structure A whose universe is {0, 1, . . . :}, with the constant 0 being interpreted
as the number 0, and ((8, 8′) holding iff 8′ = 8 + 1; here : is the unique element
that does not have an (-successor. Interpret the relations State, InpHd, TapeHd, and
TapeSymb such that it mimics the accepting computation of * on F. Clearly A
satisfies the antecedent of dF and State(@acc, :) holds. Thus A 6|= dF and so dF
is not valid. Conversely, suppose * does not accept F. Consider any finite structure
A that satisfies the antecedent of dF . Like in the proof of Theorem 5.2, one can
prove by induction that the relations State, InpHd, TapeHd, and TapeSymb faithfully
encode a prefix of *’s computation on F when time C is restricted to take values
on sub-structure consisting of 0 and its (-successors. Notice that since * does not
accept, the states at any of the times corresponding to this chain of 0 and its suc-
cessors is going to be @acc. Moreover, since the unique element that does not have
a (-successor is guaranteed to be a successor of 0 in any finite model satisfying
ifinite−num, inot−accept holds in A. This establishes the correctness of the reduction.

It is worth recalling the discussion in Sect. A.2 about the formulakF in (5.2) and
why that does not describe a correct reduction from D=8E! to validity. The problem
there was that we may have models where State(@acc, C) holds for C that are not on
the primary number line. Hence kF may not be valid even if * does not accept F.
Now, we no longer face that problem, because i=>C−0224?C checks the state at time
(i.e., the maximum) that is guaranteed to be on the main number line in any finite
model of ifinite−num.

80 5 Lower Bounds for the Validity Problem

Since validity and satisfiability are undecidable, a simple corollary of Theorem5.3
is that for sentences satisfiable in finite models, there is not computable bound on
the size of the model.

Corollary 5.4 There is no computable function 5 such that for any sentence i, i is
satisfiable in a finite model if and only if i is satisfiable in a structure whose universe
is bounded by 5 (|i|).

Proof Observe that Theorem 5.3 implies that satisfiability in finite models is unde-
cidable. Suppose (for contradiction) there was a computable function 5 satisfying the
properties in the statement of Corollary 5.4. Then checking if a sentence is satisfiable
in a finite model would be decidable as follows. Compute 5 (|i |) and check if i holds
in all finite models of size bounded by 5 (|i |). This contradicts the undecidability of
finite satisfiability and hence the corollary is true. �

Appendix A
Computability and Complexity Theory

A Brief Primer

We will now review the basic definitions and theorems in the area of computational
complexity, which tries to study various models of computation with the goal of un-
derstanding their relative computational power, and classify computational problems
in terms of computational resources they need. Here, we will primarily consider time
and space as the principal resources we will measure for an algorithm.

Recall that the computational problems one studies in the context of theoretical
computer science are usually decision problems. Decision problems are those where
given an input, one expects a Boolean answer. Typically, input instances are encoded
as strings over some alphabet of symbols. A decision problem partitions inputs into
those for which the expected answer is “yes”/”true” and those for which the answer
is “no”/”false”. Therefore, a decision problem is often identified with a language, or
a collection of strings, namely, those for which the problem demands a “yes” answer.
Similarly, the machines we will define, will answer “yes”/”accept” or “no”/”reject”
on input strings, and we associate a language L(") with machine " , which is
the collection of all strings it accepts. Given this interpretation of problems and
machines, we will typically say that a machine " solves a problem ! (or rather
accepts/recognizes) if ! = L("), i.e., " answers “yes” on exactly the inputs that
the problem demands the answer to be “yes”.

The main model of computation that we will consider is that of a Turing machine.
However before introducing this model, let us recall some of the notation on strings
and languages that we will use.

Alphabet, Strings, and Languages.

An alphabet Σ is a finite set of elements. A (finite) string over Σ is a (finite)
sequence F = 0001 · · · 0: over Σ (i.e., 08 ∈ Σ, for all 8). The length of a string
F = 0001 · · · 0: , denoted |F |, is the number of elements in it, which in this case
is : + 1. The unique string of length 0, called the empty string, will be denoted
by Y. For a string F = 0001 · · · 0: , the 8th symbol of the string 08 will be denoted

81

82 A Computability and Complexity Theory

0 0 t t Output Tape

B 0 1 1 0 t t

B 1 0 t 0 0 t

B 0 0 1 t t

} Work Tapes

Input Tape

finite-state
control

Fig. A.1 Turing machine with a read-only input tape, finitely many read/write worktapes, and a
write-only output tape.

as F [8] 1. For strings D = 0001 · · · 0: and E = 1011 · · · 1<, their concatenation
is the string DE = 0001 · · · 0:1011 · · · 1<. The set of all (finite) strings over Σ is
denoted by Σ∗; we will sometimes use Σ8 to denote the set of strings of length 8. A
language � is a set of strings, i.e., � ⊆ Σ∗. Given languages �, �, their concatenation
�� = {DE | D ∈ �, E ∈ �}. For a language �, �0 = {Y}, and �8 denotes the 8-fold
concatenation of � with itself, i.e., �8 = {D1D2 · · · D8 | ∀ 9 . D 9 ∈ �}. Finally, the
Kleene closure of a language �, is �∗ =

⋃
8≥0 �

8 .

A.1 Turing Machines

We now recall the definition of a Turing machine. Since we will use this model to
define the time and space bounds during a computation, as well as define computable
functions, the most convenient model to consider is that of a multi-tape Turing
machine shown in Fig. A.1 . Such a model has a read-only input tape, a write-only
output tape and finitely many read/write work tape, and a write-only output tape.
Intuitively, the machine works as follows. Initially, the input string is written out on
the input tape, and all the remaining tapes are blank. The tape heads are scanning the
leftmost cell of each tape, which we will refer to as cell 0. This cell contains a special
symbol B in every take except the output tape. This is the left end marker, which
helps the machine realize which cell is the leftmost cell. We will assume these cells
are never overwritten by any other symbol, and whenever B is read on a particular
tape, the tape head of the Turing machine will move right. At any given step of the
Turing machine does the following. Based on the current state of its finite control,
and symbols scanned by each tape head, the machine will change the state of its
finite control, write new symbols on each of the work tapes, and move it’s heads on
the input and work tapes either one cell to the left or one cell to the right. During
the step, the machine may also choose to write some symbol on its output tape. If

1 Here we are assuming the the 0th symbol is the “first”.

A.1 Turing Machines 83

it writes something on the output tape, then the output tape head moves one cell to
the right. If it does not write anything, then the output tape head does not move. We
will assume that the machine has two special halting states — @acc and @rej — with
the property that the machine cannot take any further steps from these states. These
are captured in the formal definition of deterministic Turing machines below.

Definition A.1 A deterministic Turing machine with :-work tapes is a tuple " =

(&,Σ, Γ, X, @0, @acc, @rej,t,B) where

• & is a finite set of control states
• Σ is a finite set of input symbols
• Γ ⊇ Σ is a finite set of tape symbols. We assume that {t,B} ⊆ Γ \ Σ.
• @0 ∈ & is the initial state
• @acc ∈ & is the accept state
• @rej ∈ & is the reject state, with @rej ≠ @acc, and
• X : (& \ {@acc, @rej}) ×Γ:+1 → & × {−1, +1} × (Γ× {−1, +1}): × (Γ∪ {Y}) is the

transition function; here −1 indicates moving the head one position to the left and
+1 indicates moving the head one position to the right. For X(?, W0, W1, . . . W:) =
(@, 30, W

′
1, 31, W

′
2, 32, . . . , W

′
:
, 3: , >), for any 8 ∈ {0, 1, . . . :}, if W8 = B then W′8 = B

and 38 = +1.

We will now formally describe how the Turing machine computes. For this we
begin by first identifying information about the Turing machine that is necessary to
determine it’s future evolution. This is captured by the notion of a configuration.
A single step of a Turing machine depends on all the factors that determine which
transition is taken. This clearly includes the control state, and the symbols being
read on the input tape and the work tape. However this is not enough. The contents
of the work tape change, and what is stored influences what will be read in a future
step. Thus we need to know what is stored in each cell of the work tape. Since
the input tape is read-only, its contents remain static and so we don’t need to carry
around its contents. We also need to know the position of each tape head because
that determines what is read in this step, how the contents of a tape will change based
on the current step, and what will be read in the future as the heads move. Because
of all of these observations, a configuration of a Turing machine is taken to be the
control state, the position of the input head, the contents of the work tape, and the
position of the work tape head. The work tape contents and head position is often
represented as a single string where a special marker indicates the head position.
These are captured formally by the definition below.

Definition A.2 (Configurations)
A configuration c of a Turing machine " = (&,Σ, Γ, X, @0, @acc, @rej,t,B) is a

member of the set&×N×(Γ∗{∗}ΓΓ∗tl): 2, wherewe assume that ∗ ∉ Γ indicates the
position of the head. For example, a configuration c = (@, 8, D1∗01E1tl , D2∗02E2tl)

2 tl is an infinite sequence of blank symbols. Recall that almost all cells contain t, and so the
tape contents are a string of the form Dtl , where D is initial portion of the tape containing some
non-blank symbols.

84 A Computability and Complexity Theory

is the configuration of a 2-work tape Turing machine, whose control state is currently
@, the input head is scanning cell 8, work tape 8 (8 ∈ {1, 2}) contains D8 to left of the
head, head is scanning symbol 08 and E8tl are the contents of cells to the right of
the head.

The initial configuration (the configuration of the Turing machine when it starts)
is (@0, 0, ∗ B tl , . . . , ∗ B tl). An accepting configuration is a member of the set
{@acc} × N × (Γ∗{∗}ΓΓ∗tl): . In other words, it is a configuration whose control
state is @acc. A halting configuration is a configuration whose control state is either
@acc or @rej, i.e., it is a member of the set {@acc, @rej} × N × (Γ∗{∗}ΓΓ∗tl): .

Having defined configurations, we can formally define how configurations change
in a single step of the Turing machine. We begin by defining a function that updates
the work tape. For a work tape D ∗ 0Etl , upd(D ∗ 0Etl , 1, 3) is the resulting work
tape when 1 is written and the head is moved in direction 3. This can be formally
defined as

upd(D ∗ 0Etl , 1, 3) =

D1 ∗ ttl if 3 = +1 and E = Y
D1 ∗ 2E′tl if 3 = +1 and E = 2E′
D′ ∗ 21Etl if 3 = −1 and D = D′2

Recall also that for a finite string F ∈ Γ∗, F [8] denotes the 8th symbol in the string.
We can extend this notion to tape contents that are sequences of the form Ftl as
follows.

F tl [8] =
{
F [8] if 8 < |F |
t otherwise

Definition A.3 (Computation Step)
Consider configurations c1 = (@1, 81, D1 ∗ 01E1, . . . D: ∗ 0:E:) and c2 =

(@2, 82, C1, . . . C:) of Turing machine " = (&,Σ, Γ, X, @0, @acc, @rej,t,B). Let the
input string be F. We say c1

>↦−→ c2 (machine " moves from configuration c1 to
c2 in one step and writes > on the output tape) if the following conditions hold. Let
X(@1, F tl [81], 01, . . . 0:) = (?, 30, 11, 31, . . . 1: , 3:). Then,
• @2 = ?, and 82 = 81 + 31,
• for each 8, C8 = upd(D8 ∗ 08E8 , 18 , 38)

When the output symbol written during a step is not important, we will write
c1 ↦−→ c2 to indicate a step from c1 to c2.

Having defined how the configuration of a Turing machine changes in each step,
we can define the result of a computation on an input.

Definition A.4 (Computation)
A computation of Turing machine " on input F, is a sequence of configurations

c1, c2, . . . c< such that c1 is the initial configuration of " , and for each 8, c8 ↦−→ c8+1.

Definition A.5 (Acceptance)
An inputF is accepted byTuringmachine" if there is a computation c1, c2, . . . c<

such that c< is an accepting configuration.

A.2 Church-Turing Thesis 85

The language recognized/accepted by " is L(") = {F | F is accepted by "}.
We say that a language � ⊆ Σ∗ is accepted/recognized by " if L(") = �.

Definition A.6 (Halting)
A Turing machine" is said halt on input F if there is a computation c1, c2, . . . c<

such that c< is a halting configuration.

The Turing machine model we introduced with an output tape can be used to
compute (partial) functions as follows.

Definition A.7 (Function Computation)
The partial function computed by a Turing machine " , denoted f" , is as follows.

If on input F, " has a halting computation c1
>1↦−→ c2

>2↦−→ · · · ><−1↦−→ c< then f" (F)
is defined and equal to >1>2 · · · ><−1. On inputs F such that " does not halt, f" (F)
is undefined.

We say that a (partial) function 6 is computable if there is a Turing machine "
such that for every F, 6(F) is defined if and only if f" (F) is defined, and whenever
6(F) is defined, 6(F) = f" (F).

Most of the time we will be considering Turing machines that accept or recognize
languages, rather than those that compute functions. In this context, the symbols
written on the output tape don’t matter, and so we will often ignore the output tape
when describing transitions and computations of such machines.

A.2 Church-Turing Thesis

The Turing machine model introduced in the previous section, is a canonical model
to capture mechanical computation. The Church-Turing thesis embodies this state-
ment by saying that anything solvable using a mechanical procedure can be solved
using a Turing machine. Our belief in the Church-Turing thesis is based on decades
of research in alternate models of computation, which all have turned out to be
computationally equivalent to Turing machines. Some of these models include the
following.

• Non-Turingmachinemodels: RandomAccessMachines, _-calculus, type 0 gram-
mars, first-order reasoning, c calculus, . . .

• Enhanced Turing machine models: Turing machines with multiple 2-way infinite
tapes, nondeterministic Turingmachines, probabilistic Turingmachines, quantum
Turing machines, . . .

• RestrictedTuringmachinemodels: Single tapeTuringmachines,Queuemachines,
2-stack machines, 2-counter machines, . . .

We will choose to highlight two of these results, that will play a role in our future
discussions. The first is the observation that a one work tape Turing machine is com-
putationally as powerful as the multi-work tape model introduced in Definition A.1.

86 A Computability and Complexity Theory

Theorem A.8 For any : work tape Turing machine " , there is a Turing machine
with a single work tape single(") such that L(") = L(single(")) and f" =

fsingle(") 3.

Proof of TheoremA.8 can be found in any standard textbook and its precise details
are skipped. The idea behind the proof is as follows. The single work tape machine
single(") will simulate the steps of the :-work tape machine " on any input. But
in order to simulate " , single(") needs to keep track of "’s configuration at each
step. That means keeping track of "’s state, its work tape contents, and its tape
head. This single(") accomplishes by storing "’s state in its own state, and the
contents of all : work tapes of " (including the head positions) on the single work
tape of single("). In general, cell 8 of the single work tape, stores cell (8 ÷ :) + 1 of
tape 8 mod :; here 8 ÷ < denotes the quotient when 8 is divided by < and 8 mod <
denotes the remainder. Then to simulate a single step of " , single(") will make
multiple passes over its single work tape, to first identify the symbols on each tape
read by " to determine the transition to take, and then update the contents of the
tape according to the transition.

The second result relates to the nondeterministic Turing machines. The Turing
machine model introduced in Definition A.1 is deterministic, in the sense that at
any given time during the computation of the machine, there is at most on possible
transition the machine can take. Nondeterminism, on the other hand, is the com-
putational paradigm where the computing device, at each step, may have multiple
possible transitions to choose from. As a consequence, on a given input the machine
may have multiple computations, and the machine is said to accept an input, if any
one of these computations leads to an accepting configuration. Formally, we can
define a nondeterministic Turing machine as follows.

Definition A.9 A nondeterministic Turing machine with : work tapes (and
one input tape 4) is a tuple " = (&,Σ, Γ, X, @0, @acc, @rej,t,B), where
&,Σ, Γ, @0, @acc, @rej,t,B are just like that for deterministic Turing machine, and

X : (& \ {@acc, @rej}) × Γ:+1 → 2&×{−1,+1}×(Γ×{−1,+1}):

is the transition function. The transition function, given current state and symbols
read on the input and work tapes, returns a set of possible next states, direction to
move the input head, and symbols to be written and direction to move the head in
for each work tape.

The definition of configurations, initial configuration, accepting and halting con-
figurations is the same as in Definition A.2. The definitions of computation step
(Definition A.3), computation (Definition A.4), and acceptance and language recog-
nized (Definition A.5) are also the same. Hence we skip defining these formally.

3 For partial functions 5 and 6, wewrite 5 = 6 to indicate that 5 and 6 have the same domains (i.e.,
they are defined for exactly the same elements), and further when 5 (G) is defined, 5 (G) = 6 (G) .
4 We assume there is no output tape for a nondeterministic Turing machine since such machines
are used for function computation.

A.3 Recursive and Recursively Enumerable Languages 87

Every deterministic Turingmachine is a special kind of nondeterministicmachine,
namely, one which has the property that at each time step there is at most one
transition enable. One of the important results concerning nondeterministic Turing
machines is that the converse is also true, i.e., nondeterministic Turing machines are
not more powerful than deterministic Turing machines.

Theorem A.10 For every nondeterministic Turing machine # , there is a determin-
istic Turing machine det(#) such that L(#) = L(det(#)).

A detailed proof of Theorem A.10 is skipped. It can be found in any standard text-
book in theory of computation. The broad idea behind the result is the observation
that once the length of computation, and the nondeterministic choices at each step
are fixed, a deterministic machine can simulate # for that length, on those choices.
Thus, the deterministic Turing machine det(#) simulates # for increasingly longer
computations, and for each length, det(#) will cycle through all possible nondeter-
ministic choices at each step. If any of these computations is accepting for # , then
det(#) will halt and accept.

A.3 Recursive and Recursively Enumerable Languages

TheChurch-Turing thesis establishes the canonicity of the Turingmachine as amodel
of mechanical computation. The collection of problems solvable on Turing machines
is, therefore, worthy of study. Recall that when a Turing machine " is run on an
input string F there are 3 possible outcomes — " may (halt and) accept F, " may
(halt and) reject F, or " may not halt on F (and therefore not accept). Depending
on how a Turing machine behaves we can define two different classes of problems
solvable on a Turing machine.

Definition A.11 A language � is recursively enumerable/semi-decidable if there is
a Turing machine " such that � = L(").

A language � is recursive/decidable if there is a Turing machine " that halts on
all inputs and � = L(").

Observe that when a problem � is recursive/decidable, it has a special algorithm
that solves it and in addition always halts, i.e., on inputs not in �, this algorithm
explicitly rejects. Thus, by definition, every recursive language is also recursively
enumerable.

Proposition A.12 If � recursive then � is recursively enumerable.

We will denote the collection of recursive languages as REC and the collection
of all recursively enumerable languages as RE; thus, Proposition A.12 can be seen
as saying that REC ⊆ RE. The collection of recursive and recursively enumerable
languages enjoy some closure properties that are worth recalling.

Theorem A.13 REC is closed under all Boolean operations while RE is closed
under monotone Boolean operations. That is,

88 A Computability and Complexity Theory

• If �, � ∈ RE, then � ∪ � and � ∩ � are also in RE.
• If �, � ∈ REC, then �, � ∪ �, and � ∩ � are all in REC.

Proof We will focus on the two most interesting observations in Theorem A.13;
the rest we leave as an exercise for the reader. The first observation we will prove
is the closure of RE under union. Let us assume "� and "� are Turing machines
recognizing � and �, respectively. The computational problem � ∪ � asks one to
determine if a given input string F belongs to either � or �. We could determine
membership in � and � by running "� and "�, respectively, but we need to be
careful about how we run "� and "�. Suppose we choose to first run "� on F
and then run "� on F, then we could run into problems. For example, consider the
situation where "� does not halt on F, but F ∈ �. Then, running "� followed by
"� will never run"� and therefore never accept, even though F ∈ �∪�. Switching
the order of running "� and "� also does not help. What one needs to instead do
is, to run "� and "� simultaneously on F. How does one "� and "� at the same
time? There are many ways to achieve this. One way is to initially run one step of "�

and then one step of "� on F from the initial configuration. If either them accept,
the algorithm for � ∪ � accepts. If not, it will run "� for two steps, and "� for two
steps, again starting from the respective initial configurations. Again, the algorithm
for � ∪ � accepts if either simulation accepts. If not the computations of "� and
"� are increased by one more step, and this process continues, until at some point
one of them accepts.

The second result we would like to focus on is the observation that REC is closed
under complementation. Let � ∈ REC and let " be a Turing machine that halts
on all inputs and L(") = �. The algorithm " for �, runs " on input F, and if
" accepts it rejects and if " rejects then it accepts. Notice that L(") = � only
because " halts on all inputs — if " does on halt on (say) F, then F ∈ � but "
would never accept F! �

The following theorem is a useful way to prove that a problem is decidable.

Theorem A.14 � is recursive if and only if � and � are recursively enumerable.

Proof If � ∈ REC then � ∈ REC by Theorem A.13. Then both � and � are
recursively enumerable by Proposition A.12.

Conversely, suppose � and � are recognized by "� and "
�
respectively. The

recursively algorithm " for �, on a given input F, will run both "� and "
�

simultaneously (as in the proof of Theorem A.13), and accept if either "� accepts
or "

�
rejects. Notice, that any given input F belongs to either � or �, and therefore

at least one out of "� and "�
is guaranteed to halt on each input. Therefore " will

always halt. �

Encodings.

Every object (graphs, programs, Turing machines, etc.) can be encoded as a binary
string. The details of the encoding scheme itself are not important, but it should be

A.4 Reductions 89

simple enough that the data associated with the object should be easily recoverable
by reading the binary encoding. For example, one should be able to reconstruct
the vertices and edges of a graph from its encoding, or one should be able to
reconstruct the states, transitions, etc. of a Turing machine from its encoding. For
a list of objects $1, $2, . . . $=, we will use 〈$1, $2, . . . $=〉 to denote their binary
encoding. In particular, for a Turing machine" , 〈"〉 is its encoding as binary string.
Conversely, for a binary string G, "G denotes the Turing machine whose encoding
is the string G.

Once we establish an encoding scheme, we can construct a Universal Turing
machine, which is an interpreter that given an encoding of a Turing machine "
and an input F, can simulate the execution of " on the input string F. This is an
extremely important observation that establishes the recursive enumerability of the
membership problem for Turing machines.

Theorem A.15 There is a Turing machine * (called the universal Turing machine)
that recognizes the languageMP = {〈", F〉 |F ∈ L(")}. In other words,MP ∈ RE.

Not every decision problem/language is recursively enumerable. Using Cantor’s
diagonalization technique, one can establish the following result.

Theorem A.16 The language K = {G | G ∉ L("G)} is not recursively enumerable.

Proof The proof of Theorem A.16 relies on a diagonalization argument to show
that the language of every Turing machine differs from K, and therefore K is not
recursively enumerable.

Consider an arbitrary Turing machine "G whose encoding as a binary string is
G. We will show that L("G) ≠ K, thereby proving the theorem. Observe that if
G ∈ L("G) then by definition G ∉ K and if G ∉ L("G) then again by definition G ∈ K.
Therefore G ∈ (K \ L("G)) ∪ (L("G) \ K) ≠ ∅. �

A.4 Reductions

Theorem A.16 is the first result that establishes that there are problems that are
computationally difficult. Further results on the computational hardness of problems
are usually established using the notion of reductions. Reductions demonstrate how
one problem can be converted into another in such a way that a solution to the second
problem can be used to solve the first. Formally, it is defined as follows.

Definition A.17 A (many-one/mapping) reduction from � to � is a computable
(total) function 5 : Σ∗ → Σ∗ such that for any input string F,

F ∈ � if and only if 5 (F) ∈ �

In this case, we say � is (many-one/mapping) reducible to � and we denote it by
� ≤< �.

90 A Computability and Complexity Theory

Since many-one/mapping reductions are the only form of reduction we will study,
we will drop the adjective “many-one” and “mapping” and simply call these reduc-
tions. Let us look at a couple of examples of reductions.

Example A.18 Let us consider the complement of MP, i.e., MP = {〈", F〉 | F ∉

L(")}. One can show that K ≤< MP as follows. The reduction 5 is the following
function: 5 (G) = 〈"G , G〉.

To prove that 5 is a reduction, we need to argue two things. First that 5 is
computable, i.e., we need to come up with a Turing machine " 5 that always halts
and produces the string 5 (G) on input G. In this example, to construct 5 (G), we
simply need to “copy” the string G which clearly is a computable function. Second
we need to argue that G ∈ K iff 5 (G) ∈ MP. This can be argued as follows: G ∈ K
iff G ∉ L("G) (definition of K) iff 〈"G , G〉 ∈ MP (definition of MP) iff 5 (G) ∈ MP
(definition of 5).

Example A.19 Consider the problem

HP = {〈", F〉 | " does not halt on F}.

We will prove that K ≤< HP.
Given a binary string G, let us consider the following program �G .

�G (F)
result = "G (G)
if (result = accept)
return accept (* on input F *)

else
while true do

In other words, the program �G on input F, ignores its input and runs the program
"G on G. If "G halts and accepts G then �G halts and accepts F. Otherwise, �G does
not halt. Thus, the program �G halts on some (all) inputs if and only if G ∈ L("G).

Let us now describe the reduction from K to HP: 5 (G) = 〈�G , G〉. Observe first
that 5 satisfies the properties of a reduction because G ∈ K iff G ∉ L("G) iff �G
does not halt on G (and all input strings) iff 〈�G , G〉 ∈ HP. To establish that 5 is a
reduction, we also need to argue that 5 is computable. On input string G, we need a
program that produces the source code for �G (given above) and copies the string G
after the source code. This is clearly computable.

Reductions are a way for one to compare the computational difficulty of problems
— if � reduces to � then � is at most as difficult as �, or � is at least as difficult as
�. This is formally captured in the following proposition.

Theorem A.20 If � ≤< � and � is recursively enumerable (recursive) then � is
recursively enumerable (recursive).

A.4 Reductions 91

Algorithm for Problem �

Reduction 5 Algorithm for
Problem �

F 5 (F)
yes

no

Fig. A.2 Schematic argument for Theorem A.20.

Proof Let 5 be a reduction from � to � that is computed by Turingmachine" 5 , and
let "� be a Turing machine that recognizes �. The algorithm for � is schematically
shown in Fig. A.2 — on input F, compute 5 (F) using " 5 and run "� on 5 (F).
Notice that this algorithm always halts if "� always halts. Thus, if � is recursive
then � is also recursive. �

Theorem A.20 can be seen to informally say “if � reduces to � and � is compu-
tationally easy then � is computationally easy”. It is often used in the contrapositive
sense and it is useful to explicitly state this observation.

Corollary A.21 If � ≤< � and � is not recursively enumerable (undecidable) then
� is not recursively enumerable (undecidable).

We can use the above corollary to argue the computational hardness of some
problems.

Theorem A.22 MP is not recursively enumerable. Therefore, MP is undecidable.

Proof Example A.18 establishes that K ≤< MP. Together with Theorem A.16 and
Corollary A.21, we can conclude that MP is not recursively enumerable. Finally,
since MP is not recursively enumerable, Theorem A.14 establishes that MP is not
decidable/recursive. �

SinceMP ∈ RE (TheoremA.15) andMP ∉ RE (TheoremA.22), we have awitness
to the fact that RE is not closed under complementation. Just like)ℎ4>A4< �.22,
we could establish similar properties for the halting problem.

Theorem A.23 HP is not recursively enumerable. Therefore, HP =

{〈", F〉 | " halts on F} is undecidable.

Proof Follows fromExampleA.19 and the argument in the proof of TheoremA.22.�

Reductions are transitive and hence a pre-order; thus, the use of ≤ to denote them
is justified.

Theorem A.24 The following properties hold for reductions.

92 A Computability and Complexity Theory

• If � ≤< � then � ≤< �.
• If � ≤< � and � ≤< � then � ≤< �.

Proof If 5 is a reduction from � to �, then one can argue that 5 is also a reduction
from � to �. And, if 5 is a reduction from � to � and 6 a reduction from � to �
then 6 ◦ 5 is a reduction from � to �. Establishing these observations to prove the
theorem is left as an exercise. �

Having found a lens to compare the computational difficulty of two problems
(namely, reductions), one can use them to argue that a problem is at least as difficult
as a whole collection of problems, or something is the “hardest” problem in a
collection. This leads us to notions of hardness and completeness.

Definition A.25 A language � is RE-hard if for every � ∈ RE, � ≤< �.
A language � is RE-complete if � is RE-hard and � ∈ RE.

Thus, an RE-complete problem is the hardest problem that is recursively enumer-
able, while an RE-hard problem is something that is at least as hard as any other RE
problem. Are there examples of such problems? It turns out that MP, HP, and K are
all RE-complete. We establish this for MP in the following theorem.

Theorem A.26 MP is RE-complete.

Proof Membership in RE has been established in Theorem A.15. So all we need
to prove is the hardness. Let � be any recursively enumerable language, and let
" be a Turing machine recognizing �. The reduction from � to MP is as follows:
5 (F) = 〈", F〉. It is easy to see that F ∈ � iff F ∈ L(") (since " recognizes �)
iff 〈", F〉 ∈ MP (definition of MP) iff 5 (F) ∈ MP (definition of 5). It is also easy to
see that 5 is computable — in order to compute 5 (F), all we need to do is prepend
the source code of " . �

Establishing RE-hardness of a problem is sufficient to guarantee it’s undecidabil-
ity.

Theorem A.27 If � is RE-hard then � is undecidable.

Proof If � is RE-hard then since MP ∈ RE, we have MP ≤< �. Since MP is
undecidable (Theorem A.22), by properties of a reduction (Corollary A.21) � is
undecidable. �

A.5 Complexity Classes

Computational resources needed to solve a problem depend on the size of the input
instance. For example, it is clearly easier to compute the sum of two one digit
numbers as opposed to adding two 15 digit numbers. The resource requirements
of an algorithm/Turing machine are measured as a function of the input size. We
will only study time and space as computational resources in this presentation. We

A.5 Complexity Classes 93

begin by defining time bounded and space bounded Turing machines, which are
defined with respect to bounds given by functions) : N → N and (: N → N that
are non-decreasing, i.e., for all = ≤ < ∈ N,) (=) ≤) (<) and ((=) ≤ ((<). Our
definitions apply to both deterministic and nondeterministic machines.

Definition A.28 A (deterministic/nondeterministic) Turing machine" is said to run
in time) (=) if on any input D, all computations of " on D take at most) (|D |) steps;
here |D | refers to the length of input D.

A (deterministic/nondeterministic) Turing machine " is said to use space ((=)
if on any input D, all computations of " on D use at most ((|D |) work tape cells. In
this context, a work tape cell is said to be used if it is written to at least once during
the computation. Notice that, if a work tape cell is written multiple times during
a computation, it counts as only one cell when measuring the space requirements;
thus, work tape cells can be reused without adding to the space bounds.

It is worth examining Definition A.28 carefully. Our requirement for a Turing
machine running within some time or space bound applies to all computations,
whether they are accepting or not. Notice also that the definition is the same for
both deterministic and nondeterministic models — in a deterministic machine the
unique computation on a given input must satisfy the resource bounds, and in a
nondeterministic machine, all computations on the input must satisfy the bounds.
In particular, if a Turing machine (deterministic or nondeterministic) runs within a
time bound, then it halts in every computation of every input.

Having defined time and space bounded machines, we can define the basic com-
plexity classes which are collections of (decision) problems that can be solved within
certain time and space bounds.

Definition A.29 We define the following basic complexity classes.

• A language � ∈ DTIME() (=)) iff there is a deterministic Turing machine that
runs in time) (=) such that � = L(").

• A language � ∈ NTIME() (=)) iff there is a nondeterministic Turing machine that
runs in time) (=) such that � = L(").

• A language � ∈ DSPACE(((=)) iff there is a deterministic Turing machine that
uses space ((=) such that � = L(").

• A language � ∈ NSPACE(((=)) iff there is a nondeterministic Turing machine
that uses space ((=) such that � = L(").

Our computational model of Turing machines, and our definitions of time and
space bounded computations are robust with respect to constant factors. This obser-
vation is captured by two central results in theoretical computer science, namely, the
linear speedup and compression theorems. It says that one can always improve the
running time or space requirements for solving a problem by a constant factor.

Theorem A.30 (Linear Speedup)
If � ∈ DTIME() (=)) (or � ∈ NTIME() (=))) and 2 > 0 is any constant, then

� ∈ DTIME(2) (=) + =) (� ∈ NTIME(2) (=) + =)).

94 A Computability and Complexity Theory

Proof (Sketch) Let � = L("). We will describe a machine " ′ which will simulate
: steps of " in 8 steps; if : > 8

2
, we will get the desired result. " ′ will have one

more work tape, a much larger tape alphabet, and control states than " .

• " ′ copies the input onto the additional work tape in compressed form: : succes-
sive symbols of " will be represented by one symbol in " ′. Time taken is =. " ′
will maintain "’s work tape contents in compressed form on the second work
tape as well.

• " ′ uses the additional work tape as “input tape”. The head positions of " , within
the : symbols represented by current cells, is stored in finite control.

One basic move of " ′ (consisting of 8 steps), will simulate : steps of " as follows.

• At the start of basic move, " ′ moves its tape heads one cell left, two cells right
and one cell left, storing the symbols read in the finite control. Now, " ′ knows
all symbols within the radius of : cells of any of "’s tape heads. This takes 4
steps.

• Based on the transition function of " , " ′ can compute the effect of the next :
steps of " .

• Using any additional (at most) 4 steps, " ′ updates the contents of its tapes as a
result of the : steps, and moves the heads appropriately. �

Theorem A.31 (Linear Compression)
If � ∈ DSPACE(((=)) (or � ∈ NSPACE(((=))) and 2 > 0 is any constant then

� ∈ DSPACE(2((=)) (� ∈ NSPACE(2((=))).

Proof Increase the tape alphabet size and store work tape contents in compressed
form as in Theorem A.30. �

Theorems A.30 and A.31 suggest that when analyzing the time and space require-
ments of an algorithm we can ignore constant terms. This leads to the use of the
order notation.

Definition A.32 Consider functions 5 : N→ N and 6 : N→ N.

• 5 (=) = $ (6(=)) if there are constants 2, =0 such that for = > =0, 5 (=) ≤ 26(=).
6(=) is an asymptotic upper bound.

• 5 (=) = Ω(6(=)) if there are constants 2, =0 such that for = > =0, 5 (=) ≥ 26(=).
6(=) is an asymptotic lower bound.

The complexity classes identified in Definition A.29 are a very fine classification
of problems. They include complexity classes whose classification of problems is
sensitive to our use of Turing machines as a model of computation. Ideally we would
like to study complexity classes such that if a problem is classified in a certain
class then that classification should be “platform independent”. That is, whether we
choose to study complexity on Turing machines or Random Access Machines, our
observations should still hold. They should also be invariant under small changes to
the Turing machine model, like changing the number of work tapes, alphabet, nature

A.6 Relationship between Complexity Classes 95

of the tapes, etc. There is a strengthening of the Church-Turing thesis, called the
invariance thesis articulated by Church, that underlies our belief in the robustness of
the Turing machine model, subject to small changes in the time and space bounds.
It says that

Any effective, mechanistic procedure can be simulated on a Turing machine using the same
space (if space is ≥ log =) and only a polynomial slowdown (if time ≥ =)

In addition to the requirement that complexity classes be robust to changes to
the computational platform, we would like the classes to be closed under function
composition—making function/procedure calls to solve sub-problems is a standard
algorithmic tool, and we would like the complexity to remain the same as long as the
sub-problems being solved are equally simple. Finally, we would like our complexity
classes to capture natural, “interesting”, real-world problems. For these reasons, we
typically study the following complexity classes that provide a coarser classification
of problems than that provided in Definition A.29.

Definition A.33 Commonly studied complexity classes are the following.

L = DSPACE(log =) NL = NSPACE(log =)
P = ∪:DTIME(=:) NP = ∪:NTIME(=:)
PSPACE = ∪:DSPACE(=:) NPSPACE = ∪:NSPACE(=:)
EXP = ∪:DTIME(2=:) NEXP = ∪:NTIME(2=:)

In addition to the above classes, for any class C, coC = {� | � ∈ C}. Please note
that coC is not the complement of C but instead is the collection of problems whose
complement is in C.

A.6 Relationship between Complexity Classes

We begin by relating time and space complexity classes.

Theorem A.34 DTIME() (=)) ⊆ DSPACE() (=)) and NTIME() (=)) ⊆
NSPACE() (=))

Proof A Turing machine can scan at most one new work tape cell in any step.
Therefore, the number of work tape cells used during a computation cannot be more
than the number of steps. �

Theorem A.35 DSPACE(((=)) ⊆ DTIME(= · 2$ (((=))) and NSPACE(((=)) ⊆
NTIME(= · 2$ (((=))). In particular, when ((=) ≥ log =, we have DSPACE(((=)) ⊆
DTIME(2$ (((=))) and NSPACE(((=)) ⊆ NTIME(2$ (((=))).

We will skip giving a direct proof of Theorem A.35. It will follow from The-
orem A.37 and Theorem A.38. An immediate consequence of Theorems A.34
and A.35 are the following relationships between the complexity classes.

96 A Computability and Complexity Theory

Corollary A.36
L ⊆ P ⊆ PSPACE ⊆ EXP
NL ⊆ NP ⊆ NPSPACE ⊆ NEXP

We will establish relationships between deterministic and nondeterministic com-
plexity classes.

Theorem A.37 DTIME() (=)) ⊆ NTIME() (=)) and DSPACE(((=)) ⊆
NSPACE(((=)).

Proof This follows from the fact that, by definition, every deterministic Turing
machine is a special nondeterministic Turing machine, namely, those that have
exactly one transition enabled from every non-halting configuration. �

Nondeterministic complexity class can also be related to deterministic complexity
classes. In fact, we now prove a result that subsumes the containment results for
nondeterministic classes established in Theorems A.34 and A.35.

Theorem A.38 NTIME() (=)) ⊆ DSPACE() (=)) and NSPACE(((=)) ⊆
DTIME(=2$ (((=))).

Proof Let us begin by proving the first inclusion. Consider � ∈ NTIME() (=)) and
let " be) (=)-time bounded nondeterministic machine recognizing �. On any input
F of length =, the computations of " can be organized as a tree, and since " runs in
time) (=), this tree has height) (=). Now the deterministic algorithm � to solve �
will perform a depth first search (DFS) on this computation tree of " , constructing
this tree as it is explored, and accepting if some node in this computation tree
corresponds to an accepting configuration. The space needed by � to perform this
DFS is the memory needed to store the call stack. The stack during a DFS keeps
track of the path being currently explored in the tree to enable backtracking. Since
the computation tree of " is of height) (=), the height of the call stack is also
) (=). A naïve implementation of the DFS algorithm will store the sequence of tree
vertices on the current path; since in this case each vertex is a configuration of " ,
these can be represented by strings of length) (=) (as work tape cells cannot exceed
) (=) as in Theorem A.34). This gives us a space bound of) (=)2 for algorithm
�. However, instead of storing the actual configurations in the computation being
currently explored, � can just store the sequence of nondeterministic choices made
by " in the current computation. With this information about the nondeterministic
choices, � can reconstruct the configuration at the end of a sequence of steps, by
resimulating " from the beginning — this increases the running time of �, but
reduces the space requirements of � which is what we care about for this result. If
" has : choices at each step, the stack of � during DFS is simply a :-ary string of
length ≤) (=), which means that � is) (=)-space bounded.

For the second result, let us consider � ∈ NSPACE(((=)) and a nondeterministic
Turing machine " that recognizes � in ((=) space. On a given input F of the length
=, it is useful to define the notion of a configuration graph of " . The configuration
graph is a directed graph that has as vertices, configurations of " , and has an edge
from c1 to c2, if " can move from configuration c1 to configuration c2 in one step

A.7 P and NP 97

L NL P

NP

coNP

PSPACE
=

NPSPACE
EXP NEXP

Fig. A.3 Relationship between Complexity Classes.→ indicates containment, though whether it
is strict is unknown.

given input F. Observe that " accepts F if an accepting configuration is reachable
from the initial configuration in this configuration graph. Notice also that since "
is ((=)-space bounded, the total number of vertices in this graph is ≤ =2$ (((=))
(see proof of Theorem A.35). Now we can run our favorite graph search algorithm
(depth first search or breadth first search) on this configuration graph to see if an
accepting configuration is reachable; the graph will be constructed on-the-fly as it is
being explored. Such an algorithm (which deterministic), takes time that is linear in
the size of the graph, which gives us a =2$ (((=)) deterministic algorithm for �. �

Our new observations relating deterministic and nondeterministic complexity
classes gives us the following relationships.
Corollary A.39

L ⊆ NL ⊆ P ⊆ NP ⊆ PSPACE ⊆ NPSPACE ⊆ EXP ⊆ NEXP

An important result due to Savitch, relates nondeterministic and deterministic
space complexity classes. The interested reader can find its proof in textbooks like [?].
Theorem A.40 (Savitch)

For ((=) ≥ log =, NSPACE(((=)) ⊆ DSPACE(((=)2). In particular, this means
that PSPACE = NPSPACE.

Putting all our observations together we get the relationships shown in Fig. A.3
. It is worth observing that for any deterministic complexity class C, C = coC; this
is because an algorithm for � is to run the deterministic algorithm for � and flip the
final answer. Thus, P = coP. Further, from Theorem A.37, we have coP ⊆ coNP,
giving us the containment P ⊆ coNP. Finally, due the space hierarchy theorem,
we also know that L ≠ PSPACE and NL ≠ PSPACE, and from the time hierarchy
theorem, we know that P ≠ EXP andNP ≠ NEXP; the hierarchy theorems are beyond
the scope of this brief primer.

A.7 P and NP

Cobham-Edmonds Thesis, named after Alan Cobham and Jack Edmonds, asserts
that the only computational problems that have “efficient” or “feasible” algorithmic

98 A Computability and Complexity Theory

solutions are those that belong to P. In other words, P is the collection of tractable
computational problems. There are many features of P that justify this view.

• The invariance thesis suggests that any problem in P can be solved in polynomial
time on any reasonable computational model. Thus, the statement of a problem
being efficiently computable is platform independent.

• Most encodings of an input structure are polynomially related in terms of their
length. Thus, if a problem is in P for one encoding, it will be in P even if input
instances are encoded in a different manner. Therefore, P is insensitive is problem
encodings.

• Most natural problems in P have algorithms whose running time is bounded by
a low-order polynomial. Thus, their running times are likely to be low for most
problem instances.

• The asymptotic growth of polynomials is moderate when compared to the as-
tounding growth of exponential functions. Thus, problems in P are likely to be
feasibly solved even on large problem instances.

The crux of the Cobham-Edmonds thesis is that for problem to be solvable in
practice, it should have a polynomial time algorithm. Therefore, much effort in the
past 50 years has been devoted to understanding the class of problems in P. In
particular, can we prove that the complexity classes containing P in Fig. A.3 , like
NP and PSPACE, also have efficient solutions, i.e., are contained in P? Or can we
say for certain that some problems in NP and PSPACE cannot be solved efficiently?

A.7.1 Alternate characterization of NP

We defined NP as the collection of problems that can be solved in polynomial time
on a nondeterministic Turing machine. In this section, we will give an alternate
definition, namely, as those problems that are efficiently “verifiable”.

Definition A.41 A language � is polynomially verifiable if there is a : ∈ N and a
deterministic Turing machine + such that

� = {F | ∃?. + accepts 〈F, ?〉}

and + takes at most |F |: steps on input 〈F, ?〉, i.e., + running time is independent
of the length of ?. Here + is called a verifier for �, and for F ∈ �, the strings ? such
that 〈F, ?〉 is accepted by + are called a proof of F (with respect to +).

The notion of a language � being polynomial verifiable says that when a string
F ∈ �, there is a proof ? (maybe even more than one) such that F augmented with
? “convinces” + , i.e., causes + to accept. However, if F ∉ � then there is no proof
string ? that can convince + of F’s membership in �. Notice also that +’s running
time on input 〈F, ?〉 is independent of the length of ?; it always runs in time |F |:
no matter what ? is. Now, since in |F |: steps, + cannot read more that |F |: − |F |
bits of ?, we can without loss of generality assume that ? is a string whose length

A.7 P and NP 99

is bounded by a polynomial in the length of F. Thus, we could informally say that
� is polynomially verifiable, if for any string F ∈ � there is a “short” proof (of
polynomial length) that can be efficiently checked (in polynomial time) by a verifier,
and if F ∉ � there is no proof that can convince a verifier.

A language being polynomially verifiable is equivalent to a problem having a
nondeterministic polynomial time verifier.

Theorem A.42 � ∈ NP if and only if � is polynomially verifiable.

Proof Consider � ∈ NP, and let" be nondeterministic Turing machine recognizing
� in time =: for some : . We can assume without loss of generality that" has at most
two choices at any given step. The verifier + for � will work as follows. On input
〈F, ?〉, where ? is a binary string, it will first copy F onto a work-tape, and compute
=: . It will then simulate " for =: steps using the work-tape with F as the input
tape, taking ? to be the sequence of nondeterministic choices.+ accepts 〈F, ?〉 if "
accepts F with ? as the nondeterministic choices. Observe that + is a deterministic
algorithm running in$ (=:) time on |F | = =. Further � = {F |∃?. + accepts 〈F, ?〉}.

Conversely, suppose+ is a polynomial time verifier for �. Suppose+ runs in time
|F |: on input 〈F, ?〉. The nondeterministic algorithm " for � will work as follows.
On input F, " will guess a string ? of length |F |: . Then " will simulate + on F
and the guessed string ?, accepting if and only if + accepts. It is easy to see that
L(") = � and " runs in time $ (=:). �

Thus, NP is the collection of all problems � whose membership question has
short, efficiently checkable proofs. The question of whether all problems in NP have
polynomial time algorithms — whether P ?

= NP — is thus the question of whether
every problem that has a short, efficiently checkable proofs also have the property
that these proofs can be found efficiently. Phrased in this manner, the likely answer
seems to be no. There are also results that seem to suggest that P is likely to be not
equal to NP, though a firm resolution of this question has eluded researchers for the
past 50 years.

A.7.2 Reductions, Hardness and Completeness

In an effort to resolve the P versus NP question, researchers have tried to identify
canonical problems whose study can help address this challenge. The goal is to
identify, in some sense, the most difficult problems in NP such that either (a) they
are candidate problems that may not have polynomial time algorithms, or (b) finding
a polynomial time algorithms for these problems will constructively demonstrate
that P = NP. In order to identify such difficult problems, we need to be able to
compare the difficulty of two problems. For this the most convenient technique is
that of reductions. Unlike, many-one reductions introduced before, we will require
that these be computed in polynomial time.

100 A Computability and Complexity Theory

Definition A.43 A polynomial time reduction from � to � is a polynomial time
computable function 5 such that for every input F,

F ∈ � if and only if 5 (F) ∈ �.

In such a case we say that � is polynomial time reducible to � and is denoted by
� ≤P �.

Example A.44 Consider the following problems.

SAT = {〈i〉 | i is in CNF and i is satisfiable}
:−COLOR = {〈�, :〉 | � is an undirected graph that can be colored using : colors}

Proposition 1.35 shows that for any graph � and : ∈ N there is a set of clauses Γ�,:
such that� is :-colorable if and only if Γ�,: is satisfiable. The number of clauses in
Γ�,: is proportional to the number of vertices and edges in �, and the each clauses
has at most :-literals. It is also easy to see that Γ�,: can be constructed from �

in time that linear in the size of �. Thus, these observations together establish that
:−COLOR ≤P SAT.

Example A.45 A formula i in CNF is said to be in 3-CNF if every clause in i has
exactly 3 literals. For example, (G1∨¬G2∨¬G3)∧(¬G1∨¬G4)∧(G4)∧(¬G2∨¬G3∨G4)
is not in 3-CNF, while (G1 ∨ ¬G2 ∨ ¬G3) ∧ (¬G1 ∨ G4 ∨ G2) is in 3-CNF. Recall the
SAT problem is one whether given a formula i in CNF, we need to determine if i is
satisfiable. A special case of this problem is one where the input formula is promised
to be in 3-CNF. Formally we have,

3−SAT = {〈i〉 | i is in 3-CNF and is satisfiable}.

Since 3−SAT is a “special” version of SAT, the identity function is a reduction from
3−SAT to SAT; thus, 3−SAT ≤P SAT. It turns out the one also has a reduction the
other way around.

The reduction from SAT to 3−SAT is as follows. Consider a CNF formula i; it will
be convenient to this of i as a set of clauses.Our reductionwill convert (in polynomial
time) each clause 2 ∈ i into a 3-CNF formula 5 (2) such that 2 and 5 (2) are satisfied
by (almost) the same set of truth assignments. Then 5 (i) = { 5 (2) | 2 ∈ i}, and it
will be the case that i is satisfiable iff 5 (i) is satisfiable.

Let us now describe the translation of clauses. The translation of clause 2 will
depend on how many literals 2 has. Let 2 = ℓ1 ∨∨ℓ2 ∨ · · · ∨ ℓ: . Depending on : , we
have the following cases.

Case : = 1 Let D and E be “new” propositions not used before. Define 5 (2) to be

(ℓ1 ∨ D ∨ E) ∧ (ℓ1 ∨ D ∨ ¬E) ∧ (ℓ1 ∨ ¬D ∨ E) ∧ (ℓ1 ∨ ¬D ∨ ¬E)

Case : = 2 Let D be a “new” proposition. 5 (2) is given by

(ℓ1 ∨ ℓ2 ∨ D) ∧ (ℓ1 ∨ ℓ2 ∨ ¬D)

A.7 P and NP 101

Case : = 3 In this case 5 (2) = 2.
Case : > 3 Let H1, H2, . . . H:−3 be new propositions. Then 5 (2) is

(ℓ1 ∨ ℓ2 ∨ H1) ∧ (ℓ3 ∨ ¬H1 ∨ H2) ∧ (ℓ4 ∨ ¬H2 ∨ H3) ∧ · · ·
∧ (ℓ:−2 ∨ ¬H:−4 ∨ H:−3) ∧ (ℓ:−1 ∨ ℓ: ∨ ¬H:−3)

It is easy to see that 5 can be computed in time that is linear in the size of i. Moreover,
i is satisfiable iff 5 (i) is satisfiable (left as exercise). Thus, 5 is a polynomial time
reduction showing SAT ≤P 3−SAT.

Polynomial time reductions satisfy properties similar to many-one reductions:
they are transitive and if � reduces to � then � reduces to �.

Proposition A.46 The following properties hold for polynomial time reductions.

• If � ≤P � then � ≤P �.
• If � ≤P � and � ≤P � then � ≤P �.

Proof Detailed proof of these observations is left as an exercise. But the sketch is as
follows. If 5 is a polynomial time reduction from � to � then 5 is also a polynomial
time reduction from � to �. And if 5 is a polynomial time reduction from � to �
and 6 is a polynomial time reduction from � to �, then 6 ◦ 5 is a polynomial time
reduction from � to �. �

Finally, polynomial time reductions do serve as a way to compare the computa-
tional difficulty of two problems. We show that if � ≤P � and � is “easy” then �
is easy.

Theorem A.47 If � ≤P � and � ∈ P then � ∈ P.

Proof Let 5 be a polynomial time reduction from � to � and let" be a deterministic
polynomial time algorithm recognizing �. Then the polynomial time algorithm #

for � does the following: On input F, compute 5 (F) and then run " on 5 (F). It is
easy to see that # recognizing � from the properties of a reduction.

The tricky step is to argue that # runs in polynomial time. Let us assume that 5
is computed in time =: and let " run in time =ℓ . Since 5 can be computed in time
=: , it means that | 5 (F) | ≤ |F |: ; this is because a single step in the computation of
5 can produce at most one bit of 5 (F). Therefore, the total running time of # is
|F |: (time to compute 5 (F)) + (|F |:)ℓ (time to run " on 5 (F) which is a string of
length |F |:). This is bounded by $ (=:ℓ) which is polynomial. �

In Theorem A.47, we could have replaced P by any of the complexity classes
in Fig. A.3 that contain P, and the proof would go through. Thus, polynomial
time reductions are an appropriate lens by which measure the relative difficulty of
problems that belong to complexity classes that contain P.

Definition A.48 (Hardness and Completeness)
Let C be a complexity class in Fig. A.3 that contains P. � is said to be C-hard

iff for every � ∈ C, � ≤P �.
� is said to be C-complete iff � ∈ C and � is C-hard.

102 A Computability and Complexity Theory

In other words, informally, a problem is C-hard if it is at least as difficult as any
problem in C. It is C-complete if in addition it also belongs to C. Fixing C to be
NP, we could say that a problem is NP-complete if it is the “hardest” problem that
belongs to NP. Because of their status as the most difficult problems in NP, they
are candidate problems to study to help resolve the P versus NP question. This is
captured by the following observation.

Proposition A.49 If � is NP-hard and � ∈ P then NP = P.

Proof Consider any problem � ∈ NP. Since � ≤P � and � ∈ ?>;HC8<4, by
Theorem A.47, we have � ∈ P. �

In the absence of a firm resolution of the P versus NP questions, classifying a
problem as NP-hard suggests that it is unlikely that the problem has a polynomial
time algorithm given our belief that P ≠ NP.

Many natural problems are NP-complete. The historically (and pedagogically)
first problemknown to beNP-complete isSAT (Cook-Levin TheoremTheorem1.23).

Observe that from Fig. A.3 , we have P ⊆ NP and P ⊆ coNP. From this we can
conclude that P ⊆ NP∩coNP. Related but independent of the P versusNP question is
whether P ?

= NP∩ coNP. This question also remains open. Many problems that were
previously known to be inNP∩coNPwere proved to be in P years later. Two classical
examples are Linear programming that was shown to be in P by Khachiyan in 1979
and testing whether a number is prime, which was proved by Agarwal-Kayal-Saxena
in 2002 to be in P. However, there are some natural problems in NP ∩ coNP whose
status with respect to P is still unresolved. One is the problem of solving parity
games, and the other is the factoring problem.

