All problems are of equal value.

1. The primitive operation we added to deterministic algorithms to make them randomized is the \(\text{rand}(k) \) operation, which in 1 operation will return a uniformly random number in the set \(\{0, \ldots, k - 1\} \). In this formalism we are allowed to specify \(k \), and in this problem we will consider what happens when this flexibility is not present.

 (a) Given \(k \geq \ell \geq 2 \), show how one can output a uniformly random number in \(\{0, \ldots, \ell - 1\} \) by only using \(\text{rand}(k) \) as a source of randomness, in \(O(1) \) expected time.

 (b) Given \(k \geq 2 \), show how one can output a uniformly random number in \(\{0, \ldots, k - 1\} \) by only using \(\text{rand}(2) \) as a source of randomness, in \(O(\log k) \) expected time.

2. In lecture it was shown that the family of hash functions \(\mathcal{H}_{k,p} \),

\[
\mathcal{H}_{k,p} = \left\{ h : \mathbb{Z}_p^k \to \mathbb{Z}_p, h(x) = \sum_{i=1}^{k} x_i b_i, b \in \mathbb{Z}_p^k \right\},
\]

is universal for any prime \(p \) and integer \(k \geq 1 \), in that for any \(x \neq y \in \mathbb{Z}_p^k \),

\[
\Pr_{h \in \mathcal{H}_{k,p}} [h(x) = h(y)] = \frac{1}{p},
\]

where \(h \) is taken uniformly from \(\mathcal{H}_{k,p} \). A stronger requirement is that of \(\ell \)-wise independence, which means that for any distinct \(x_1, \ldots, x_\ell \in \mathbb{Z}_p \) and (not necessarily distinct) \(y_1, \ldots, y_\ell \in \mathbb{Z}_p \),

\[
\Pr_{h \in \mathcal{H}_{k,p}} [h(x_1) = y_1 \wedge \cdots \wedge h(x_\ell) = y_\ell] = \frac{1}{p^\ell}.
\]

When \(\ell = 2 \), this is called pairwise independence.

 (a) Show that any family of hash functions that is pairwise independent is also universal.

 (b) Show that \(\mathcal{H}_{k,p} \) is not pairwise independent, for every \(k \) and \(p \).

 (c) Show that hash family \(\mathcal{H}'_{k,p} = \{ h : \mathbb{Z}_p^k \to \mathbb{Z}_p, h(x) = c + \sum_{i=1}^{k} x_i b_i, b \in \mathbb{Z}_p^k, c \in \mathbb{Z}_p \} \) is pairwise independent.

 (d) Show that \(\mathcal{H}'_{k,p} \) is not 3-wise independent, for every \(k \) and \(p \) with \(p^k \geq 3 \).