This homework contains three problems. Read the instructions for submitting homework on the course webpage.

Collaboration Policy: For this homework, each student can work in a group with up to three members. Only one solution for each group needs to be submitted. Follow the submission instructions carefully.

For problems that use maximum flows as a black box, a full-credit solution requires the following.

- A complete description of the relevant flow network, specifying the set of vertices, the set of edges (being careful about direction), the source and target vertices \(s \) and \(t \), and the capacity of every edge. (If the flow network is part of the original input, just say that.)

- A description of the algorithm to construct this flow network from the stated input. This could be as simple as “We can construct the flow network in \(O(n^3) \) time by brute force.”

- A description of the algorithm to extract the answer to the stated problem from the maximum flow. This could be as simple as “Return \(\text{True} \) if the maximum flow value is at least 42 and \(\text{False} \) otherwise.”

- A proof that your reduction is correct. This proof will almost always have two components. For example, if your algorithm returns a boolean, you should prove that its \(\text{True} \) answers are correct and that its \(\text{False} \) answers are correct. If your algorithm returns a number, you should prove that number is neither too large nor too small.

- The running time of the overall algorithm, expressed as a function of the original input parameters, not just the number of vertices and edges in your flow network.

- You may assume that maximum flows can be computed in \(O(VE) \) time. Do not regurgitate the maximum flow algorithm itself.

Reductions to other flow-based algorithms described in class or in the notes (for example: edge-disjoint paths, maximum bipartite matching, minimum-cost circulation) or to other standard graph problems (for example: reachability, minimum spanning tree, shortest paths) have similar requirements.
1. Finding median of a stream of numbers is not easy without using too much space. However, it is possible to find an approximate median of a stream. Consider a stream of elements a_1, a_2, \ldots where element a_i arrives at time i. Given a constant $\epsilon > 0$, an ϵ-approximate median of the stream at time t is an element whose rank is between $\lfloor(1/2 - \epsilon)t\rfloor$ and $\lceil(1/2 + \epsilon)t\rceil$ among elements of set $\{a_1, \ldots, a_t\}$. For simplicity let us assume that all elements in the stream are distinct, and are at most n (note that this also implies $t \leq n$).

(a) Let S be a set of c elements sampled uniformly at random from set $\{a_1, \ldots, a_t\}$, and $0 \leq \delta \leq 1$. Let X be a random variable that captures the number of elements in S with rank strictly less than $\lfloor \delta t \rfloor$. Show that $\delta c - \frac{2c}{t} \leq E[X] \leq \delta c$ in case of both sampling with replacement and sampling without replacement.

(b) Given a constant $k > 0$ we want to find an ϵ-approximate median of the stream with probability at least $(1 - \frac{1}{k})$ at any time t. Design a randomized algorithm to do the same. At any time t, your algorithm should be able to return an ϵ-approximate median of set $\{a_1, \ldots, a_t\}$ with probability $(1 - \frac{1}{k})$. The goal is to do this using as less space as possible.

[Hint: Use part (a)]

2. Recall the CountMin sketch algorithm to estimate the frequencies of the items in a stream. Suppose the algorithm uses exactly one hash function that maps elements of the stream to $\{0, \ldots, (m-1)\}$ where $m = 10$. Give an example of an input stream σ, say of length t, such that the probability is very high that for at least one of the items $j \in \sigma$, the estimate of its frequency is much larger than its actual frequency. More precisely, give an example such that (for t large enough) the probability that there is an item j with $f'_j - f_j \geq t/2$ is at least 0.99, where t is the stream length. Here f'_j is the estimated frequency of j from the sketch and f_j is the true frequency. Note that element j has to be part of the stream, and therefore has to appear at least once.

Recall that, assuming elements of the stream are from set $[1..n]$ the hash function $h : [1..n] \to [0..(m-1)]$ is chosen uniformly at random from a 2-universal hash family \mathcal{H}. That is for any $x, y \in [1..n]$, if $x \neq y$ then $Pr_{h \in \mathcal{H}}[h(x) = h(y)] = \frac{1}{m}$. Additionally, (if needed) assume that \mathcal{H} is 3-uniform as well.

3. Suppose f is an s-t flow in a network $G = (V, E)$ and let f' be another flow with value larger than that of f. Prove that there is an s-t flow of value $\text{val}(f') - \text{val}(f)$ in the network G_f.

2