This homework contains three problems. **Read the instructions for submitting homework on the course webpage.**

Collaboration Policy: For this homework, each student can work in a group with up to three members. Only one solution for each group needs to be submitted. Follow the submission instructions carefully.

1. **Tabulated hashing** uses tables of random numbers to compute hash values. Suppose $|\mathcal{U}| = 2^w \times 2^w$ and $m = 2^l$, so that the items being hashed are pairs (x, y) where x and y are w-bit strings (or $2w$-bit strings broken in half), and hash values are l-bit strings.

 Let $A[0 \cdots 2^w - 1]$ and $B[0 \cdots 2^w - 1]$ be arrays of l-bit strings (A and B can be though of as $2^w \times l$ dimensional array of bits). Define the hash function $h_{A,B} : \mathcal{U} \rightarrow [m]$ by setting

 $$h_{A,B}(x, y) := A[x] \oplus B[y]$$

 where \oplus denotes bit-wise exclusive-or. Let \mathcal{H}' denote the set of all possible functions $h_{A,B}$. Note that sampling an $h_{A,B} \in \mathcal{H}'$ uniformly at random is equivalent to setting every bit of the arrays A and B to 0 or 1 uniformly at random.

 For an integer $k > 0$, we say that a family of hash functions \mathcal{H} mapping \mathcal{U} to $\{0,1,\ldots,(m-1)\}$ is k-uniform if for any sequence of k disjoint keys and any sequence of k hash values, the probability that each key maps to the corresponding hash value is $\frac{1}{m^k}$

 $$\Pr_{h \sim \mathcal{H}} \left[\bigwedge_{j=1}^{k} h(x_j, y_j) = i_j \right] = \frac{1}{m^k} \quad \text{for all disjoint } \{(x_i, y_i)\}_{i \in [k]} \in \mathcal{U}, \text{ and all } i_1, \ldots, i_k \in \{0, \ldots, (m-1)\}$$

 In the above, $h \sim \mathcal{H}$ means function h is picked uniformly at random from family \mathcal{H}. (For more details on k-uniform family of hash functions, see Jeff’s notes (page 3): https://courses.engr.illinois.edu/cs473/sp2016/notes/12-hashing.pdf)

 (a) Prove that \mathcal{H}' is 2-uniform.

 (b) Prove that \mathcal{H}' is 3-uniform. [Hint: Solve part (a) first.]

 (c) Prove that \mathcal{H}' is not 4-uniform.

 Yes, “see part (b)” is worth full credit for part (a), but only if your solution to part (b) is correct.

2. In lecture we discussed the Karp-Rabin randomized algorithm for pattern matching. The power of randomization is seen by considering the **two-dimensional** pattern matching problem. The input consists of an arbitrary $n \times n$ binary matrix T and an arbitrary $m \times m$ binary matrix
Our goal is to check if \(P \) occurs as a (contiguous) submatrix of \(T \). Describe an algorithm that runs in \(O(n^2) \) time assuming that arithmetic operation in \(O(\log n) \)-bit integers can be performed in constant time. This can be done via a modification of the Karp-Rabin algorithm. To achieve this, you will have to apply some ingenuity in figuring out how to update the fingerprint in only constant time for most positions in the array.

[Hint: we can view an \(m \times m \) matrix as an \(m^2 \)-bit integer. Rather than computing its fingerprint directly, compute instead a fingerprint for each row first, and maintain these fingerprints as you move around.]

3. **Reservoir sampling** is a method for choosing an item uniformly at random from an arbitrarily long stream of data whose length is not known apriori.

\[
\text{UniformSample:}
\begin{align*}
s & \leftarrow \text{null} \\
m & \leftarrow 0 \\
\text{While (stream is not done)} & \quad \text{m} \leftarrow m + 1 \\
\text{if } x_m \text{ is current item} & \quad \text{Toss a biased coin that is heads with probability } \frac{1}{m} \\
\text{if (coin turns up heads)} & \quad s \leftarrow x_m \\
\text{Output } s \text{ as the sample}
\end{align*}
\]

(a) **Not to submit but useful to solve:** Prove that the above algorithm outputs a uniformly random sample from the stream.

(b) To obtain \(k \) samples with replacement, the procedure for \(k = 1 \) can be done in parallel with independent randomness. Now we consider obtaining \(k \) samples from the stream without replacement. The output will be stored in an array \(S \) of size \(k \).

\[
\text{Sample-without-Replacement}(k):
\begin{align*}
S[1..k] & \leftarrow \text{null} \\
m & \leftarrow 0 \\
\text{While (stream is not done)} & \quad m \leftarrow m + 1 \\
\text{if } x_m \text{ is current item} & \quad \text{If } (m \leq k) \\
& \quad S[m] \leftarrow x_m \\
\text{else} & \quad r \leftarrow \text{uniform random number in range } [1..m] \\
& \quad \text{If } (r \leq k) \\
& \quad S[r] \leftarrow x_m \\
\text{Output } S
\end{align*}
\]

Prove that the preceding algorithm generates a uniform sample of size \(k \) without replacement from the stream of size \(m \). Assume that \(m \geq k \).