Flow Variants

Lecture 16
March 30, 2021

Most slides are courtesy Prof. Chekuri
Generalizations of Flow

We have seen $s-t$ flow. Flow problems admit several generalizations and variations.

- Demands and Supplies (we have already seen them)
- Circulations
- Lower bounds in addition to upper bounds
- Minimum cost flows and circulations
- Flows with losses
- Flows with time delays
- Multi-commodity flows
- . . .

Many applications, connections, algorithms.
Part I

Circulations
Circulations

Definition

Circulation in a network $G = (V, E)$, is a function $f : E \rightarrow \mathbb{R}^{\geq 0}$ s.t.

1. **Conservation Constraint:** For each vertex v:

 $$\sum_{e \text{ into } v} f(e) = \sum_{e \text{ out of } v} f(e)$$

2. **Capacity Constraint:** For each edge e, $f(e) \leq c(e)$

No source or sink. $f(e) = 0$ for all e is a valid circulation.
Circulation with lower bounds

Circulations are useful mainly in conjunction with lower bounds. Given a network $G = (V, E)$ with capacities $c : E \rightarrow \mathbb{R}^{\geq 0}$ and lower bounds $\ell : E \rightarrow \mathbb{R}^{\geq 0}$.

Definition

Circulation in a network $G = (V, E)$, is function $f : E \rightarrow \mathbb{R}^{\geq 0}$ s.t.

1. **Conservation Constraint**: For each vertex v:

 $$\sum_{e \text{ into } v} f(e) = \sum_{e \text{ out of } v} f(e)$$

2. **Capacity Constraint**: For each edge e, $f(e) \leq c(e)$

3. **Lower bound Constraint**: For each edge e, $f(e) \geq \ell(e)$
Circulation problem

Problem

<table>
<thead>
<tr>
<th>Input</th>
<th>A network G with capacity c and lower bound ℓ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goal</td>
<td>Find a feasible circulation</td>
</tr>
</tbody>
</table>

Simply a feasibility problem.

Observation: As hard as the s-t maxflow!
Reducing Max-flow to Circulation

Decision version of max-flow.

Problem

Input
A network G with capacity c and source s and sink t and number F.

Goal
Is there an s-t flow of value at least v in G?
Reducing Max-flow to Circulation

Decision version of max-flow.

Problem

Input A network G with capacity c and source s and sink t and number F.

Goal Is there an s-t flow of value at least v in G?

Given G,s,t create network G' as follows:

1. set $\ell(e) = 0$ for each e in G
2. add new edge (t, s) with lower bound v and upper bound ∞
Reducing Max-flow to Circulation

Decision version of max-flow.

Problem

<table>
<thead>
<tr>
<th>Input</th>
<th>A network G with capacity c and source s and sink t and number F.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goal</td>
<td>Is there an s-t flow of value at least v in G?</td>
</tr>
</tbody>
</table>

Given G, s, t create network G' as follows:

1. set $\ell(e) = 0$ for each e in G
2. add new edge (t, s) with lower bound v and upper bound ∞

Claim

There exists a flow of value v from s to t in G if and only if there exists a feasible circulation in G'.
Reducing Circulation to Max-Flow

Circulation problem can be reduced to $s-t$ flow and hence they are polynomial-time equivalent. See Kleinberg-Tardos Chapter 7 for details of the reduction.
Reducing Circulation to Max-Flow

Circulation problem can be reduced to \(s-t \) flow and hence they are polynomial-time equivalent. See Kleinberg-Tardos Chapter 7 for details of the reduction.

Important properties of circulations:

- Reduction shows that one can find in \(O(mn) \) time a feasible circulation in a network with capacities and lower bounds.
- If edge capacities and lower bounds are integer valued then there is always a feasible integer-valued circulation.
- Hoffman’s circulation theorem is the equivalent of maxflow-mincut theorem.
- Circulation can be decomposed into at most \(m \) cycles in \(O(mn) \) time.
1. Design survey to find information about n_1 products from n_2 customers.

2. Can ask customer questions only about products purchased in the past.

3. Customer can only be asked about at most c'_i products and at least c_i products.

4. For each product need to ask at least p_i consumers and at most p'_i consumers.
Reduction to Circulation

1. include edge (i, j) is customer i has bought product j
2. Add edge (t, s) with lower bound 0 and upper bound ∞.
 - Consumer i is asked about product j if the integral flow on edge (i, j) is 1
Part II

Minimum Cost Flows
Minimum Cost Flows

1. **Input:** Given a flow network G and also edge costs, $w(e)$ for edge e, and a flow requirement F.

2. **Goal:** Find a *minimum cost* flow of value F from s to t.

3. **Goal:** Find a *minimum cost* maximum s-t flow.

Given flow $f : E \rightarrow R^+$, cost of flow $= \sum_{e \in E} w(e)f(e)$.

Note: costs can be negative. An optimum solution may need cycles.
Minimum Cost Flows

1. **Input:** Given a flow network G and also edge costs, $w(e)$ for edge e, and a flow requirement F.

2. **Goal:** Find a *minimum cost* flow of value F from s to t.

3. **Goal:** Find a *minimum cost* maximum s-t flow.

Given flow $f : E \rightarrow R^+$, cost of flow $= \sum_{e \in E} w(e)f(e)$.

Note: costs can be negative. An optimum solution may need cycles.

Much more general than the shortest path problem.
Minimum Cost Flow: Facts

1. The problem can be solved efficiently in polynomial time.
 - $O(nm \log C \log(nW))$ time algorithm where C is the maximum edge capacity and W is the maximum edge cost.

2. $O(m \log n(m + n \log n))$ time strongly polynomial time algorithm.

3. For integer capacities, there is always an optimum solution in which flow is integral.
Residual graph when there are costs:

Definition

For a network $G = (V, E)$ and flow f, the residual graph $G_{f,w} = (V', E')$ of G with respect to f and w is

1. $V' = V$,

2. **Forward Edges**: For each edge $e \in E$ with $f(e) < c(e)$, we add $e \in E'$ with capacity $c(e) - f(e)$. Cost $w'(e) = w(e)$.

3. **Backward Edges**: For each edge $e = (u, v) \in E$ with $f(e) > 0$, we add $(v, u) \in E'$ with capacity $f(e)$. Cost $w'(e) = -w(e)$.
Question: Suppose f is a max s-t flow in G. When is f a min-cost a minimum cost max-flow?
Min-Cost Flow: Optimality Condition

Question: Suppose f is a max s-t flow in G. When is f a min-cost a minimum cost max-flow?

If and only if there is no negative-cost cycle in G_f.

- If there is a negative cost cycle we can augment along the cycle and reduce the cost of f (note that value of f does not change).
- Suppose f' is another maxflow of less cost. One can show that $f' - f$ is a circulation in G_f (since both are maxflows) which means that $f' - f$ can be decomposed into cycles. Since f' has less cost than f there must be a negative cost cycle.
Min-Cost Flow: Cycle-canceling algorithm

Goal: Given G with integer capacities, non-negative weights, find s-t maxflow of with minimum cost.

Cycle-Canceling-Alg

Compute a maxflow f in G (ignoring costs)

$G_{f,w}$ is residual graph of G with respect to f

while there is a negative weight cycle C in $G_{f,w}$ do

let C be a negative weight cycle in $G_{f,w}$

Augment one unit of flow along C and update f

Construct new residual graph $G_{f,w}$

Output f

Like Ford-Fulkerson the run-time is pseudo-polynomial in costs. Can be implemented to run in $O(m^2 nCW)$ time where $C = \max_e c(e)$ and $W = \max_e |w(e)|$.

Goal: Given \(G \) with integer capacities, \textbf{non-negative} weights, and integer \(k \), find \(s-t \) flow of value \(k \) with minimum cost.

Successive-Shortest-Path-Alg

for every edge \(e \), \(f(e) = 0 \)

\(G_{f,w} \) is residual graph of \(G \) with respect to \(f \)

\begin{verbatim}
while \(v(f) < k \) and \(G_{f,w} \) has a simple \(s-t \) path do
 let \(P \) be a \textit{shortest} \(s-t \) path in \(G_{f,w} \)
 Augment one unit of flow along \(P \) and update \(f \)
 Construct new residual graph \(G_{f,w} \).
\end{verbatim}

Algorithm gives optimum solution. Shows existence of integral optimum solution for integer capacities. Run time is \(O(mk \log m) \), and in the worst-case, \(O(mC \log m) \).
Can we find a maxflow of maximum profit?