CS 473: Algorithms

Ruta Mehta

University of Illinois, Urbana-Champaign

Spring 2021

CS 473: Algorithms, Spring 2021

Inequalities & Randomized QuickSort

Lecture 8 Feb 18, 2021

Most slides are courtesy Prof. Chekuri

Ruta (UIUC)

CS473

Outline

Slick Analysis of Randomized QuickSort

Concentration of Mass Around Mean

Markov's Inequality

Chebyshev's Inequality

Chernoff Bound

Randomized **QuickSort**: High Probability Analysis

Part I

Analysis of QuickSort

Recall: Randomized QuickSort

Randomized QuickSort

- **1** Pick a pivot element *uniformly at random* from the array.
- Split array into 3 subarrays: those smaller than pivot, those larger than pivot, and the pivot itself.
- In the subarrays, and concatenate them.

Theorem

Expected running time of Randomized QuickSort on an array of size n is $O(n \log n)$.

- A: Given array with *n* distinct numbers.
- Q(A): number of comparisons of randomized QuickSort on A.
 Note that Q(A) is a random variable.
- **3** X_i : Random variable indicating if picked pivot has rank i in A.

 A_{left}^{i} and A_{right}^{i} be the corresponding left and right subarrays.

$$Q(A) = n + \sum_{i=1}^{n} X_i \cdot \left(Q(A_{\text{left}}^i) + Q(A_{\text{right}}^i)\right).$$

Exactly one non-zero X_i . $E[X_i] = Pr[pivot has rank i] = 1/n$.

Independence of Random Variables

Lemma

Random variables X_i is independent of random variables $Q(A_{left}^i)$ as well as $Q(A_{right}^i)$, i.e.

$$\mathbf{E} \begin{bmatrix} X_i \cdot Q(A_{left}^i) \end{bmatrix} = \mathbf{E} \begin{bmatrix} X_i \end{bmatrix} \mathbf{E} \begin{bmatrix} Q(A_{left}^i) \end{bmatrix}$$
$$\mathbf{E} \begin{bmatrix} X_i \cdot Q(A_{right}^i) \end{bmatrix} = \mathbf{E} \begin{bmatrix} X_i \end{bmatrix} \mathbf{E} \begin{bmatrix} Q(A_{right}^i) \end{bmatrix}$$

Proof.

This is because the algorithm, while recursing on $Q(A_{left}^{i})$ and $Q(A_{right}^{i})$ uses new random coin tosses that are independent of the coin tosses used to decide the first pivot. Only the latter decides value of X_{i} .

Ruta (UIUC)

 $T(n) = \max_{A:|A|=n} E[Q(A)]$ be the worst-case expected running time on arrays of size n.

We have, for any **A**:

$$Q(A) = n + \sum_{i=1}^{n} X_i \left(Q(A_{\text{left}}^i) + Q(A_{\text{right}}^i) \right)$$

 $T(n) = \max_{A:|A|=n} E[Q(A)]$ be the worst-case expected running time on arrays of size n.

We have, for any **A**:

$$Q(A) = n + \sum_{i=1}^{n} X_i \left(Q(A_{\text{left}}^i) + Q(A_{\text{right}}^i) \right)$$

By linearity of expectation, and independence random variables:

 $T(n) = \max_{A:|A|=n} E[Q(A)]$ be the worst-case expected running time on arrays of size n. We derived:

$$\mathsf{E}\Big[Q(A)\Big] \leq n + \sum_{i=1}^{n} \frac{1}{n} \left(T(i-1) + T(n-i)\right).$$

Note that above holds for any A of size n. Therefore

 $T(n) = \max_{A:|A|=n} \mathsf{E}[Q(A)] \leq$

 $T(n) = \max_{A:|A|=n} E[Q(A)]$ be the worst-case expected running time on arrays of size n. We derived:

$$\mathsf{E}\Big[Q(A)\Big] \leq n + \sum_{i=1}^{n} \frac{1}{n} \left(T(i-1) + T(n-i)\right).$$

Note that above holds for any A of size n. Therefore

$$T(n) = \max_{A:|A|=n} \mathbb{E}[Q(A)] \le n + \sum_{i=1}^{n} \frac{1}{n} (T(i-1) + T(n-i)).$$

Solving the Recurrence

$$T(n) \leq n + \sum_{i=1}^{n} \frac{1}{n} (T(i-1) + T(n-i))$$

with base case T(1) = 0.

Lemma

 $T(n) = O(n \log n).$

Solving the Recurrence

$$T(n) \leq n + \sum_{i=1}^{n} \frac{1}{n} (T(i-1) + T(n-i))$$

with base case T(1) = 0.

Lemma

 $T(n) = O(n \log n).$

Proof.

(Guess and) Verify by induction.

Part II

Slick analysis of QuickSort

Q(A): number of comparisons done on input array A

- Sank of an element is its position in the sorted A.
- R_{ij}: event that rank *i* element is compared with rank *j* element, for 1 ≤ *i* < *j* < *n*.

Q(A): number of comparisons done on input array A

- Sank of an element is its position in the sorted A.
- R_{ij}: event that rank *i* element is compared with rank *j* element, for 1 ≤ *i* < *j* < *n*.
- X_{ij}: the indicator random variable for R_{ij}. That is, X_{ij} = 1 if rank *i* is compared with rank *j* element, otherwise 0.

Q(A) : number of comparisons done on input array A

- Sank of an element is its position in the sorted A.
- *R_{ij}*: event that rank *i* element is compared with rank *j* element, for 1 ≤ *i* < *j* < *n*.
- X_{ij}: the indicator random variable for R_{ij}. That is, X_{ij} = 1 if rank *i* is compared with rank *j* element, otherwise 0.

$$Q(A) = \sum_{1 \le i < j \le n} X_{ij}$$

and hence by linearity of expectation,

$$\mathsf{E}\Big[Q(A)\Big] = \sum_{1 \le i < j \le n} \mathsf{E}\Big[X_{ij}\Big] = \sum_{1 \le i < j \le n} \mathsf{Pr}\Big[R_{ij}\Big].$$

 R_{ij} = rank *i* element is compared with rank *j* element.

Question: What is Pr[R_{ij}]?

With ranks: $6 \ 4 \ 8 \ 1 \ 2 \ 3 \ 7 \ 5$

Question: What is **Pr**[*R*_{ij}]?

13486

With ranks: $6 \ 4 \ 8 \ 1 \ 2 \ 3 \ 7 \ 5$

If pivot too small (say 3 [rank 2]). Partition and call recursively:

Decision if to compare **5** to **8** is moved to subproblem.

5 | 9

Question: What is **Pr**[*R*_{ij}]?

With ranks: $6 \ 4 \ 8 \ 1 \ 2 \ 3 \ 7 \ 5$

If pivot too small (say 3 [rank 2]). Partition and call recursively:

Decision if to compare 5 to 8 is moved to subproblem.

If pivot too large (say 9 [rank 8]):

3 | 4

9 1 3 4 8 6

$$\overrightarrow{5} \implies \boxed{75134869}$$

Decision if to compare 5 to 8 moved to subproblem.

5

Conclusion:

R_{*i*,*j*} happens if and only if:

*i*th or *j*th ranked element is the first pivot out of *i*th to *j*th ranked elements.

 $\Pr[R_{i,j}] = \Pr[i \text{th or } j \text{th ranked element is the pivot } | \\pivot has rank in \{i, i + 1, \dots, j - 1, j\}]$

Conclusion:

 $R_{i,j}$ happens if and only if:

*i*th or *j*th ranked element is the first pivot out of *i*th to *j*th ranked elements.

 $\Pr[R_{i,j}] = \Pr[i \text{th or } j \text{th ranked element is the pivot } |$ pivot has rank in $\{i, i + 1, \dots, j - 1, j\}$]

There are k = j - i + 1 relevant elements.

Conclusion:

 $R_{i,j}$ happens if and only if:

*i*th or *j*th ranked element is the first pivot out of *i*th to *j*th ranked elements.

 $\Pr[R_{i,j}] = \Pr[i \text{th or } j \text{th ranked element is the pivot } |$ pivot has rank in $\{i, i + 1, \dots, j - 1, j\}$]

There are k = j - i + 1 relevant elements.

$$\Pr\left[R_{i,j}\right] = \frac{2}{k} = \frac{2}{j-i+1}.$$

Question: What is **Pr**[*R*_{*ij*}]?

Lemma

$$\Pr\left[R_{ij}\right] = \frac{2}{j-i+1}.$$

Question: What is **Pr**[*R*_{ij}]?

Lemma $\Pr\left[R_{ij}\right] = \frac{2}{j-i+1}.$

Proof.

Let $a_1, \ldots, a_i, \ldots, a_j, \ldots, a_n$ be elements of A in sorted order. Let $S = \{a_i, a_{i+1}, \ldots, a_j\}$

Question: What is **Pr**[*R*_{ij}]?

Lemma

$$\Pr\left[R_{ij}\right] = \frac{2}{j-i+1}.$$

Proof.

Let $a_1, \ldots, a_i, \ldots, a_j, \ldots, a_n$ be elements of A in sorted order. Let $S = \{a_i, a_{i+1}, \ldots, a_j\}$ **Observation:** If pivot is chosen outside S then all of S either in left array or right array.

Question: What is Pr[R_{ij}]?

Lemma

$$\Pr\left[R_{ij}\right] = \frac{2}{j-i+1}.$$

Proof.

Let $a_1, \ldots, a_i, \ldots, a_j, \ldots, a_n$ be elements of A in sorted order. Let $S = \{a_i, a_{i+1}, \ldots, a_j\}$ **Observation:** If pivot is chosen outside S then all of S either in left array or right array. **Observation:** a_i and a_j separated when a pivot is chosen from S for the first time. Once separated no comparison.

Question: What is Pr[R_{ij}]?

Lemma

$$\Pr\left[R_{ij}\right] = \frac{2}{j-i+1}.$$

Proof.

Let $a_1, \ldots, a_i, \ldots, a_j, \ldots, a_n$ be elements of A in sorted order. Let $S = \{a_i, a_{i+1}, \ldots, a_j\}$ **Observation:** If pivot is chosen outside S then all of S either in left array or right array. **Observation:** a_i and a_j separated when a pivot is chosen from S for the first time. Once separated no comparison. **Observation:** a_i is compared with a_j if and only if either a_i or a_j is chosen as a pivot from S at separation...

A Slick Analysis of **QuickSort** Continued...

Lemma

$$\Pr\left[R_{ij}\right] = \frac{2}{j-i+1}.$$

Proof.

Let $a_1, \ldots, a_i, \ldots, a_j, \ldots, a_n$ be sort of A. Let $S = \{a_i, a_{i+1}, \ldots, a_j\}$ **Observation:** a_i is compared with a_j if and only if either a_i or a_j is chosen as a pivot from S at separation. **Observation:** Given that pivot is chosen from S the probability that it is a_i or a_j is exactly 2/|S| = 2/(j - i + 1) since the pivot is chosen uniformly at random from the array.

A Slick Analysis of **QuickSort** Continued...

$$\mathsf{E}\Big[Q(A)\Big] = \sum_{1 \leq i < j \leq n} \mathsf{E}[X_{ij}] = \sum_{1 \leq i < j \leq n} \mathsf{Pr}[R_{ij}].$$

Lemma	
$\Pr[R_{ij}] = \frac{2}{j-i+1}.$	

A Slick Analysis of **QuickSort** Continued...

Lemma

$$\Pr[R_{ij}] = \frac{2}{j-i+1}.$$

$$\mathsf{E}\Big[Q(A)\Big] = \sum_{1 \le i < j \le n} \mathsf{Pr}\Big[R_{ij}\Big] = \sum_{1 \le i < j \le n} \frac{2}{j-i+1}$$

Lemma

$$\Pr[R_{ij}] = \frac{2}{j-i+1}.$$

$$\mathsf{E}\Big[Q(A)\Big] = \sum_{1 \le i < j \le n} \frac{2}{j-i+1}$$

Lemma

$$\mathsf{E}\Big[Q(A)\Big] = \sum_{1 \le i < j \le n} \frac{2}{j-i+1}$$
$$= \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{2}{j-i+1}$$

Lemma

$$E[Q(A)] = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{2}{j-i+1}$$

Lemma

$$E[Q(A)] = 2\sum_{i=1}^{n-1}\sum_{j=i+1}^{n}\frac{1}{j-i+1}$$

Lemma

$$\mathsf{E}\Big[Q(A)\Big] = 2\sum_{i=1}^{n-1}\sum_{j=i+1}^{n}\frac{1}{j-i+1} = 2\sum_{i=1}^{n-1}\sum_{\Delta=2}^{n-i+1}\frac{1}{\Delta}$$

Lemma

$$\Pr[R_{ij}] = \frac{2}{j-i+1}$$

$$\mathsf{E}\Big[Q(A)\Big] = 2\sum_{i=1}^{n-1}\sum_{j=i+1}^{n}\frac{1}{j-i+1} = 2\sum_{i=1}^{n-1}\sum_{\Delta=2}^{n-i+1}\frac{1}{\Delta}$$
$$= 2\sum_{i=1}^{n-1}(H_{n-i+1}-1) \leq 2\sum_{1\leq i< n}H_{n}$$

$$H_k = \sum_{i=1}^k \frac{1}{i} = \Theta(\log k)$$

Lemma

$$\Pr[R_{ij}] = \frac{2}{j-i+1}.$$

$$E\left[Q(A)\right] = 2\sum_{i=1}^{n-1}\sum_{j=i+1}^{n}\frac{1}{j-i+1} = 2\sum_{i=1}^{n-1}\sum_{\Delta=2}^{n-i+1}\frac{1}{\Delta}$$
$$= 2\sum_{i=1}^{n-1}(H_{n-i+1}-1) \leq 2\sum_{1\leq i< n}H_{n}$$
$$\leq 2nH_{n} = O(n\log n)$$

$H_k = \sum_{i=1}^k \frac{1}{i} = \Theta(\log k)$

Part III

Inequalities

Consider flipping a fair coin *n* times independently, head gives 1, tail gives zero. How many 1s? Binomial distribution: k w.p. $\binom{n}{k} \frac{1}{2^n}$.

Consider flipping a fair coin *n* times independently, head gives 1, tail gives zero. How many 1s? Binomial distribution: k w.p. $\binom{n}{k} \frac{1}{2^n}$.

Consider flipping a fair coin *n* times independently, head gives 1, tail gives zero. How many 1s? Binomial distribution: k w.p. $\binom{n}{k} \frac{1}{2^n}$.

Consider flipping a fair coin *n* times independently, head gives 1, tail gives zero. How many 1s? Binomial distribution: k w.p. $\binom{n}{k} \frac{1}{2^n}$.

Consider flipping a fair coin *n* times independently, head gives 1, tail gives zero. How many 1s? Binomial distribution: k w.p. $\binom{n}{k} \frac{1}{2^n}$.

Consider flipping a fair coin *n* times independently, head gives 1, tail gives zero. How many 1s? Binomial distribution: k w.p. $\binom{n}{k} \frac{1}{2^n}$.

Consider flipping a fair coin *n* times independently, head gives 1, tail gives zero. How many 1s? Binomial distribution: k w.p. $\binom{n}{k} \frac{1}{2^n}$.

Consider flipping a fair coin *n* times independently, head gives 1, tail gives zero. How many 1s? Binomial distribution: k w.p. $\binom{n}{k} \frac{1}{2^n}$.

Consider flipping a fair coin *n* times independently, head gives 1, tail gives zero. How many 1s? Binomial distribution: k w.p. $\binom{n}{k} \frac{1}{2^n}$.

Consider flipping a fair coin *n* times independently, head gives 1, tail gives zero. How many 1s? Binomial distribution: k w.p. $\binom{n}{k} \frac{1}{2^n}$.

Consider flipping a fair coin *n* times independently, head gives 1, tail gives zero. How many 1s? Binomial distribution: k w.p. $\binom{n}{k} \frac{1}{2^n}$.

Consider flipping a fair coin *n* times independently, head gives 1, tail gives zero. How many 1s? Binomial distribution: k w.p. $\binom{n}{k} \frac{1}{2^n}$.

This is known as **concentration of mass**. This is a very special case of the **law of large numbers**.

Informal statement of law of large numbers

For n large enough, the middle portion of the binomial distribution looks like (converges to) the normal/Gaussian distribution.

Intuitive conclusion

Randomized algorithm are unpredictable in the tactical level, but very predictable in the strategic level.

Intuitive conclusion

Randomized algorithm are unpredictable in the tactical level, but very predictable in the strategic level.

Use of well known inequalities in analysis.

Analysis

 Random variable Q = #comparisons made by randomized QuickSort on an array of n elements.

Analysis

- Random variable Q = #comparisons made by randomized QuickSort on an array of n elements.
- Suppose $\Pr[Q \ge 10 n lgn] \le c$. Also we know that $Q \le n^2$.

Analysis

- Random variable Q = #comparisons made by randomized QuickSort on an array of n elements.
- Suppose $\Pr[Q \ge 10 n lgn] \le c$. Also we know that $Q \le n^2$.
- $E[Q] \le (10n \log n)(1-c) + n^2 c$

Analysis

- Random variable Q = #comparisons made by randomized QuickSort on an array of n elements.
- Suppose $\Pr[Q \ge 10 n lgn] \le c$. Also we know that $Q \le n^2$.
- $E[Q] \le (10n \log n)(1-c) + n^2 c$

Question:

How to find c, or in other words bound $\Pr[Q \ge 10n \log n]$?

Markov's Inequality

Markov's inequality

Let X be a **non-negative** random variable over a probability space (Ω, \Pr) . For any a > 0,

$$\Pr[X \ge a] \le \frac{\mathsf{E}[X]}{a}$$

Markov's Inequality

Markov's inequality

Let X be a **non-negative** random variable over a probability space (Ω, \Pr) . For any a > 0,

$$\Pr[X \ge a] \le \frac{\mathsf{E}[X]}{a}$$

Proof:

$$E[X] = \sum_{\omega \in \Omega} X(\omega) \Pr[\omega]$$

$$\geq \sum_{\omega \in \Omega, \ X(\omega) \geq a} X(\omega) \Pr[\omega]$$

$$\geq a \sum_{\omega \in \Omega, \ X(\omega) \geq a} \Pr[\omega]$$

$$= a \Pr[X \geq a]$$

Markov's Inequality: Proof by Picture

- *n* black and white balls in a bin.
- We wish to estimate the fraction of black balls. Lets say it is p^* .

- *n* black and white balls in a bin.
- We wish to estimate the fraction of black balls. Lets say it is *p**.
- An approach: Draw k balls with replacement. If B are black then output $p = \frac{B}{k}$.

- *n* black and white balls in a bin.
- We wish to estimate the fraction of black balls. Lets say it is *p**.
- An approach: Draw k balls with replacement. If B are black then output $p = \frac{B}{k}$.

Question

How large k needs to be before our estimated value p is close to p^* ?

A rough estimate through Markov's inequality.

Lemma

For any $k \geq 1$ and p = B/k, $\Pr[p \geq 2p^*] \leq \frac{1}{2}$

A rough estimate through Markov's inequality.

Lemma

```
For any k \geq 1 and p = {}^B/k, \Pr[p \geq 2p^*] \leq \frac{1}{2}
```

Proof.

- For each 1 ≤ i ≤ k define random variable X_i, which is 1 if ith ball is black, otherwise 0.
- $E[X_i] = Pr[X_i = 1] = p^*$.

Example: Balls in a bin

A rough estimate through Markov's inequality.

Lemma

```
For any k \geq 1 and p = {}^B/k, \Pr[p \geq 2p^*] \leq \frac{1}{2}
```

Proof.

- For each 1 ≤ i ≤ k define random variable X_i, which is 1 if ith ball is black, otherwise 0.
- $E[X_i] = Pr[X_i = 1] = p^*$.
- $B = \sum_{i=1}^{k} X_i$, then $E[B] = \sum_{i=1}^{k} E[X_i] = kp^*$.

Example: Balls in a bin

A rough estimate through Markov's inequality.

Lemma

For any
$$k\geq 1$$
 and $p={}^{B}\!/{}_{k},$ $\Pr[p\geq 2p^{*}]\leq rac{1}{2}$

Proof.

- For each 1 ≤ i ≤ k define random variable X_i, which is 1 if ith ball is black, otherwise 0.
- $E[X_i] = Pr[X_i = 1] = p^*$.
- $B = \sum_{i=1}^{k} X_i$, then $E[B] = \sum_{i=1}^{k} E[X_i] = kp^*$.
- Markov's inequality gives, $\Pr[p \ge 2p^*] =$

$$\Pr\left[\frac{B}{k} \ge 2p^*\right] = \Pr[B \ge 2kp^*] = \Pr[B \ge 2\operatorname{E}[B]] \le \frac{1}{2}$$

Variance

Given a random variable X over probability space (Ω, Pr) , variance of X is the measure of how much does it deviate from its mean value. Formally, $Var(X) = E[(X - E[X])^2] = E[X^2] - E[X]^2$

Variance

Given a random variable X over probability space (Ω, Pr) , variance of X is the measure of how much does it deviate from its mean value. Formally, $Var(X) = E[(X - E[X])^2] = E[X^2] - E[X]^2$

Intuitive Derivation

Define $Y = (X - E[X])^2 = X^2 - 2X E[X] + E[X]^2$.

Variance

Given a random variable X over probability space (Ω, Pr) , variance of X is the measure of how much does it deviate from its mean value. Formally, $Var(X) = E[(X - E[X])^2] = E[X^2] - E[X]^2$

Intuitive Derivation

Define
$$Y = (X - E[X])^2 = X^2 - 2X E[X] + E[X]^2$$
.

$$Var(X) = E[Y] = E[X^{2}] - 2 E[X] E[X] + E[X]^{2} = E[X^{2}] - E[X]^{2}$$

Independence

Random variables X and Y are called mutually independent if $\forall x, y \in \mathbb{R}, \ \Pr[X = x \land Y = y] = \Pr[X = x] \Pr[Y = y]$

Lemma

If X and Y are independent random variables then Var(X + Y) = Var(X) + Var(Y).

Independence

Random variables X and Y are called mutually independent if $\forall x, y \in \mathbb{R}, \ \Pr[X = x \land Y = y] = \Pr[X = x] \Pr[Y = y]$

Lemma

If X and Y are independent random variables then Var(X + Y) = Var(X) + Var(Y).

Lemma

If X and Y are mutually independent, then E[XY] = E[X] E[Y].

Chebyshev's Inequality

Chebyshev's Inequality

Given $a \ge 0$, $\Pr[|X - E[X]| \ge a] \le \frac{Var(X)}{a^2}$

Chebyshev's Inequality

Chebyshev's Inequality

Given
$$a \ge 0$$
, $\Pr[|X - E[X]| \ge a] \le \frac{Var(X)}{a^2}$

Proof.

 $Y = (X - E[X])^2$ is a non-negative random variable. Apply Markov's Inequality to Y for a^2 .

$\begin{aligned} \mathsf{Pr}\big[Y \geq a^2\big] \leq \mathsf{E}^{[Y]}/a^2 & \Leftrightarrow \quad \mathsf{Pr}\big[(X - \mathsf{E}[X])^2 \geq a^2\big] \leq \frac{\mathsf{Var}(X)}{a^2} \\ & \Leftrightarrow \quad \mathsf{Pr}\big[|X - \mathsf{E}[X]| \geq a\big] \leq \frac{\mathsf{Var}(X)}{a^2} \end{aligned}$

Chebyshev's Inequality

Chebyshev's Inequality

Given
$$a \ge 0$$
, $\Pr[|X - E[X]| \ge a] \le \frac{Var(X)}{a^2}$

Proof.

 $Y = (X - E[X])^2$ is a non-negative random variable. Apply Markov's Inequality to Y for a^2 .

 $\begin{aligned} \mathsf{Pr}\big[Y \geq a^2\big] \leq \mathsf{E}^{[Y]}/_{a^2} & \Leftrightarrow \quad \mathsf{Pr}\big[(X - \mathsf{E}[X])^2 \geq a^2\big] \leq \frac{\mathsf{Var}(X)}{a^2} \\ & \Leftrightarrow \quad \mathsf{Pr}\big[|X - \mathsf{E}[X]| \geq a\big] \leq \frac{\mathsf{Var}(X)}{a^2} \end{aligned}$

$$\begin{aligned} &\mathsf{Pr}[X \leq \mathsf{E}[X] - a] \leq \frac{\operatorname{Var}(X)}{a^2} \text{ AND} \\ &\mathsf{Pr}[X \geq \mathsf{E}[X] + a] \leq \frac{\operatorname{Var}(X)}{a^2} \end{aligned}$$

Lemma

For
$$0 < \epsilon < 1$$
, $k \ge 1$ and $p = B/k$, $\Pr[|p - p^*| \ge \epsilon] \le 1/k\epsilon^2$.

Proof.

• Recall: X_i is 1 if i^{th} ball is black, else 0, $B = \sum_{i=1}^k X_i$. $E[X_i] = p^*$, $E[B] = kp^*$. $p = {}^B/k$.

Lemma

For
$$0 < \epsilon < 1$$
, $k \ge 1$ and $p = B/k$, $\Pr[|p - p^*| \ge \epsilon] \le 1/k\epsilon^2$.

Proof.

• Recall: X_i is 1 if i^{th} ball is black, else 0, $B = \sum_{i=1}^k X_i$. $E[X_i] = p^*$, $E[B] = kp^*$. $p = {}^B/k$.

Lemma

For
$$0 < \epsilon < 1$$
, $k \ge 1$ and $p = B/k$, $\Pr[|p - p^*| \ge \epsilon] \le 1/k\epsilon^2$.

Proof.

- Recall: X_i is 1 if i^{th} ball is black, else 0, $B = \sum_{i=1}^{k} X_i$. $E[X_i] = p^*$, $E[B] = kp^*$. p = B/k.
- $Var(B) = \sum_{i} Var(X_i) = kp^*(1 p^*)$ (Exercise)

Lemma

For
$$0 < \epsilon < 1$$
, $k \ge 1$ and $p = B/k$, $\Pr[|p - p^*| \ge \epsilon] \le 1/k\epsilon^2$.

Proof.

Recall: X_i is 1 if ith ball is black, else 0, B = ∑_{i=1}^k X_i. E[X_i] = p^{*}, E[B] = kp^{*}. p = ^B/k.
Var(B) = ∑_i Var(X_i) = kp^{*}(1 - p^{*}) (Exercise)

$$\Pr[|p - p^*| \ge \epsilon] = \Pr[|B/k - p^*| \ge \epsilon] \\ = \Pr[|B - kp^*| \ge k\epsilon]$$

Lemma

For
$$0 < \epsilon < 1$$
, $k \ge 1$ and $p = B/k$, $\Pr[|p - p^*| \ge \epsilon] \le 1/k\epsilon^2$.

Proof.

 Recall: X_i is 1 if ith ball is black, else 0, B = ∑_{i=1}^k X_i. E[X_i] = p*, E[B] = kp*. p = ^B/k.
 Var(B) = ∑_i Var(X_i) = kp*(1 - p*) (Exercise)

$$\begin{aligned} \Pr[|p - p^*| \ge \epsilon] &= \Pr[|B/k - p^*| \ge \epsilon] \\ &= \Pr[|B - kp^*| \ge k\epsilon] \\ (\text{Chebyshev}) &\le \frac{\operatorname{Var}(B)}{k^2 \epsilon^2} = \frac{kp^*(1 - p^*)}{k^2 \epsilon^2} \\ &< \frac{1}{k\epsilon^2} \end{aligned}$$

Lemma

Let X_1, \ldots, X_k be k independent binary random variables such that, for each $i \in [1, k]$, X_i equals 1 w.p. p_i , and 0 w.p. $(1 - p_i)$.

Lemma

Let X_1, \ldots, X_k be k independent binary random variables such that, for each $i \in [1, k]$, X_i equals 1 w.p. p_i , and 0 w.p. $(1 - p_i)$. Let $X = \sum_{i=1}^k X_i$ and $\mu = \mathbf{E}[X] = \sum_i p_i$.

Lemma

Let X_1, \ldots, X_k be k independent binary random variables such that, for each $i \in [1, k]$, X_i equals 1 w.p. p_i , and 0 w.p. $(1 - p_i)$. Let $X = \sum_{i=1}^k X_i$ and $\mu = \mathbf{E}[X] = \sum_i p_i$.

For any $0 < \delta < 1$, it holds that:

$$\Pr[|X - \mu| \ge \delta\mu] \le 2e^{rac{-\delta^2\mu}{3}}$$

Lemma

Let X_1, \ldots, X_k be k independent binary random variables such that, for each $i \in [1, k]$, X_i equals 1 w.p. p_i , and 0 w.p. $(1 - p_i)$. Let $X = \sum_{i=1}^k X_i$ and $\mu = \mathbf{E}[X] = \sum_i p_i$.

For any $0 < \delta < 1$, it holds that:

$$\mathsf{Pr}[|m{X}-\mu|\geq\delta\mu]\leq 2e^{rac{-\delta^{2}\mu}{3}}$$

 $\Pr[X \ge (1+\delta)\mu] \le e^{rac{-\delta^2\mu}{3}}$ and $\Pr[X \le (1-\delta)\mu] \le e^{rac{-\delta^2\mu}{2}}$

Lemma

Let X_1, \ldots, X_k be k independent binary random variables such that, for each $i \in [1, k]$, X_i equals 1 w.p. p_i , and 0 w.p. $(1 - p_i)$. Let $X = \sum_{i=1}^k X_i$ and $\mu = \mathbf{E}[X] = \sum_i p_i$.

For any $0 < \delta < 1$, it holds that:

$$\mathsf{Pr}[|m{X}-\mu|\geq\delta\mu]\leq 2e^{rac{-\delta^{2}\mu}{3}}$$

 $\mathsf{Pr}[X \geq (1+\delta)\mu] \leq e^{rac{-\delta^2\mu}{3}}$ and $\mathsf{Pr}[X \leq (1-\delta)\mu] \leq e^{rac{-\delta^2\mu}{2}}$

Proof.

In notes!

Lemma

For any
$$0<\epsilon<1$$
, and $k\geq 1$, $\mathsf{Pr}[|p-p^*|\geq\epsilon]\leq 2e^{-rac{k\epsilon^2}{3}}$

Proof.

Recall: X_i is 1 is i^{th} ball is black, else 0. $B = \sum_{i=1}^{k} X_i$. $E[X_i] = p^*$, $E[B] = kp^*$. p = B/k. 2

Lemma

For any
$$0<\epsilon<1$$
, and $k\geq 1$, $\mathsf{Pr}[|p-p^*|\geq\epsilon]\leq 2e^{-rac{k\epsilon^2}{3}}$

Proof.

Recall: X_i is 1 is i^{th} ball is black, else 0. $B = \sum_{i=1}^{k} X_i$. $E[X_i] = p^*$, $E[B] = kp^*$. p = B/k. $Pr[|p - p^*| \ge \epsilon] = Pr[|\frac{B}{k} - p^*| \ge \epsilon]$ $= Pr[|B - kp^*| \ge k\epsilon]$ $= Pr[|B - kp^*| \ge (\frac{\epsilon}{p^*})kp^*]$

2

Lemma

For any
$$0<\epsilon<1$$
, and $k\geq 1$, $\mathsf{Pr}[|p-p^*|\geq\epsilon]\leq 2e^{-rac{k\epsilon^2}{3}}$.

Proof.

Recall: X_i is **1** is i^{th} ball is black, else **0**. $B = \sum_{i=1}^{k} X_i$. $E[X_i] = p^*$, $E[B] = kp^*$. p = B/k. $\Pr[|p - p^*| \ge \epsilon] = \Pr[|\frac{B}{k} - p^*| \ge \epsilon]$ $= \Pr[|B - kp^*| > k\epsilon]$ $= \Pr\left[|B - kp^*| \ge \left(\frac{\epsilon}{p^*}\right)kp^*\right]$ (Chernoff) $\leq 2e^{-\frac{\epsilon^2}{3p^{*2}}kp^*} = 2e^{-\frac{k\epsilon^2}{3p^*}}$ $(p^* < 1) < 2e^{-\frac{k\epsilon^2}{3}}$

2

Example Summary

The problem was to estimate the fraction of black balls p^* in a bin filled with white and black balls. Our estimate was $p = \frac{B}{k}$ instead, where out of k draws (with replacement) B balls turns out black.

Markov's Inequality

For any $k \geq 1$, $\Pr[p \geq 2p^*] \leq \frac{1}{2}$

Chebyshev's Inequality

For any $0 < \epsilon < 1$, and $k \ge 1$, $\Pr[|p - p^*| \ge \epsilon] \le 1/k\epsilon^2$.

Chernoff Bound

For any $0 < \epsilon < 1$, and $k \ge 1$, $\Pr[|p - p^*| \ge \epsilon] \le 2e^{-\frac{k\epsilon^2}{3}}$.

Part IV

Randomized QuickSort (Contd.)

Randomized QuickSort: Recall

Input: Array A of n numbers. Output: Numbers in sorted order.

Randomized QuickSort

- **1** Pick a pivot element *uniformly at random* from **A**.
- Split array into 3 subarrays: those smaller than pivot, those larger than pivot, and the pivot itself.
- In the subarrays, and concatenate them.

Note: On *every* input randomized **QuickSort** takes $O(n \log n)$ time in expectation. On *every* input it may take $\Omega(n^2)$ time with some small probability.

Randomized QuickSort: Recall

Input: Array A of n numbers. Output: Numbers in sorted order.

Randomized QuickSort

- **1** Pick a pivot element *uniformly at random* from **A**.
- Split array into 3 subarrays: those smaller than pivot, those larger than pivot, and the pivot itself.
- Secursively sort the subarrays, and concatenate them.

Note: On *every* input randomized **QuickSort** takes $O(n \log n)$ time in expectation. On *every* input it may take $\Omega(n^2)$ time with some small probability.

Question: With what probability it takes $O(n \log n)$ time?

Informal Statement

Random variable Q(A) = # comparisons done by the algorithm.

We will show that $\Pr[Q(A) \leq 32n \ln n] \geq 1 - 1/n^3$.

Informal Statement

Random variable Q(A) = # comparisons done by the algorithm.

We will show that $\Pr[Q(A) \leq 32n \ln n] \geq 1 - 1/n^3$.

If n = 100 then this gives $\Pr[Q(A) \le 32n \ln n] \ge 0.999999$.

Informal Statement

Random variable Q(A) = # comparisons done by the algorithm.

We will show that $\Pr[Q(A) \leq 32n \ln n] \geq 1 - \frac{1}{n^3}$.

Outline of the proof

• k: depth of the recursion. Then $Q(A) \leq kn$.

Informal Statement

Random variable Q(A) = # comparisons done by the algorithm.

We will show that $\Pr[Q(A) \leq 32n \ln n] \geq 1 - \frac{1}{n^3}$.

- k: depth of the recursion. Then $Q(A) \leq kn$.
- Prove that $k \leq 32 \ln n$ with high probability. Which will imply the result.

Informal Statement

Random variable Q(A) = # comparisons done by the algorithm.

We will show that $\Pr[Q(A) \leq 32n \ln n] \geq 1 - \frac{1}{n^3}$.

- k: depth of the recursion. Then $Q(A) \leq kn$.
- Prove that $k \leq 32 \ln n$ with high probability. Which will imply the result.
 - Focus on a single element. Prove that it "participates" in $> 32 \ln n$ levels with probability at most $1/n^4$.
 - By union bound, any of the *n* elements participates in
 > 32 ln *n* levels with probability at most

Informal Statement

Random variable Q(A) = # comparisons done by the algorithm.

We will show that $\Pr[Q(A) \leq 32n \ln n] \geq 1 - \frac{1}{n^3}$.

- k: depth of the recursion. Then $Q(A) \leq kn$.
- Prove that $k \leq 32 \ln n$ with high probability. Which will imply the result.
 - Focus on a single element. Prove that it "participates" in $> 32 \ln n$ levels with probability at most $1/n^4$.
 - Sy union bound, any of the *n* elements participates in > 32 ln *n* levels with probability at most $1/n^3$.

Informal Statement

Random variable Q(A) = # comparisons done by the algorithm.

We will show that $\Pr[Q(A) \leq 32n \ln n] \geq 1 - \frac{1}{n^3}$.

- k: depth of the recursion. Then $Q(A) \leq kn$.
- Prove that $k \leq 32 \ln n$ with high probability. Which will imply the result.
 - Focus on a single element. Prove that it "participates" in $> 32 \ln n$ levels with probability at most $1/n^4$.
 - Sy union bound, any of the *n* elements participates in > 32 ln *n* levels with probability at most $1/n^3$.
 - 3 Therefore, all elements participate in $\leq 32 \ln n$ w.p. $(1 1/n^3)$.

• If *k* levels of recursion then *kn* comparisons.

- If k levels of recursion then kn comparisons.
- Fix an element $s \in A$. We will track it at each level.
- Let S_i be the partition containing s at i^{th} level.
- $S_1 = A$ and $S_k = \{s\}$.

Randomized QuickSort: High Probability Analysis

- If k levels of recursion then kn comparisons.
- Fix an element $s \in A$. We will track it at each level.
- Let S_i be the partition containing s at i^{th} level.
- $S_1 = A$ and $S_k = \{s\}$.
- We call s lucky in i^{th} iteration, if balanced split: $|S_{i+1}| \leq (3/4)|S_i|$ and $|S_i \setminus S_{i+1}| \leq (3/4)|S_i|$.

Randomized QuickSort: High Probability Analysis

- If k levels of recursion then kn comparisons.
- Fix an element $s \in A$. We will track it at each level.
- Let S_i be the partition containing s at i^{th} level.
- $S_1 = A$ and $S_k = \{s\}$.
- We call s lucky in i^{th} iteration, if balanced split: $|S_{i+1}| \leq (3/4)|S_i|$ and $|S_i \setminus S_{i+1}| \leq (3/4)|S_i|$.
- If $\rho = \#$ lucky rounds in first k rounds, then $|S_k| \leq (3/4)^{\rho} n$.

Randomized QuickSort: High Probability Analysis

- If *k* levels of recursion then *kn* comparisons.
- Fix an element $s \in A$. We will track it at each level.
- Let S_i be the partition containing s at i^{th} level.
- $S_1 = A$ and $S_k = \{s\}$.
- We call s lucky in i^{th} iteration, if balanced split: $|S_{i+1}| \leq (3/4)|S_i|$ and $|S_i \setminus S_{i+1}| \leq (3/4)|S_i|$.
- If $\rho = \#$ lucky rounds in first k rounds, then $|S_k| \leq (3/4)^{\rho} n$.
- For $|S_k| = 1$, $\rho = \log_{4/3} n \le 4 \ln n$ suffices.

s lucky in round i if $|S_{i+1}| \leq (3/4)|S_i|$ and $|S_i \setminus S_{i+1}| \leq (3/4)|S_i|$

- s lucky in round i if $|S_{i+1}| \leq (3/4)|S_i|$ and $|S_i \setminus S_{i+1}| \leq (3/4)|S_i|$
 - $X_i = 1$ if s is lucky in i^{th} round.

- s lucky in round i if $|S_{i+1}| \leq (3/4)|S_i|$ and $|S_i \setminus S_{i+1}| \leq (3/4)|S_i|$
 - $X_i = 1$ if s is lucky in i^{th} round.
 - **Observation:** X_1, \ldots, X_k are independent variables.
 - $\Pr[X_i = 1] = \frac{1}{2}$ Why?

- s lucky in round i if $|S_{i+1}| \leq (3/4)|S_i|$ and $|S_i \setminus S_{i+1}| \leq (3/4)|S_i|$
 - $X_i = 1$ if s is lucky in i^{th} round.
 - **Observation:** X_1, \ldots, X_k are independent variables.
 - $\Pr[X_i = 1] = \frac{1}{2}$ Why?
 - Clearly, $\rho = \sum_{i=1}^{k} X_i$. Let $\mu = \mathbf{E}[\rho] = \frac{k}{2}$.

- s lucky in round i if $|S_{i+1}| \leq (3/4)|S_i|$ and $|S_i \setminus S_{i+1}| \leq (3/4)|S_i|$
 - $X_i = 1$ if s is lucky in i^{th} round.
 - **Observation:** X_1, \ldots, X_k are independent variables.
 - $\Pr[X_i = 1] = \frac{1}{2}$ Why?
 - Clearly, $\rho = \sum_{i=1}^{k} X_i$. Let $\mu = \mathbf{E}[\rho] = \frac{k}{2}$.
 - Set $k = 32 \ln n$ and $\delta = \frac{3}{4}$. $(1 \delta) = \frac{1}{4}$.

- s lucky in round i if $|S_{i+1}| \leq (3/4)|S_i|$ and $|S_i \setminus S_{i+1}| \leq (3/4)|S_i|$
 - $X_i = 1$ if s is lucky in i^{th} round.
 - **Observation:** X_1, \ldots, X_k are independent variables.
 - $\Pr[X_i = 1] = \frac{1}{2}$ Why?
 - Clearly, $\rho = \sum_{i=1}^{k} X_i$. Let $\mu = \mathbf{E}[\rho] = \frac{k}{2}$.
 - Set $k = 32 \ln n$ and $\delta = \frac{3}{4}$. $(1 \delta) = \frac{1}{4}$.

Probability of NOT getting $4 \ln n$ lucky rounds out of $32 \ln n$ rounds

- s lucky in round i if $|S_{i+1}| \leq (3/4)|S_i|$ and $|S_i \setminus S_{i+1}| \leq (3/4)|S_i|$
 - $X_i = 1$ if s is lucky in i^{th} round.
 - **Observation:** X_1, \ldots, X_k are independent variables.
 - $\Pr[X_i = 1] = \frac{1}{2}$ Why?
 - Clearly, $\rho = \sum_{i=1}^{k} X_i$. Let $\mu = \mathbf{E}[\rho] = \frac{k}{2}$.
 - Set $k = 32 \ln n$ and $\delta = \frac{3}{4}$. $(1 \delta) = \frac{1}{4}$.

Probability of NOT getting $4 \ln n$ lucky rounds out of $32 \ln n$ rounds

$$\begin{aligned} \Pr[\rho \leq 4 \ln n] &= \Pr[\rho \leq \frac{k}{8}] \\ &= \Pr[\rho \leq (1 - \delta)\mu] \end{aligned}$$

- s lucky in round i if $|S_{i+1}| \leq (3/4)|S_i|$ and $|S_i \setminus S_{i+1}| \leq (3/4)|S_i|$
 - $X_i = 1$ if s is lucky in i^{th} round.
 - **Observation:** X_1, \ldots, X_k are independent variables.
 - $\Pr[X_i = 1] = \frac{1}{2}$ Why?
 - Clearly, $\rho = \sum_{i=1}^{k} X_i$. Let $\mu = \mathbf{E}[\rho] = \frac{k}{2}$.
 - Set $k = 32 \ln n$ and $\delta = \frac{3}{4}$. $(1 \delta) = \frac{1}{4}$.

Probability of NOT getting $4 \ln n$ lucky rounds out of $32 \ln n$ rounds

$$\begin{aligned} \Pr[\rho \le 4 \ln n] &= \Pr[\rho \le \frac{k}{8}] \\ &= \Pr[\rho \le (1 - \delta)\mu] \\ (Chernoff) &\le 2e^{\frac{-\delta^2 \mu}{2}} = 2e^{-\frac{9k}{64}} \\ &= 2e^{-4.5 \ln n} \le \frac{1}{n^4} \end{aligned}$$

• n input elements. Probability that there is some un-lucky element is at most $\frac{1}{n^4} * n = \frac{1}{n^3}$.

- n input elements. Probability that there is some un-lucky element is at most $\frac{1}{n^4} * n = \frac{1}{n^3}$.
- **Pr**[depth of recursion in **QuickSort** > 32 ln n] $\leq \frac{1}{n^3}$.

- n input elements. Probability that there is some un-lucky element is at most $\frac{1}{n^4} * n = \frac{1}{n^3}$.
- **Pr**[depth of recursion in **QuickSort** > 32 ln n] $\leq \frac{1}{n^3}$.

Theorem

With high probability (i.e., $1 - \frac{1}{n^3}$) the depth of the recursion of **QuickSort** is $\leq 32 \ln n$. Due to *n* comparisons in each level, with high probability, the running time of **QuickSort** is $O(n \ln n)$.

- n input elements. Probability that there is some un-lucky element is at most $\frac{1}{n^4} * n = \frac{1}{n^3}$.
- **Pr**[depth of recursion in **QuickSort** > 32 ln n] $\leq \frac{1}{n^3}$.

Theorem

With high probability (i.e., $1 - \frac{1}{n^3}$) the depth of the recursion of **QuickSort** is $\leq 32 \ln n$. Due to *n* comparisons in each level, with high probability, the running time of **QuickSort** is $O(n \ln n)$.

Q: How to increase the probability?