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Recall: Randomized QuickSort

Randomized QuickSort

@ Pick a pivot element uniformly at random from the array.

@ Split array into 3 subarrays: those smaller than pivot, those
larger than pivot, and the pivot itself.

© Recursively sort the subarrays, and concatenate them.

Expected running time of Randomized QuickSort on an array of size
n is O(nlog n).
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Analysis via Recurrence

@ A: Given array with n distinct numbers.

@ Q(A) : number of comparisons of randomized QuickSort on A.
Note that Q(A) is a random variable.

© X;: Random variable indicating if picked pivot has rank i in A.
Ai

o and Aiight be the corresponding left and right subarrays.

Q) = n+ 3" % QAL + Q(A))

Exactly one non-zero X;. E[X;] = Pr[pivot has rank i] = 1/n.

Ruta (UIUC) CS473 6 Spring 2021 6 /42



Independence of Random Variables

Lemma
Random variables X; is independent of random variables Q(Ai_.) as
well as Q(Ai,.ght), i.e.

r

E[X' ' Q(A;.eft)
E [Xi ’ Q(A’right)

= E[X/] E
= E[X/] E

Q(A;.eft)]
QA

This is because the algorithm, while recursing on Q(A/ ) and
Q(Aiight) uses new random coin tosses that are independent of the
coin tosses used to decide the first pivot. Only the latter decides

value of X;. ]
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Analysis via Recurrence

T (n) = maxa; a=n E[Q(A)] be the worst-case expected running
time on arrays of size n.

We have, for any A:

Q(A) =n+ i Xi (Q(Alieft) + Q(Aiight)>
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Analysis via Recurrence

T (n) = maxa; a=n E[Q(A)] be the worst-case expected running
time on arrays of size n.

We have, for any A:
QA) = n+ > X (Q(AL) + QAl,))
i=1

By linearity of expectation, and independence random variables:

E[Q(A)] = n+ 37 Elxl(E[@AL)] +E[@A,)])
< XL TG =)+ T(n—1)

i=1 n
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Analysis via Recurrence

T (n) = maxa; a=n E[Q(A)] be the worst-case expected running
time on arrays of size n.
We derived:

1 : :
E[Q(A)} <n+ > (TG -1+ T(n—1i).
i1 1
Note that above holds for any A of size n. Therefore

T(n) = max_ E[Q(A)] <
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Analysis via Recurrence

T (n) = maxa; a=n E[Q(A)] be the worst-case expected running
time on arrays of size n.
We derived:

1 : :
E[Q(A)} <n+ > (TG -1+ T(n—1i).
i1 1
Note that above holds for any A of size n. Therefore

T(n) = Ar:lr}ﬁ\;(n E[Q(A)] < n+ Z % (TG —1)4+T(n—1)).
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Solving the Recurrence

T(n)§n+Z%(T(i—1)+T(n—i))

with base case T(1) = 0.

T(n) = O(nlog n). \
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Solving the Recurrence

T(n)§n+Z%(T(i—1)+T(n—i))

with base case T(1) = 0.

T(n) = O(nlog n). \

(Guess and) Verify by induction.

Ruta (UIUC) CS473 10 Spring 2021 10 / 42



Part 1l

Slick analysis of QuickSort
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A Slick Analysis of QuickSort

Q(A) : number of comparisons done on input array A

© Rank of an element is its position in the sorted A.

@ Rj : event that rank i element is compared with rank j element,
for1 <i<j<n.
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A Slick Analysis of QuickSort

Q(A) : number of comparisons done on input array A

© Rank of an element is its position in the sorted A.

@ Rj : event that rank i element is compared with rank j element,
for1 <i<j<n.

@ Xj : the indicator random variable for Rj;. That is, X; = 1 if
rank i is compared with rank j element, otherwise 0.
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A Slick Analysis of QuickSort

Q(A) : number of comparisons done on input array A

© Rank of an element is its position in the sorted A.

@ Rj : event that rank i element is compared with rank j element,
for1 <i<j<n.

@ Xj : the indicator random variable for Rj;. That is, X; = 1 if
rank i is compared with rank j element, otherwise 0.

QA= > X;

1<i<j<n

and hence by linearity of expectation,

o= > efx= 5 e,

1<i<j<n 1<i<j<n
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A Slick Analysis of QuickSort

R;;j = rank i element is compared with rank j element.

Question: What is Pr[R;]?
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A Slick Analysis of QuickSort

R;;j = rank i element is compared with rank j element.

Question: What is Pr[R;]?
[7[5]9]1]3[4]8]6]
With ranks: 6 4 8 1 2 3 7 5
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A Slick Analysis of QuickSort

R;;j = rank i element is compared with rank j element.

Question: What is Pr[R;]?
[715]9]1]3]4]8]6]

Withranks: 6 4 8 1 2 3 7 5

As such, probability of comparing 5 to 8 is Pr[Ry 7].
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A Slick Analysis of QuickSort

R;;j = rank i element is compared with rank j element.

Question: What is Pr[R;]?
[7[5]9]1]3[4]8]6]
With ranks: 6 4 8 1 2 3 7 5

© If pivot too small (say 3 [rank 2]). Partition and call recursively:

(71519]113141816]| _ [[T[B][7T[5]9]4]3]6]

Decision if to compare 5 to 8 is moved to subproblem.

Ruta (UIUC) Cs473 13 Spring 2021 13 / 42



A Slick Analysis of QuickSort

R;;j = rank i element is compared with rank j element.

Question: What is Pr[R;]?
[7[5]9]1]3[4]8]6]
With ranks: 6 4 8 1 2 3 7 5

@ If pivot too small (say 3 [rank 2]). Partition and call recursively:

(71519]113141816]| _ [[T[B][7T[5]9]4]3]6]

Decision if to compare 5 to 8 is moved to subproblem.
@ |If pivot too large (say 9 [rank 8]):

(71519]1]3[4[8]6] _ |[7]5]1[3[4]8]6][9]

Decision if to compare 5 to 8 moved to subproblem.
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A Slick Analysis of QuickSort

Question: What is Pr[R;;]?

[7]5]9[1[3[4]8]6]
64812375

[71519]1[3]4[8]6]

Ruta (UIUC)

As such, probability of com-
paring 5 to 8 is Pr[Rs7].

© If pivot is 5 (rank 4). Bingo!

=

1[3[4][5][7]9]8]6]

Spring 2021




A Slick Analysis of QuickSort

Question: What is Pr[R;;]?

1715]9]1]3]4]8]6] As such, probability of com-
6 4812375 paring 5 to 8 is Pr[Rs7].

Q If pivot is 5 (rank 4). Bingo!
[71519]1[3]4[8]6]

=

@ If pivot is 8 (rank 7). Bingo
[7[5]9[1[3]4[8]6]
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[7[5[1[3[4]6][8][9]
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A Slick Analysis of QuickSort

Question: What is Pr[R;;]?

‘7|5|9|1|3|4|8|6‘ As such, probability of com-
6 481 2 3 7 5 paring 5 to 8 is Pr[Ry7].
@ If pivot is 5 (rank 4). Bingo!

[7I519[1[3[4]8]6] _ [[T[3[4][5][7[9]3]6]
@ If pivot is 8 (rank 7). Bingo
(7[5]91113[41816] _ [[7[5]1][3]4]6][8][9]

@ If pivot in between the two numbers (say 6 [rank 5]):

[7[51911[3[4[8161|__ [511[3[4][6][7[3]9]

5 and 8 will never be compared to each other.
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A Slick Analysis of QuickSort

Question: What is Pr[R;;]?

R ; happens if and only if:
ith or jth ranked element is the first pivot out of
ith to jth ranked elements.

Pr[R; ;] = Pr[ith or jth ranked element is the pivot |
pivot has rank in {i,i+1...,j —1,j}]
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A Slick Analysis of QuickSort

Question: What is Pr[R;;]?

R ; happens if and only if:
ith or jth ranked element is the first pivot out of
ith to jth ranked elements.

Pr[R; ;] = Pr[ith or jth ranked element is the pivot |
pivot has rank in {i,i+1...,j —1,j}]

There are k = j — i + 1 relevant elements.
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A Slick Analysis of QuickSort

Question: What is Pr[R;;]?

R ; happens if and only if:
ith or jth ranked element is the first pivot out of
ith to jth ranked elements.

Pr[R; ;] = Pr[ith or jth ranked element is the pivot |
pivot has rank in {i,i+1...,j —1,j}]

There are k = j — i + 1 relevant elements.

2 2
PriRu) = =t
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A Slick Analysis of QuickSort

Question: What is Pr[R;]?

= i
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A Slick Analysis of QuickSort

Question: What is Pr[R;]?

Lemma

Proof.

Let ai,...,4aiy...,4j,...,an be elements of A in sorted order.
Let S = {a,-, Aiglyesoy aj}

4
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A Slick Analysis of QuickSort

Question: What is Pr[R;]?

Lemma

Pr|R;| = 2

Proof.

Let ai,...,4aiy...,4j,...,an be elements of A in sorted order.
Let S = {a,-, Aiglyesoy aj}

Observation: If pivot is chosen outside S then all of S either in left
array or right array.

4
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A Slick Analysis of QuickSort

Question: What is Pr[R;]?

Lemma

Pr|R;| = 2

Proof.

Let ai,...,4aiy...,4j,...,an be elements of A in sorted order.
Let S = {a,-, Aiglyesoy aj}

Observation: If pivot is chosen outside S then all of S either in left
array or right array.

Observation: a; and a; separated when a pivot is chosen from S for
the first time. Once separated no comparison.

4
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A Slick Analysis of QuickSort

Question: What is Pr[R;]?

Lemma

Proof.

Let ai,...,4aiy...,4j,...,an be elements of A in sorted order.
Let S = {a,-, Aiglyesoy aj}

Observation: If pivot is chosen outside S then all of S either in left
array or right array.

Observation: a; and a; separated when a pivot is chosen from S for
the first time. Once separated no comparison.

Observation: a; is compared with a; if and only if either a; or a; is
chosen as a pivot from S at separation... ]

4
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A Slick Analysis of QuickSort

Continued...

Lemma

Pr[R,-j] = 2

| \

Proof.

Let a1,...,aiy...,aj,...,an be sort of A. Let

S ={ai,a141,...,3;}

Observation: a; is compared with a; if and only if either a; or a; is
chosen as a pivot from S at separation.

Observation: Given that pivot is chosen from S the probability that
it is a; or aj is exactly 2/|S| = 2/(j — i + 1) since the pivot is
chosen uniformly at random from the array. ]

v
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A Slick Analysis of QuickSort

Continued...

Elea) = 3 Exi= Y PrRy.

1<i<j<n 1<i<j<n

Pr[R;] = :+1 \
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A Slick Analysis of QuickSort

Continued...
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A Slick Analysis of QuickSort

Continued...
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A Slick Analysis of QuickSort

Continued...
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A Slick Analysis of QuickSort

Continued...

Pr[R;] = —:+1 \

E[Q(A)} Z Z]—l+1

i=1 j=i+1
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A Slick Analysis of QuickSort

Continued...

Pr[R;] = —:+1 \

E|Q(A)] —zz Z ,_,+1

i=1 j=i+1
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A Slick Analysis of QuickSort

Continued...
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A Slick Analysis of QuickSort

Continued...

PrRj] = =
n-1 n 1 n-1 n—itl
E[Q(a)] = 2;j§1j—i+1 = 2; Azzz =
=2,§(Hn—i+1_1) <2 ) H,
pat 1<i<n

Hie = >, = O(log k)
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A Slick Analysis of QuickSort

Continued...

Pr[R;] = T+1

[Q(A)}—zzz k) DI

i= 1, S~ i=1 A=
_ZZ(H,, ir1—1) < 2 Z H,
1<i<n

< 2nH, = O(nlog n)

He = Yk, 1 = O(log k)
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Inequalities
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Massive randomness.. Is not that random.

Consider flipping a fair coin n times independently, head gives 1, tail
gives zero. How many 1s? Binomial distribution: k w.p. (2)1/2".

0.5
0.4
= 03
<
=}
e
2 02
0.1
0
0 0.5 1 1.5 2

n=2
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Massive randomness.. Is not that random.

Consider flipping a fair coin n times independently, head gives 1, tail
gives zero. How many 1s? Binomial distribution: k w.p. (2)1/2".

0.4 ‘
0.35

03
0.25

02

probablity

0.15

0.1

0.05

n=4
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Massive randomness.. Is not that random.

Consider flipping a fair coin n times independently, head gives 1, tail
gives zero. How many 1s? Binomial distribution: k w.p. (2)1/2".

0.3 ‘

0.25

02

probablity
=)
>

o
=

0.05

n=_§
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Massive randomness.. Is not that random.

Consider flipping a fair coin n times independently, head gives 1, tail
gives zero. How many 1s? Binomial distribution: k w.p. (:)1/2".

02 ‘
0.18
0.16
0.14
0.12

0.1
0.08
0.06
0.04
0.02

probablity

n=16
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Massive randomness.. Is not that random.

Consider flipping a fair coin n times independently, head gives 1, tail
gives zero. How many 1s? Binomial distribution: k w.p. (:)1/2".

0.14

0.12

0.1

0.08

probablity

0.06

0.04

0.02

0 5 10 15 20 25 30

n=32
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Massive randomness.. Is not that random.

Consider flipping a fair coin n times independently, head gives 1, tail
gives zero. How many 1s? Binomial distribution: k w.p. (:)1/2".
0.1
0.09
0.08

0.07
0.06
0.05
0.04

probablity

0.03
0.02
0.01

0

0 10 20 30 40 50 60

n=64
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Massive randomness.. Is not that random.

Consider flipping a fair coin n times independently, head gives 1, tail

gives zero. How many 1s? Binomial distribution: k w.p. (:)1/2".

probablity

0.05

0.045 -
0.04 -
0.035 |~
0.03
0.025
0.02 |-
0.015
0.01
0.005 |~
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Massive randomness.. Is not that random.

Consider flipping a fair coin n times independently, head gives 1, tail

gives zero. How many 1s? Binomial distribution: k w.p. (:)1/2".

probablity

0.04

0.035

0.03 |-

0.025 —

002

0.015

001

0.005

Ruta (UIUC)
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200

n=>512
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400

500
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Massive randomness.. Is not that random.

Consider flipping a fair coin n times independently, head gives 1, tail
gives zero. How many 1s? Binomial distribution: k w.p. (:)1/2".

0.025 T
0.02 — |
> 0.015 —
<
)
2
a 0.01 -
0.005 |- |
0 | | | |
0 200 400 600 800 1000

n=1024
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Massive randomness.. Is not that random.

Consider flipping a fair coin n times independently, head gives 1, tail

gives zero. How many 1s? Binomial distribution: k w.p. (:)1/2".

probablity

0.018

0.016 |~
0.014 |~
0.012 |-

0.01 |~
0.008 —
0.006 —
0.004 |~

0.002

Ruta (UIUC)
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1000
n=2048
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Massive randomness.. Is not that random.

Consider flipping a fair coin n times independently, head gives 1, tail
gives zero. How many 1s? Binomial distribution: k w.p. (:)1/2".

0014 : :
0012 -
001 - i

0.008 - —

probablity

0.006 — —

0.004 — —

0.002 |~ —

0 | | | | |
0 500 1000 1500 2000 2500 3000 3500 4000

n = 4096
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Massive randomness.. Is not that random.

Consider flipping a fair coin n times independently, head gives 1, tail
gives zero. How many 1s? Binomial distribution: k w.p. (:)1/2".

0.009 ‘ ‘
0.008 - -
0.007 - .
0.006 .
0.005 - .

0.004 — —

probablity

0.003 — —

0.002 — -

0.001

0 | | | | |
0 1000 2000 3000 4000 5000 6000 7000 8000

n=_38192
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Massive randomness.. Is not that random.

0.009

0.008

0.007 —

0.006

0.005

0.004 —

probablity

0.003 —

0.002

0.001 -

0 ! w \ !
0 1000 2000 3000 4000 5000 6000 7000 8000

n=_8192

This is known as concentration of mass.
This is a very special case of the law of large numbers.
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Side note...

Law of large numbers (weakest form)...

Informal statement of law of large numbers

For n large enough, the middle portion of the binomial distribution
looks like (converges to) the normal/Gaussian distribution.

0.009
0.008
0.007
0.006

0.00s5

probabliy

0.004
0.003

0.002

0.001

o
3800 3850 3900 3950 4000 4050 4100 4150 4200
n = 8000
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Massive randomness.. Is not that random.

Intuitive conclusion

Randomized algorithm are unpredictable in the tactical level, but very
predictable in the strategic level.
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Massive randomness.. Is not that random.

Intuitive conclusion

Randomized algorithm are unpredictable in the tactical level, but very
predictable in the strategic level.

Use of well known inequalities in analysis. |
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Randomized QuickSort: A possible analysis

@ Random variable Q = #comparisons made by randomized
QuickSort on an array of n elements.
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Randomized QuickSort: A possible analysis

@ Random variable Q = #comparisons made by randomized
QuickSort on an array of n elements.

@ Suppose Pr[Q > 10nign] < c. Also we know that Q < n?.
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Randomized QuickSort: A possible analysis

@ Random variable Q = #comparisons made by randomized
QuickSort on an array of n elements.

@ Suppose Pr[Q > 10nign] < c. Also we know that Q < n?.
e E[Q] < (10nlog n)(1 — ¢) + n*c
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Randomized QuickSort: A possible analysis

@ Random variable Q = #comparisons made by randomized
QuickSort on an array of n elements.

@ Suppose Pr[Q > 10nign] < c. Also we know that Q < n?.
e E[Q] < (10nlog n)(1 — ¢) + n*c

How to find ¢, or in other words bound Pr[Q > 10nlog n]? \

Ruta (UIUC) Cs473 24 Spring 2021 24 / 42



Markov's Inequality

Markov's inequality

Let X be a non-negative random variable over a probability space
(2, Pr). For any a > 0,

E[X]

a

Pr[X > a] <
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Markov's Inequality

Markov's inequality

Let X be a non-negative random variable over a probability space
(2, Pr). For any a > 0,

Pr[X > a] < @

Proof:

E[X] 2 wea X(w) Prlv]

Zwefl, X(w)>a X((.«.J) Pr[w]
a Zweﬂ, X(w)>a Prlw]
aPr[X > a]

1V Iv Il

v
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Markov's Inequality: Proof by Picture
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Example: Balls in a bin

@ n black and white balls in a bin.
@ We wish to estimate the fraction of black balls. Lets say it is p*.
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Example: Balls in a bin

@ n black and white balls in a bin.
@ We wish to estimate the fraction of black balls. Lets say it is p*.

@ An approach: Draw k balls with replacement. If B are black

then output p = %

Ruta (UIUC) CS473 27 Spring 2021 27 / 42



Example: Balls in a bin

@ n black and white balls in a bin.
@ We wish to estimate the fraction of black balls. Lets say it is p*.

@ An approach: Draw k balls with replacement. If B are black
B

then output p = .

How large k needs to be before our estimated value p is close to p*? l
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Example: Balls in a bin

A rough estimate through Markov's inequality.

For any k > 1 and p = B/k, Pr[p > 2p*] < % \
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Example: Balls in a bin

A rough estimate through Markov's inequality.

Lemma

For any k > 1 and p = B/k, Pr[p > 2p*] < %

4

Proof.

@ For each 1 < i < k define random variable X;, which is 1 if it
ball is black, otherwise 0.

e E[Xi] = Pr[X; = 1] = p*.
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Example: Balls in a bin

A rough estimate through Markov's inequality.

Lemma

For any k > 1 and p = B/k, Pr[p > 2p*] < %

4

Proof.

@ For each 1 < i < k define random variable X;, which is 1 if it
ball is black, otherwise 0.

[+ E[X,] = Pr[X,- = 1] = p*
o B =%, X, then E[B] = >, E[Xi] = kp*.
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Example: Balls in a bin

A rough estimate through Markov's inequality.

Lemma

For any k > 1 and p = B/k, Pr[p > 2p*] < %

4

Proof.

@ For each 1 < i < k define random variable X;, which is 1 if it
ball is black, otherwise 0.

e E[Xi] = Pr[X; = 1] = p*.
o B =%, X, then E[B] = >, E[Xi] = kp*.
@ Markov's inequality gives, Pr[p > 2p*] =

B 1
Prh > 2p*} = Pr[B > 2kp"] = Pr[B > 2E[B]] < J
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Chebyshev's Inequality: Variance

Given a random variable X over probability space (€2, Pr), variance
of X is the measure of how much does it deviate from its mean

value. Formally, Var(X) = E[(X — E[X])?] = E[X?] — E[X]?
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Chebyshev's Inequality: Variance

Given a random variable X over probability space (€2, Pr), variance
of X is the measure of how much does it deviate from its mean
value. Formally, Var(X) = E[(X — E[X])?] = E[X?] — E[X]?

Intuitive Derivation
Define Y = (X — E[X])? = X2 — 2X E[X] + E[X]*.
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Chebyshev's Inequality: Variance

Given a random variable X over probability space (€2, Pr), variance
of X is the measure of how much does it deviate from its mean
value. Formally, Var(X) = E[(X — E[X])?] = E[X?] — E[X]?

Intuitive Derivation
Define Y = (X — E[X])? = X2 — 2X E[X] + E[X]*.

Var(X) = E[Y]
E[X?] — 2E[X]E[X] + E[X]*
= E[Xz} — E[)(]2
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Chebyshev's Inequality: Variance

Independence

Random variables X and Y are called mutually independent if
Vx,y €ER, Pr[IX =xAY =y] =Pr[X = x] Pr[Y = y]

Lemma

If X and Y are independent random variables then
Var(X 4+ Y) = Var(X) + Var(Y).
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Chebyshev's Inequality: Variance

Independence

Random variables X and Y are called mutually independent if
Vx,y €ER, Pr[IX =xAY =y] =Pr[X = x] Pr[Y = y]

Lemma

If X and Y are independent random variables then
Var(X 4+ Y) = Var(X) + Var(Y).

4

If X and Y are mutually independent, then E[XY] = E[X] E[Y]. \
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Chebyshev's Inequality

Chebyshev's Inequality
Given a > 0, Pr[|X — E[X]| > a] < Y X)
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Chebyshev's Inequality

Chebyshev's Inequality
Given a > 0, Pr[|X — E[X]| > a] < &)

a

4

Y = (X — E[X])? is a non-negative random variable. Apply
Markov's Inequality to Y for a2.

PrlY > a?] <&8Y/2 < Pr[(X — E[X])? > a?] < Var(X)/2
& Pr|X — E[X]| > a] < Ver(0)/2

O

.
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Chebyshev's Inequality

Chebyshev's Inequality
Given a > 0, Pr[|X — E[X]| > a] < Y X)

Proof.

Y = (X — E[X])? is a non-negative random variable. Apply
Markov's Inequality to Y for a2.

| A

PrlY > 2% <HYY2 < Pr[(X — E[X])? > a%] < Var(X)/2
& Pr|X —E[X]| 2 a] < VorX)/a

O

.

Pr[X < E[X] — a] < Var(X)/22 AND
Pr[X > E[X] + a] < Var(x)/2

y
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Example:Balls in a bin (contd)

For0 < e<1 k>1andp =8/, Pr[|p— p*| > €] < V/ke.

@ Recall: X;is 1 if it" ball is black, else 0, B = Zle X;.
E[Xi] = p*, E[B] = kp*. p = B/k.
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Example:Balls in a bin (contd)

For0 < e<1 k>1andp =8/, Pr[|p— p*| > €] < V/ke.

@ Recall: X;is 1 if ith ball is black, else 0, B = Zle X;.
E[Xi] = p*, E[B] = kp*. p = B/k.
e Var(B) = ) _; Var(X;) = kp*(1 — p*) (Exercise)
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Example:Balls in a bin (contd)

For0 < e<1 k>1andp =8/, Pr[|p— p*| > €] < V/ke.

@ Recall: X;is 1 if ith ball is black, else 0, B = Zle X;.
E[Xi] = p*, E[B] = kp*. p = B/k.
e Var(B) = ) _; Var(X;) = kp*(1 — p*) (Exercise)

Pr[lp — p*| > €] Pr[|B/k — p*| > €]

PH|B — kp*| > kel
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Example:Balls in a bin (contd)

For0 < e<1 k>1andp =8/, Pr[|p— p*| > €] < V/ke.

Proof.

@ Recall: X;is 1 if ith ball is black, else 0, B = Zle X;.
E[Xi] = p*, E[B] = kp*. p = B/k.
e Var(B) = ) _; Var(X;) = kp*(1 — p*) (Exercise)

Prilp — p*| > €] Pr[|B/k — p*| > €]
P[|B — kp*| > ke]
Var(B)/kzez — kp*(l—p*)/kzez

1/k€2

(Chebyshev)

AN

Ll
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Chernoff Bound

Lemma

Let Xy, ..., Xk be k independent binary random variables such that,
for each i € [1, k], X; equals 1 w.p. p;, and 0 w.p. (1 — p;).
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Chernoff Bound

Lemma

Let Xy, ..., Xk be k independent binary random variables such that,
for each i € [1, k], X; equals 1 w.p. p;, and 0 w.p. (1 — p;).

Let X = Y5, X; and p = E[X] = 3, pi.

Ruta (UIUC) Cs473 EE Spring 2021 33 / 42



Chernoff Bound

Lemma

Let Xy, ..., Xk be k independent binary random variables such that,
for each i € [1, k], X; equals 1 w.p. p;, and 0 w.p. (1 — p;).
Let X = Y5, X; and p = E[X] = 3, pi.

Forany 0 < 6 < 1, it holds that:

—82u
PrIX — p| > dp] < 273"
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Lemma
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Let X = Y5, X; and p = E[X] = 3, pi.
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Chernoff Bound

Let Xy, ..., Xk be k independent binary random variables such that,
for each i € [1, k], X; equals 1 w.p. p;, and 0 w.p. (1 — p;).
Let X = Y5, X; and p = E[X] = 3, pi.

For any 0 < 6 < 1, it holds that:

—82u
PrIX — p| > dp] < 273"

_s2

PrIX > (14 6)u] < e 5" and Pr[X < (1 — &)p] < e 3"

In notes! ]
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Example:Balls in a bin (Contd.)

Lemma

ke?

Forany0 < e <1, ,andk > 1, Pr[|p — p*| > €] < 2e7 5.

Recall: X; is 1 is it" ball is black, else 0.
B = Y, Xi. E[Xi] = p*, E[B] = kp*. p = B/«.
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Example:Balls in a bin (Contd.)

Lemma
Forany0 < e <1 andk > 1, Pr[lp— p*| > €] < e

Recall: X; is 1 is it" ball is black, else 0.
B = Y, Xi. E[Xi] = p*, E[B] = kp*. p = B/«.

Prilp — p*| > €] = Pr[|Z —p*| > €]
= Pr[|B — kp*| > ke]
= Pr[|B— kp*| > (5)kp*]
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Example:Balls in a bin (Contd.)

Lemma

ke?

Forany0 < e <1, ,andk > 1, Pr[|p — p*| > €] < 2e7 5.

Recall: X; is 1 is ith ball is black, else 0.
B = Y, Xi. E[Xi] = p*, E[B] = kp*. p = B/«.

Prllp —p*| 2> €] =

Ruta (UIUC)

(Chernoff
(p* <1

N N

Pr[|2 — p*| > €]
Pr[|B — kp*| > ke]

Pr||B — kp*| > (5)kp"]

—e—kp* _kez
2e ¥’ =2 "
ke?
2e 3

34

Spring 2021

34 / 42



Example Summary

The problem was to estimate the fraction of black balls p* in a bin
filled with white and black balls. Our estimate was p = % instead,
where out of k draws (with replacement) B balls turns out black.

Markov's Inequality

Forany k > 1, Pr[p > 2p*] < %

Chebyshev's Inequality

Forany 0 < € < 1,and k > 1, Pr[|p — p*| > €] < V/ke2.

Chernoff Bound

2
Forany0 < e < 1,and k > 1, Pr[|p — p*| > €] < 2e~'F.
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Part |V

Randomized QuickSort (Contd.)
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Randomized QuickSort: Recall

Input: Array A of n numbers. Qutput: Numbers in sorted order.

Randomized QuickSort

@ Pick a pivot element uniformly at random from A.

@ Split array into 3 subarrays: those smaller than pivot, those
larger than pivot, and the pivot itself.

© Recursively sort the subarrays, and concatenate them.

Note: On every input randomized QuickSort takes O(nlog n) time
in expectation. On every input it may take (n?) time with some
small probability.
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Randomized QuickSort: Recall

Input: Array A of n numbers. Qutput: Numbers in sorted order.

Randomized QuickSort

@ Pick a pivot element uniformly at random from A.

@ Split array into 3 subarrays: those smaller than pivot, those
larger than pivot, and the pivot itself.

© Recursively sort the subarrays, and concatenate them.

Note: On every input randomized QuickSort takes O(nlog n) time
in expectation. On every input it may take (n?) time with some
small probability.

Question: With what probability it takes O(nlog n) time?
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Randomized QuickSort: High Probability Analysis

Informal Statement
Random variable Q(A) = # comparisons done by the algorithm.

We will show that Pr[Q(A) < 32ninn] > 1 — 1/n3.
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Randomized QuickSort: High Probability Analysis

Informal Statement
Random variable Q(A) = # comparisons done by the algorithm.

We will show that Pr[Q(A) < 32ninn] > 1 — 1/n3.

If n = 100 then this gives Pr[Q(A) < 32nInn] > 0.99999. )
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Randomized QuickSort: High Probability Analysis

Informal Statement
Random variable Q(A) = # comparisons done by the algorithm.

We will show that Pr[Q(A) < 32ninn] > 1 — /a3

| A\

Outline of the proof
@ k : depth of the recursion. Then Q(A) < kn.

v
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| A\

Outline of the proof

@ k : depth of the recursion. Then Q(A) < kn.

@ Prove that kK < 321In n with high probability. Which will imply
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Randomized QuickSort: High Probability Analysis

Informal Statement

Random variable Q(A) = # comparisons done by the algorithm.
We will show that Pr[Q(A) < 32ninn] > 1 — /a3

| A\

Outline of the proof

@ k : depth of the recursion. Then Q(A) < kn.

@ Prove that kK < 321In n with high probability. Which will imply
the result.

@ Focus on a single element. Prove that it “participates” in
> 32In n levels with probability at most 1/n*.

@ By union bound, any of the n elements participates in
> 321In n levels with probability at most

v
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@ k : depth of the recursion. Then Q(A) < kn.
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Randomized QuickSort: High Probability Analysis

Informal Statement

Random variable Q(A) = # comparisons done by the algorithm.
We will show that Pr[Q(A) < 32ninn] > 1 — /a3

| A\

Outline of the proof

@ k : depth of the recursion. Then Q(A) < kn.

@ Prove that kK < 321In n with high probability. Which will imply
the result.

@ Focus on a single element. Prove that it “participates” in
> 32In n levels with probability at most 1/n*.

@ By union bound, any of the n elements participates in
> 321In n levels with probability at most 1/n3.

© Therefore, all elements participate in < 32Inn w.p. (1 —1/n3).
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Randomized QuickSort: High Probability Analysis

@ If k levels of recursion then kn comparisons.
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Randomized QuickSort: High Probability Analysis

@ If k levels of recursion then kn comparisons.

@ Fix an element s € A. We will track it at each level.
o Let S; be the partition containing s at it" level.

e S; = Aand S¢ = {s}.
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Randomized QuickSort: High Probability Analysis

@ If k levels of recursion then kn comparisons.

@ Fix an element s € A. We will track it at each level.

o Let S; be the partition containing s at it" level.

e S; = Aand S¢ = {s}.

e We call s lucky in ith iteration, if balanced split:
1Si+1] < (3/4)|Si] and |S; \ Siy1] < (3/4)]Si.
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Randomized QuickSort: High Probability Analysis

If k levels of recursion then kn comparisons.

Fix an element s € A. We will track it at each level.
Let S; be the partition containing s at it level.

S1 = Aand 5 = {s}.

We call s lucky in it" iteration, if balanced split:
1Si+1] < (3/4)|Si] and |S; \ Siy1] < (3/4)]Si.
If p =#lucky rounds in first k rounds, then

|Sk| < (3/4)7n.
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Randomized QuickSort: High Probability Analysis

If k levels of recursion then kn comparisons.

Fix an element s € A. We will track it at each level.
Let S; be the partition containing s at it level.

S1 = Aand 5 = {s}.

We call s lucky in it" iteration, if balanced split:
|Siv1] < (3/4)|Si] and [S; \ Sit1| < (3/4)[Si].
If p =#lucky rounds in first k rounds, then

|Sk| < (3/4)7n.

o For |Sk| =1, p =logy/3 n < 41n n suffices.
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How many rounds before lucky rounds?

s lucky in round i if |S;11] < (3/4)|Si| and |S; \ Siz1| < (3/8)|Si]
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How many rounds before lucky rounds?

s lucky in round i if |S;11] < (3/4)|Si| and |S; \ Siz1| < (3/8)|Si]
e X; = 1if sis lucky in i*" round.
@ Observation: Xi, ..., X\ are independent variables.
o Pr[X; =1] =1 Why?
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s lucky in round i if |S;11] < (3/4)|Si| and |S; \ Siz1| < (3/8)|Si]
e X; = 1if sis lucky in i*" round.
@ Observation: Xi, ..., X\ are independent variables.
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How many rounds before lucky rounds?

s lucky in round i if |S;11] < (3/4)|Si| and |S; \ Siz1| < (3/8)|Si]
e X; = 1if sis lucky in i*" round.
@ Observation: Xi, ..., X\ are independent variables.
o Pr[X; =1] =1 Why?

@ Clearly, p = Z, 1 Xi. Let p = E[p] =
oSetk_32Innand5—— (1—-96)=

-l>|»—t NI’?
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How many rounds before lucky rounds?

s lucky in round i if |S;11] < (3/4)|Si| and |S; \ Siz1| < (3/8)|Si]
e X; = 1if sis lucky in i*" round.
@ Observation: Xi,..., Xy are independent variables.
o Pr[X; =1] =1 Why?
@ Clearly, p = Zf;l Xi. Let p = E[p] = g
° Setk=32lnnand6=%. (1—5):%.
Probability of NOT getting 4 In n lucky rounds out of 32 In n rounds
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How many rounds before lucky rounds?

s lucky in round i if |S;11] < (3/4)|Si| and |S; \ Siz1| < (3/8)|Si]
e X; = 1if sis lucky in i*" round.
@ Observation: Xi,..., Xy are independent variables.
o Pr[X; =1] =1 Why?
@ Clearly, p = Zf;l Xi. Let p = E[p] = g
° Setk=32lnnand6=z. 1-6)=1
Probability of NOT getting 4 In n lucky rounds out of 32 In n rounds

Pr[p < /3]
Prlp < (1 —46)p]

3

Pr[p < 4Inn]
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How many rounds before lucky rounds?

s lucky in round i if |S;11] < (3/4)|Si| and |S; \ Siz1| < (3/8)|Si]
e X; = 1if sis lucky in i*" round.
@ Observation: Xi, ..., X\ are independent variables.
o Pr[X; =1] =1 Why?

@ Clearly, p = Zf;l Xi. Let p = E[p] = g
° Setk=32lnnand6_— (1-46)= l

Probability of NOT getting 4 In n lucky rounds out of 32 In n rounds

Prip < 4Inn] = Pr[p < k/g]
= Pr[p <@1- 5)#]
(Chernoff) 2e 5" = 2e i

Il IA

—4.5Inn 1
2e S P
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Randomized QuickSort w.h.p. Analysis

@ n input elements. Probability that there is some un-lucky

element is at most % * N = %
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Randomized QuickSort w.h.p. Analysis

@ n input elements. Probability that there is some un-lucky
element is at most % *n = .

@ Pr[depth of recursion in QuickSort > 32Inn] < %

With high probability (i.e., 1 — % ) the depth of the recursion of
QuickSort is < 32In n. Due to n comparisons in each level, with
high probability, the running time of QuickSort is O(nlIn n).
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Randomized QuickSort w.h.p. Analysis

@ n input elements. Probability that there is some un-lucky
element is at most % *n = .

@ Pr[depth of recursion in QuickSort > 32Inn] < %

With high probability (i.e., 1 — % ) the depth of the recursion of
QuickSort is < 32In n. Due to n comparisons in each level, with
high probability, the running time of QuickSort is O(nlIn n).

Q: How to increase the probability?
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