CS 473: Algorithms

Ruta Mehta

University of Illinois, Urbana-Champaign
Spring 2021

CS 473: Algorithms, Spring 2021

Inequalities \& Randomized QuickSort

Lecture 8
Feb 18, 2021

Most slides are courtesy Prof. Chekuri

Outline

Slick Analysis of Randomized QuickSort

Concentration of Mass Around Mean

Markov's Inequality

Chebyshev's Inequality

Chernoff Bound

Randomized QuickSort: High Probability Analysis

Part I

Analysis of QuickSort

Recall: Randomized QuickSort

Randomized QuickSort

(1) Pick a pivot element uniformly at random from the array.
(2) Split array into 3 subarrays: those smaller than pivot, those larger than pivot, and the pivot itself.
(3) Recursively sort the subarrays, and concatenate them.

Theorem

Expected running time of Randomized QuickSort on an array of size n is $O(n \log n)$.

Analysis via Recurrence

(1) A: Given array with n distinct numbers.
(2) $Q(A)$: number of comparisons of randomized QuickSort on A. Note that $Q(A)$ is a random variable.
(3) X_{i} : Random variable indicating if picked pivot has rank \boldsymbol{i} in \boldsymbol{A}. $\boldsymbol{A}_{\text {left }}^{i}$ and $\boldsymbol{A}_{\text {right }}^{i}$ be the corresponding left and right subarrays.

$$
Q(A)=n+\sum_{i=1}^{n} X_{i} \cdot\left(Q\left(A_{\mathrm{left}}^{i}\right)+Q\left(A_{\mathrm{right}}^{i}\right)\right)
$$

Exactly one non-zero $X_{i} . E\left[X_{i}\right]=\operatorname{Pr}[$ pivot has rank $i]=1 / n$.

Independence of Random Variables

Lemma

Random variables $\boldsymbol{X}_{\boldsymbol{i}}$ is independent of random variables $\mathbf{Q}\left(\boldsymbol{A}_{\text {left }}^{i}\right)$ as well as $Q\left(A_{\text {right }}^{i}\right)$, i.e.

$$
\begin{aligned}
\mathrm{E}\left[X_{i} \cdot Q\left(A_{\text {left }}^{i}\right)\right] & =\mathrm{E}\left[X_{i}\right] \mathrm{E}\left[Q\left(A_{\text {left }}^{i}\right)\right] \\
\mathrm{E}\left[X_{i} \cdot Q\left(A_{\text {right }}^{i}\right)\right] & =\mathrm{E}\left[X_{i}\right] \mathrm{E}\left[Q\left(A_{\text {right }}^{i}\right)\right]
\end{aligned}
$$

Proof.

This is because the algorithm, while recursing on $Q\left(A_{\text {left }}^{i}\right)$ and $Q\left(A_{\text {right }}^{i}\right)$ uses new random coin tosses that are independent of the coin tosses used to decide the first pivot. Only the latter decides value of $\boldsymbol{X}_{\boldsymbol{i}}$.

Analysis via Recurrence

$T(n)=\max _{A:|A|=\boldsymbol{n}} E[Q(A)]$ be the worst-case expected running time on arrays of size \boldsymbol{n}.

We have, for any \boldsymbol{A} :

$$
Q(A)=n+\sum_{i=1}^{n} X_{i}\left(Q\left(A_{\mathrm{left}}^{i}\right)+Q\left(A_{\mathrm{right}}^{i}\right)\right)
$$

Analysis via Recurrence

$T(n)=\max _{A:|A|=n} \mathrm{E}[Q(A)]$ be the worst-case expected running time on arrays of size \boldsymbol{n}.

We have, for any \boldsymbol{A} :

$$
Q(A)=n+\sum_{i=1}^{n} X_{i}\left(Q\left(A_{\mathrm{left}}^{i}\right)+Q\left(A_{\mathrm{right}}^{i}\right)\right)
$$

By linearity of expectation, and independence random variables:

$$
\begin{aligned}
\mathrm{E}[Q(A)] & =n+\sum_{i=1}^{n} \mathrm{E}\left[X_{i}\right]\left(\mathrm{E}\left[Q\left(A_{\text {left }}^{i}\right)\right]+\mathrm{E}\left[Q\left(A_{\text {right }}^{i}\right)\right]\right) \\
& \leq n+\sum_{i=1}^{n} \frac{1}{n}(T(i-1)+T(n-i))
\end{aligned}
$$

Analysis via Recurrence

$T(n)=\max _{A:|A|=\boldsymbol{n}} E[Q(A)]$ be the worst-case expected running time on arrays of size \boldsymbol{n}.
We derived:

$$
E[Q(A)] \leq n+\sum_{i=1}^{n} \frac{1}{n}(T(i-1)+T(n-i))
$$

Note that above holds for any \boldsymbol{A} of size \boldsymbol{n}. Therefore

$$
T(n)=\max _{A:|A|=n} E[Q(A)] \leq
$$

Analysis via Recurrence

$T(n)=\max _{A:|A|=n} \mathrm{E}[Q(A)]$ be the worst-case expected running time on arrays of size \boldsymbol{n}.
We derived:

$$
E[Q(A)] \leq n+\sum_{i=1}^{n} \frac{1}{n}(T(i-1)+T(n-i))
$$

Note that above holds for any \boldsymbol{A} of size \boldsymbol{n}. Therefore

$$
T(n)=\max _{A:|A|=n} \mathrm{E}[Q(A)] \leq n+\sum_{i=1}^{n} \frac{1}{n}(T(i-1)+T(n-i)) .
$$

Solving the Recurrence

$$
T(n) \leq n+\sum_{i=1}^{n} \frac{1}{n}(T(i-1)+T(n-i))
$$

with base case $T(1)=0$.

Lemma

$$
T(n)=O(n \log n) .
$$

Solving the Recurrence

$$
T(n) \leq n+\sum_{i=1}^{n} \frac{1}{n}(T(i-1)+T(n-i))
$$

with base case $T(1)=0$.
Lemma

$$
T(n)=O(n \log n) .
$$

Proof.

(Guess and) Verify by induction.

Part II

Slick analysis of QuickSort

A Slick Analysis of QuickSort

$Q(A)$: number of comparisons done on input array \boldsymbol{A}
(1) Rank of an element is its position in the sorted \boldsymbol{A}.
(2) $R_{i j}$: event that rank i element is compared with rank j element, for $\mathbf{1} \leq i<j<\boldsymbol{n}$.

A Slick Analysis of QuickSort

$Q(\boldsymbol{A})$: number of comparisons done on input array \boldsymbol{A}
(1) Rank of an element is its position in the sorted \boldsymbol{A}.
(2) $R_{i j}$: event that rank i element is compared with rank j element, for $\mathbf{1} \leq i<j<n$.
(3) $X_{i j}$: the indicator random variable for $R_{i j}$. That is, $X_{i j}=1$ if rank \boldsymbol{i} is compared with rank \boldsymbol{j} element, otherwise $\mathbf{0}$.

A Slick Analysis of QuickSort

$Q(\boldsymbol{A})$: number of comparisons done on input array \boldsymbol{A}
(1) Rank of an element is its position in the sorted \boldsymbol{A}.
(2) $R_{i j}$: event that rank i element is compared with rank j element, for $\mathbf{1} \leq i<j<n$.
(0) $X_{i j}$: the indicator random variable for $R_{i j}$. That is, $X_{i j}=1$ if rank \boldsymbol{i} is compared with rank \boldsymbol{j} element, otherwise $\mathbf{0}$.

$$
Q(A)=\sum_{1 \leq i<j \leq n} X_{i j}
$$

and hence by linearity of expectation,

$$
\mathrm{E}[Q(A)]=\sum_{1 \leq i<j \leq n} \mathrm{E}\left[X_{i j}\right]=\sum_{1 \leq i<j \leq n} \operatorname{Pr}\left[R_{i j}\right] .
$$

A Slick Analysis of QuickSort

$R_{i j}=$ rank i element is compared with rank j element.
Question: What is $\operatorname{Pr}\left[R_{i j}\right]$?

A Slick Analysis of QuickSort

$R_{i j}=$ rank i element is compared with rank j element.
Question: What is $\operatorname{Pr}\left[R_{i j}\right]$?

With ranks: | 7 | 5 | 9 | 1 | 3 | 4 | 8 | 6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 6 | 4 | 8 | 1 | 2 | 3 | 7 | 5 |

A Slick Analysis of QuickSort

$R_{i j}=$ rank i element is compared with rank j element.
Question: What is $\operatorname{Pr}\left[R_{i j}\right]$?

With ranks: | 7 | 5 | 9 | 1 | 3 | 4 | 8 | 6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 6 | 4 | 8 | 1 | 2 | 3 | 7 | 5 |

As such, probability of comparing 5 to 8 is $\operatorname{Pr}\left[R_{4,7}\right]$.

A Slick Analysis of QuickSort

$R_{i j}=$ rank i element is compared with rank j element.
Question: What is $\operatorname{Pr}\left[R_{i j}\right]$?

With ranks: | 7 | 5 | 9 | 1 | 3 | 4 | 8 | 6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 6 | 4 | 8 | 1 | 2 | 3 | 7 | 5 |

(1) If pivot too small (say 3 [rank 2]). Partition and call recursively: | 7 | 5 | 9 | 1 | 3 | 4 | 8 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Decision if to compare 5 to $\mathbf{8}$ is moved to subproblem.

A Slick Analysis of QuickSort

$R_{i j}=$ rank i element is compared with rank j element.
Question: What is $\operatorname{Pr}\left[R_{i j}\right]$?

With ranks: | 7 | 5 | 9 | 1 | 3 | 4 | 8 | 6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 6 | 4 | 8 | 1 | 2 | 3 | 7 | 5 |

(1) If pivot too small (say 3 [rank 2]). Partition and call recursively:

7	5	9	1	3	4	8

Decision if to compare 5 to $\mathbf{8}$ is moved to subproblem.
(2) If pivot too large (say 9 [rank 8]):

Decision if to compare 5 to $\mathbf{8}$ moved to subproblem.

A Slick Analysis of QuickSort

Question: What is $\operatorname{Pr}\left[\mathrm{R}_{\mathrm{i}, \mathrm{j}}\right]$?

7	5	9	1	3	4	8	6
6	4	8	1	2	3	7	5

As such, probability of comparing $\mathbf{5}$ to $\mathbf{8}$ is $\operatorname{Pr}\left[R_{4,7}\right]$.
(1) If pivot is $\mathbf{5}$ (rank 4). Bingo!

$$
\begin{array}{|l|l|l|l|l|l|l}
\hline 7 & \mid & 9 & 1 & 3 & 4 & 8 \\
\hline
\end{array}
$$

A Slick Analysis of QuickSort

Question: What is $\operatorname{Pr}\left[\mathrm{R}_{\mathrm{i}, \mathrm{j}}\right]$?

7	5	9	1	3	4	8	6
6	4	8	1	2	3	7	5

As such, probability of comparing 5 to 8 is $\operatorname{Pr}\left[R_{4,7}\right]$.
(1) If pivot is 5 (rank 4). Bingo!

$$
\begin{array}{|l|l|l|l|l|l|l|}
\hline 7 & 9 & 1 & 3 & 4 & 8 & 6 \\
\hline
\end{array}
$$

$$
\Longrightarrow \begin{array}{|l|l|l|l|l|l|l|l|}
\hline 1 & 3 & 4 & 5 & 7 & 9 & 8 & 6 \\
\hline
\end{array}
$$

(2) If pivot is $\mathbf{8}$ (rank 7). Bingo!

$$
\begin{array}{|l|l|l|l|l|l|l|}
\hline 7 & 5 & 9 & 1 & 3 & 4 & \begin{array}{|l|l|l|l|l|l|l|}
\hline 6 \\
\hline
\end{array} \Longrightarrow \begin{array}{|l|l|l|l|l|l|}
\hline 7 & 5 & 1 & 3 & 4 & 6 \\
\hline
\end{array} \\
\hline
\end{array}
$$

A Slick Analysis of QuickSort

Question: What is $\operatorname{Pr}\left[\mathrm{R}_{\mathrm{i}, \mathrm{j}}\right]$?

7	5	9	1	3	4	8	6
6	4	8	1	2	3	7	5

As such, probability of comparing 5 to $\mathbf{8}$ is $\operatorname{Pr}\left[R_{4,7}\right]$.
(1) If pivot is 5 (rank 4). Bingo!

$$
\begin{array}{|l|l|l|l|l|l|l|l|}
\hline 7 & \hline 9 & 1 & 3 & 4 & 8 & 6 \\
\hline
\end{array} \Longrightarrow \begin{array}{|l|l|l|l|l|l|l|l|l|}
\hline 1 & 3 & 4 & 5 & 7 & 9 & 8 & 6 \\
\hline
\end{array}
$$

(2) If pivot is 8 (rank 7). Bingo!

(3) If pivot in between the two numbers (say 6 [rank 5]):

7	5	9	1	3	4	8

$$
\Longrightarrow \begin{array}{|l|l|l|l|l|l|l|l|}
\hline 5 & 1 & 3 & 4 & 6 & 7 & 8 & 9 \\
\hline
\end{array}
$$

5 and 8 will never be compared to each other.

A Slick Analysis of QuickSort

Question: What is $\operatorname{Pr}\left[\mathrm{R}_{\mathrm{i}, \mathrm{j}}\right]$?

Conclusion:

$\boldsymbol{R}_{\boldsymbol{i}, \boldsymbol{j}}$ happens if and only if: i th or j th ranked element is the first pivot out of i th to j th ranked elements.
$\operatorname{Pr}\left[R_{i, j}\right]=\operatorname{Pr}[i$ th or j th ranked element is the pivot pivot has rank in $\{i, i+\mathbf{1} \ldots, \boldsymbol{j}-\mathbf{1}, \boldsymbol{j}\}$]

A Slick Analysis of QuickSort

 Question: What is $\operatorname{Pr}\left[\mathrm{R}_{\mathrm{i}, \mathrm{j}}\right]$?
Conclusion:

$R_{i, j}$ happens if and only if: i th or j th ranked element is the first pivot out of i th to j th ranked elements.
$\operatorname{Pr}\left[R_{i, j}\right]=\operatorname{Pr}[i t$ th or j th ranked element is the pivot \mid pivot has rank in $\{i, i+1 \ldots, j-1, j\}]$

There are $k=j-i+1$ relevant elements.

A Slick Analysis of QuickSort

Question: What is $\operatorname{Pr}\left[\mathrm{R}_{\mathrm{i}, \mathrm{j}}\right]$?

Conclusion:

$\boldsymbol{R}_{i, j}$ happens if and only if: i th or j th ranked element is the first pivot out of i th to j th ranked elements.
$\operatorname{Pr}\left[R_{i, j}\right]=\operatorname{Pr}[i$ th or j th ranked element is the pivot pivot has rank in $\{i, i+\mathbf{1} \ldots, j-\mathbf{1}, \boldsymbol{j}\}$]

There are $k=j-i+1$ relevant elements.

$$
\operatorname{Pr}\left[R_{i, j}\right]=\frac{2}{k}=\frac{2}{j-i+1}
$$

A Slick Analysis of QuickSort

Question: What is $\operatorname{Pr}\left[R_{i j}\right]$?
Lemma
$\operatorname{Pr}\left[R_{i j}\right]=\frac{2}{j-i+1}$.

A Slick Analysis of QuickSort

Question: What is $\operatorname{Pr}\left[R_{i j}\right]$?
Lemma
$\operatorname{Pr}\left[R_{i j}\right]=\frac{2}{j-i+1}$.

Proof.

Let $a_{1}, \ldots, a_{i}, \ldots, a_{j}, \ldots, a_{\boldsymbol{n}}$ be elements of \boldsymbol{A} in sorted order.
Let $S=\left\{a_{i}, a_{i+1}, \ldots, a_{j}\right\}$

A Slick Analysis of QuickSort

Question: What is $\operatorname{Pr}\left[R_{i j}\right]$?
Lemma

$$
\operatorname{Pr}\left[R_{i j}\right]=\frac{2}{j-i+1} .
$$

Proof.

Let $a_{1}, \ldots, a_{i}, \ldots, a_{j}, \ldots, a_{\boldsymbol{n}}$ be elements of \boldsymbol{A} in sorted order.
Let $S=\left\{a_{i}, a_{i+1}, \ldots, a_{j}\right\}$
Observation: If pivot is chosen outside S then all of S either in left array or right array.

A Slick Analysis of QuickSort

Question: What is $\operatorname{Pr}\left[R_{i j}\right]$?
Lemma

$$
\operatorname{Pr}\left[R_{i j}\right]=\frac{2}{j-i+1} .
$$

Proof.

Let $a_{1}, \ldots, a_{i}, \ldots, a_{j}, \ldots, a_{\boldsymbol{n}}$ be elements of \boldsymbol{A} in sorted order.
Let $S=\left\{a_{i}, a_{i+1}, \ldots, a_{j}\right\}$
Observation: If pivot is chosen outside S then all of S either in left array or right array.
Observation: $\boldsymbol{a}_{\boldsymbol{i}}$ and $\boldsymbol{a}_{\boldsymbol{j}}$ separated when a pivot is chosen from \boldsymbol{S} for the first time. Once separated no comparison.

A Slick Analysis of QuickSort

Question: What is $\operatorname{Pr}\left[R_{i j}\right]$?
Lemma

$$
\operatorname{Pr}\left[R_{i j}\right]=\frac{2}{j-i+1} .
$$

Proof.

Let $a_{1}, \ldots, a_{i}, \ldots, a_{j}, \ldots, a_{\boldsymbol{n}}$ be elements of \boldsymbol{A} in sorted order.
Let $S=\left\{a_{i}, a_{i+1}, \ldots, a_{j}\right\}$
Observation: If pivot is chosen outside S then all of S either in left array or right array.
Observation: $\boldsymbol{a}_{\boldsymbol{i}}$ and $\boldsymbol{a}_{\boldsymbol{j}}$ separated when a pivot is chosen from \boldsymbol{S} for the first time. Once separated no comparison.
Observation: $\boldsymbol{a}_{\boldsymbol{i}}$ is compared with $\boldsymbol{a}_{\boldsymbol{j}}$ if and only if either $\boldsymbol{a}_{\boldsymbol{i}}$ or $\boldsymbol{a}_{\boldsymbol{j}}$ is chosen as a pivot from S at separation...

A Slick Analysis of QuickSort

Continued...

Lemma

$$
\operatorname{Pr}\left[R_{i j}\right]=\frac{2}{j-i+1} .
$$

Proof.

Let $a_{1}, \ldots, a_{i}, \ldots, a_{j}, \ldots, a_{n}$ be sort of \boldsymbol{A}. Let
$S=\left\{a_{i}, a_{i+1}, \ldots, a_{j}\right\}$
Observation: $\boldsymbol{a}_{\boldsymbol{i}}$ is compared with $\boldsymbol{a}_{\boldsymbol{j}}$ if and only if either $\boldsymbol{a}_{\boldsymbol{i}}$ or $\boldsymbol{a}_{\boldsymbol{j}}$ is chosen as a pivot from S at separation.
Observation: Given that pivot is chosen from S the probability that it is a_{i} or a_{j} is exactly $2 /|S|=2 /(j-i+1)$ since the pivot is chosen uniformly at random from the array.

A Slick Analysis of QuickSort

Continued...

$$
\mathrm{E}[Q(A)]=\sum_{1 \leq i<j \leq n} \mathrm{E}\left[X_{i j}\right]=\sum_{1 \leq i<j \leq n} \operatorname{Pr}\left[R_{i j}\right] .
$$

Lemma

$$
\operatorname{Pr}\left[R_{i j}\right]=\frac{2}{j-i+1} .
$$

A Slick Analysis of QuickSort

 Continued...
Lemma
 $\operatorname{Pr}\left[R_{i j}\right]=\frac{2}{j-i+1}$.

$$
E[Q(A)]=\sum_{1 \leq i<j \leq n} \operatorname{Pr}\left[R_{i j}\right]=\sum_{1 \leq i<j \leq n} \frac{2}{j-i+1}
$$

A Slick Analysis of QuickSort

Continued...

Lemma
 $\operatorname{Pr}\left[R_{i j}\right]=\frac{2}{j-i+1}$.

$$
E[Q(A)]=\sum_{1 \leq i<j \leq n} \frac{2}{j-i+1}
$$

A Slick Analysis of QuickSort

Continued...

Lemma

$$
\operatorname{Pr}\left[R_{i j}\right]=\frac{2}{j-i+1} .
$$

$$
\begin{aligned}
\mathrm{E}[Q(A)] & =\sum_{1 \leq i<j \leq n} \frac{2}{j-i+1} \\
& =\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{2}{j-i+1}
\end{aligned}
$$

A Slick Analysis of QuickSort

Continued...

Lemma

$$
\operatorname{Pr}\left[R_{i j}\right]=\frac{2}{j-i+1} .
$$

$$
E[Q(A)]=\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{2}{j-i+1}
$$

A Slick Analysis of QuickSort

Continued...

Lemma

$$
\operatorname{Pr}\left[R_{i j}\right]=\frac{2}{j-i+1} .
$$

$$
E[Q(A)]=2 \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{1}{j-i+1}
$$

A Slick Analysis of QuickSort

Continued...

Lemma

$$
\operatorname{Pr}\left[R_{i j}\right]=\frac{2}{j-i+1} .
$$

$$
\mathrm{E}[Q(A)]=2 \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{1}{j-i+1}=2 \sum_{i=1}^{n-1} \sum_{\Delta=2}^{n-i+1} \frac{1}{\Delta}
$$

A Slick Analysis of QuickSort

Continued...

Lemma

$$
\operatorname{Pr}\left[R_{i j}\right]=\frac{2}{j-i+1} .
$$

$$
\begin{aligned}
E[Q(A)] & =2 \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{1}{j-i+1}=2 \sum_{i=1}^{n-1} \sum_{\Delta=2}^{n-i+1} \frac{1}{\Delta} \\
& =2 \sum_{i=1}^{n-1}\left(H_{n-i+1}-1\right) \leq 2 \sum_{1 \leq i<n} H_{n}
\end{aligned}
$$

$$
H_{k}=\sum_{i=1}^{k} \frac{1}{i}=\Theta(\log k)
$$

A Slick Analysis of QuickSort

Continued...

Lemma

$$
\operatorname{Pr}\left[R_{i j}\right]=\frac{2}{j-i+1} .
$$

$$
\begin{aligned}
\mathrm{E}[Q(A)] & =2 \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{1}{j-i+1}=2 \sum_{i=1}^{n-1} \sum_{\Delta=2}^{n-i+1} \frac{1}{\Delta} \\
& =2 \sum_{i=1}^{n-1}\left(H_{n-i+1}-1\right) \leq 2 \sum_{1 \leq i<n} H_{n} \\
& \leq 2 n H_{n}=O(n \log n)
\end{aligned}
$$

$$
H_{k}=\sum_{i=1}^{k} \frac{1}{i}=\Theta(\log k)
$$

Part III

Inequalities

Massive randomness.. Is not that random.

Consider flipping a fair coin \boldsymbol{n} times independently, head gives 1, tail gives zero. How many 1s? Binomial distribution: k w.p. $\binom{n}{k}^{1 / 2 n}$.

$\mathrm{n}=2$

Massive randomness.. Is not that random.

Consider flipping a fair coin \boldsymbol{n} times independently, head gives 1, tail gives zero. How many 1 s ? Binomial distribution: k w.p. $\binom{n}{k} 1 / 2^{n}$.

Massive randomness.. Is not that random.

Consider flipping a fair coin \boldsymbol{n} times independently, head gives 1, tail gives zero. How many 1s? Binomial distribution: k w.p. $\binom{n}{k}^{1 / 2 n}$.

Massive randomness.. Is not that random.

Consider flipping a fair coin n times independently, head gives 1, tail gives zero. How many 1 s ? Binomial distribution: k w.p. $\binom{n}{k}^{1 / 2^{n}}$.

Massive randomness.. Is not that random.

Consider flipping a fair coin \boldsymbol{n} times independently, head gives 1, tail gives zero. How many 1s? Binomial distribution: k w.p. $\left.\binom{n}{k}\right)^{1 / 2 n}$.

Massive randomness.. Is not that random.

Consider flipping a fair coin \boldsymbol{n} times independently, head gives 1, tail gives zero. How many 1 s ? Binomial distribution: k w.p. $\binom{n}{k} 1 / 2^{n}$.

Massive randomness.. Is not that random.

Consider flipping a fair coin \boldsymbol{n} times independently, head gives 1, tail gives zero. How many 1s? Binomial distribution: k w.p. $\left.\binom{n}{k}\right)^{1 / 2^{n}}$.

Massive randomness.. Is not that random.

Consider flipping a fair coin \boldsymbol{n} times independently, head gives 1, tail gives zero. How many 1s? Binomial distribution: k w.p. $\left.\binom{n}{k}\right)^{1 / 2^{n}}$.

Massive randomness.. Is not that random.

Consider flipping a fair coin \boldsymbol{n} times independently, head gives 1, tail gives zero. How many 1s? Binomial distribution: k w.p. $\left.\binom{n}{k}\right)^{1 / 2^{n}}$.

Massive randomness.. Is not that random.

Consider flipping a fair coin \boldsymbol{n} times independently, head gives 1, tail gives zero. How many 1s? Binomial distribution: k w.p. $\left.\binom{n}{k}\right)^{1 / 2 n}$.

Massive randomness.. Is not that random.

Consider flipping a fair coin \boldsymbol{n} times independently, head gives 1, tail gives zero. How many 1s? Binomial distribution: k w.p. $\left.\binom{n}{k}\right)^{1 / 2^{n}}$.

Massive randomness.. Is not that random.

Consider flipping a fair coin \boldsymbol{n} times independently, head gives 1, tail gives zero. How many 1s? Binomial distribution: k w.p. $\left.\binom{n}{k}\right)^{1 / 2^{n}}$.

Massive randomness.. Is not that random.

This is known as concentration of mass.
This is a very special case of the law of large numbers.

Side note...

Law of large numbers (weakest form)...

Informal statement of law of large numbers

For \boldsymbol{n} large enough, the middle portion of the binomial distribution looks like (converges to) the normal/Gaussian distribution.

Massive randomness.. Is not that random.

Intuitive conclusion

Randomized algorithm are unpredictable in the tactical level, but very predictable in the strategic level.

Massive randomness.. Is not that random.

Intuitive conclusion

Randomized algorithm are unpredictable in the tactical level, but very predictable in the strategic level.

Use of well known inequalities in analysis.

Randomized QuickSort: A possible analysis

Analysis

- Random variable $Q=\#$ comparisons made by randomized QuickSort on an array of \boldsymbol{n} elements.

Randomized QuickSort: A possible analysis

Analysis

- Random variable $Q=\#$ comparisons made by randomized QuickSort on an array of \boldsymbol{n} elements.
- Suppose $\operatorname{Pr}[Q \geq 10 n l g n] \leq c$. Also we know that $Q \leq n^{2}$.

Randomized QuickSort: A possible analysis

Analysis

- Random variable $Q=$ \#comparisons made by randomized

QuickSort on an array of \boldsymbol{n} elements.

- Suppose $\operatorname{Pr}[Q \geq 10 n l g n] \leq c$. Also we know that $Q \leq n^{2}$.
- $\mathrm{E}[Q] \leq(10 n \log n)(1-c)+n^{2} c$

Randomized QuickSort: A possible analysis

Analysis

- Random variable $Q=$ \#comparisons made by randomized QuickSort on an array of \boldsymbol{n} elements.
- Suppose $\operatorname{Pr}[Q \geq 10 n l g n] \leq c$. Also we know that $Q \leq n^{2}$.
- $\mathrm{E}[Q] \leq(10 n \log n)(1-c)+n^{2} c$

Question:

How to find c, or in other words bound $\operatorname{Pr}[Q \geq 10 n \log n]$?

Markov's Inequality

Markov's inequality

Let \boldsymbol{X} be a non-negative random variable over a probability space $(\Omega, \operatorname{Pr})$. For any $\boldsymbol{a}>0$,

$$
\operatorname{Pr}[X \geq a] \leq \frac{E[X]}{a}
$$

Markov's Inequality

Markov's inequality

Let \boldsymbol{X} be a non-negative random variable over a probability space $(\Omega, \operatorname{Pr})$. For any $\boldsymbol{a}>0$,

$$
\operatorname{Pr}[X \geq a] \leq \frac{E[X]}{a}
$$

Proof:

$$
\begin{aligned}
\mathrm{E}[X] & =\sum_{\omega \in \Omega} X(\omega) \operatorname{Pr}[\omega] \\
& \geq \sum_{\omega \in \Omega, X(\omega) \geq a} X(\omega) \operatorname{Pr}[\omega] \\
& \geq a \sum_{\omega \in \Omega, x(\omega) \geq a} \operatorname{Pr}[\omega] \\
& =a \operatorname{Pr}[X \geq a]
\end{aligned}
$$

Markov's Inequality: Proof by Picture

Example: Balls in a bin

- n black and white balls in a bin.
- We wish to estimate the fraction of black balls. Lets say it is \boldsymbol{p}^{*}.

Example: Balls in a bin

- n black and white balls in a bin.
- We wish to estimate the fraction of black balls. Lets say it is \boldsymbol{p}^{*}.
- An approach: Draw \boldsymbol{k} balls with replacement. If B are black then output $p=\frac{B}{k}$.

Example: Balls in a bin

- n black and white balls in a bin.
- We wish to estimate the fraction of black balls. Lets say it is p^{*}.
- An approach: Draw \boldsymbol{k} balls with replacement. If B are black then output $p=\frac{B}{k}$.

Question

How large \boldsymbol{k} needs to be before our estimated value \boldsymbol{p} is close to \boldsymbol{p}^{*} ?

Example: Balls in a bin

A rough estimate through Markov's inequality.

Lemma

For any $k \geq 1$ and $p=B / k, \operatorname{Pr}\left[p \geq 2 p^{*}\right] \leq \frac{1}{2}$

Example: Balls in a bin

A rough estimate through Markov's inequality.

Lemma

For any $k \geq 1$ and $p=B / k, \operatorname{Pr}\left[p \geq 2 p^{*}\right] \leq \frac{1}{2}$

Proof.

- For each $\mathbf{1} \leq \boldsymbol{i} \leq \boldsymbol{k}$ define random variable $\boldsymbol{X}_{\boldsymbol{i}}$, which is $\mathbf{1}$ if $\boldsymbol{i}^{\text {th }}$ ball is black, otherwise $\mathbf{0}$.
- $\mathrm{E}\left[X_{i}\right]=\operatorname{Pr}\left[X_{i}=1\right]=p^{*}$.

Example: Balls in a bin

A rough estimate through Markov's inequality.

Lemma

For any $k \geq 1$ and $p=B / k, \operatorname{Pr}\left[p \geq 2 p^{*}\right] \leq \frac{1}{2}$

Proof.

- For each $\mathbf{1} \leq \boldsymbol{i} \leq \boldsymbol{k}$ define random variable $\boldsymbol{X}_{\boldsymbol{i}}$, which is $\mathbf{1}$ if $\boldsymbol{i}^{\text {th }}$ ball is black, otherwise $\mathbf{0}$.
- $\mathrm{E}\left[X_{i}\right]=\operatorname{Pr}\left[X_{i}=1\right]=p^{*}$.
- $B=\sum_{i=1}^{k} X_{i}$, then $\mathrm{E}[B]=\sum_{i=1}^{k} \mathrm{E}\left[X_{i}\right]=k p^{*}$.

Example: Balls in a bin

A rough estimate through Markov's inequality.

Lemma

For any $k \geq 1$ and $p=B / k, \operatorname{Pr}\left[p \geq 2 p^{*}\right] \leq \frac{1}{2}$

Proof.

- For each $\mathbf{1} \leq \boldsymbol{i} \leq \boldsymbol{k}$ define random variable $\boldsymbol{X}_{\boldsymbol{i}}$, which is $\mathbf{1}$ if $\boldsymbol{i}^{\boldsymbol{t h}}$ ball is black, otherwise $\mathbf{0}$.
- $\mathrm{E}\left[X_{i}\right]=\operatorname{Pr}\left[X_{i}=1\right]=p^{*}$.
- $B=\sum_{i=1}^{k} X_{i}$, then $\mathrm{E}[B]=\sum_{i=1}^{k} \mathrm{E}\left[X_{i}\right]=k p^{*}$.
- Markov's inequality gives, $\operatorname{Pr}\left[p \geq 2 p^{*}\right]=$

$$
\operatorname{Pr}\left[\frac{B}{k} \geq 2 p^{*}\right]=\operatorname{Pr}\left[B \geq 2 k p^{*}\right]=\operatorname{Pr}[B \geq 2 \mathrm{E}[B]] \leq \frac{1}{2}
$$

Chebyshev's Inequality: Variance

Variance

Given a random variable \boldsymbol{X} over probability space (Ω, Pr), variance of \boldsymbol{X} is the measure of how much does it deviate from its mean value. Formally, $\operatorname{Var}(X)=\mathbf{E}\left[(X-E[X])^{2}\right]=\mathbf{E}\left[X^{2}\right]-E[X]^{2}$

Chebyshev's Inequality: Variance

Variance

Given a random variable \boldsymbol{X} over probability space (Ω, Pr), variance of X is the measure of how much does it deviate from its mean value. Formally, $\operatorname{Var}(X)=\mathrm{E}\left[(X-\mathrm{E}[X])^{2}\right]=\mathrm{E}\left[X^{2}\right]-\mathrm{E}[X]^{2}$

Intuitive Derivation

Define $Y=(X-\mathrm{E}[X])^{2}=X^{2}-2 X \mathrm{E}[X]+\mathrm{E}[X]^{2}$.

Chebyshev's Inequality: Variance

Variance

Given a random variable \boldsymbol{X} over probability space (Ω, Pr), variance of \boldsymbol{X} is the measure of how much does it deviate from its mean value. Formally, $\operatorname{Var}(X)=\mathbf{E}\left[(X-E[X])^{2}\right]=\mathbf{E}\left[X^{2}\right]-E[X]^{2}$

Intuitive Derivation

Define $Y=(X-\mathrm{E}[X])^{2}=X^{2}-2 X \mathrm{E}[X]+\mathrm{E}[X]^{2}$.

$$
\begin{aligned}
\operatorname{Var}(X) & =\mathrm{E}[Y] \\
& =\mathrm{E}\left[X^{2}\right]-2 \mathrm{E}[X] \mathrm{E}[X]+\mathrm{E}[X]^{2} \\
& =\mathrm{E}\left[X^{2}\right]-\mathrm{E}[X]^{2}
\end{aligned}
$$

Chebyshev's Inequality: Variance

Independence

Random variables X and Y are called mutually independent if

$$
\forall x, y \in \mathbb{R}, \operatorname{Pr}[X=x \wedge Y=y]=\operatorname{Pr}[X=x] \operatorname{Pr}[Y=y]
$$

Lemma

If X and Y are independent random variables then $\operatorname{Var}(X+Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)$.

Chebyshev's Inequality: Variance

Independence

Random variables X and Y are called mutually independent if

$$
\forall x, y \in \mathbb{R}, \operatorname{Pr}[X=x \wedge Y=y]=\operatorname{Pr}[X=x] \operatorname{Pr}[Y=y]
$$

Lemma

If X and Y are independent random variables then $\operatorname{Var}(X+Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)$.

Lemma

If \boldsymbol{X} and \boldsymbol{Y} are mutually independent, then $\mathrm{E}[X Y]=\mathrm{E}[X] \mathrm{E}[Y]$.

Chebyshev's Inequality

Chebyshev's Inequality

Given $a \geq 0, \operatorname{Pr}[|X-E[X]| \geq a] \leq \frac{\operatorname{Var}(X)}{a^{2}}$

Chebyshev's Inequality

Chebyshev's Inequality

Given $a \geq 0, \operatorname{Pr}[|X-E[X]| \geq a] \leq \frac{\operatorname{Var}(X)}{a^{2}}$

Proof.

$Y=(X-E[X])^{2}$ is a non-negative random variable. Apply Markov's Inequality to Y for a^{2}.

$$
\begin{aligned}
\left.\operatorname{Pr}\left[Y \geq a^{2}\right] \leq \mathrm{E} Y\right] / a^{2} & \Leftrightarrow \operatorname{Pr}\left[(X-\mathrm{E}[X])^{2} \geq a^{2}\right] \leq \operatorname{Var}(X) / a^{2} \\
& \Leftrightarrow \operatorname{Pr}[|X-\mathrm{E}[X]| \geq a] \leq \operatorname{Var}(X) / a^{2}
\end{aligned}
$$

Chebyshev's Inequality

Chebyshev's Inequality

Given $a \geq 0, \operatorname{Pr}[|X-E[X]| \geq a] \leq \frac{\operatorname{Var}(X)}{a^{2}}$

Proof.

$Y=(X-E[X])^{2}$ is a non-negative random variable. Apply Markov's Inequality to Y for a^{2}.

$$
\begin{aligned}
\left.\operatorname{Pr}\left[Y \geq a^{2}\right] \leq \mathrm{E} Y\right] / a^{2} & \Leftrightarrow \operatorname{Pr}\left[(X-\mathrm{E}[X])^{2} \geq a^{2}\right] \leq \operatorname{Var}(X) / a^{2} \\
& \Leftrightarrow \operatorname{Pr}[|X-\mathrm{E}[X]| \geq a] \leq \operatorname{Var}(X) / a^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{Pr}[X \leq \mathrm{E}[X]-a] \leq \operatorname{Var}(X) / a^{2} \text { AND } \\
& \operatorname{Pr}[X \geq \mathrm{E}[X]+a] \leq \operatorname{Var}(X) / a^{2}
\end{aligned}
$$

Example:Balls in a bin (contd)

Lemma

For $\mathbf{0}<\epsilon<\mathbf{1}, k \geq 1$ and $p=B / k, \operatorname{Pr}\left[\left|p-p^{*}\right| \geq \epsilon\right] \leq 1 / k \epsilon^{2}$.

Proof.

- Recall: X_{i} is $\mathbf{1}$ if $\boldsymbol{i}^{\text {th }}$ ball is black, else $0, B=\sum_{i=1}^{k} X_{i}$. $\mathrm{E}\left[X_{i}\right]=p^{*}, \mathrm{E}[B]=k p^{*} . p=B / k$.

Example:Balls in a bin (contd)

Lemma

For $\mathbf{0}<\epsilon<\mathbf{1}, k \geq 1$ and $p=B / k, \operatorname{Pr}\left[\left|p-p^{*}\right| \geq \epsilon\right] \leq 1 / k \epsilon^{2}$.

Proof.

- Recall: X_{i} is $\mathbf{1}$ if $\boldsymbol{i}^{\text {th }}$ ball is black, else $0, B=\sum_{i=1}^{k} X_{i}$. $\mathrm{E}\left[X_{i}\right]=p^{*}, \mathrm{E}[B]=k p^{*} . p=B / k$.

Example:Balls in a bin (contd)

Lemma

For $\mathbf{0}<\epsilon<\mathbf{1}, k \geq 1$ and $p=B / k, \operatorname{Pr}\left[\left|p-p^{*}\right| \geq \epsilon\right] \leq 1 / k \epsilon^{2}$.

Proof.

- Recall: X_{i} is $\mathbf{1}$ if $\boldsymbol{i}^{\text {th }}$ ball is black, else $0, B=\sum_{i=1}^{k} X_{i}$. $\mathrm{E}\left[X_{i}\right]=p^{*}, \mathrm{E}[B]=k p^{*} . p=B / k$.
- $\operatorname{Var}(B)=\sum_{i} \operatorname{Var}\left(X_{i}\right)=k p^{*}\left(1-p^{*}\right)($ Exercise $)$

Example:Balls in a bin (contd)

Lemma

For $\mathbf{0}<\epsilon<\mathbf{1}, k \geq 1$ and $p=B / k, \operatorname{Pr}\left[\left|p-p^{*}\right| \geq \epsilon\right] \leq 1 / k \epsilon^{2}$.

Proof.

- Recall: X_{i} is $\mathbf{1}$ if $\boldsymbol{i}^{\text {th }}$ ball is black, else $0, B=\sum_{i=1}^{k} X_{i}$. $\mathrm{E}\left[X_{i}\right]=p^{*}, \mathrm{E}[B]=k p^{*} . p={ }^{B} / k$.
- $\operatorname{Var}(B)=\sum_{i} \operatorname{Var}\left(X_{i}\right)=k p^{*}\left(1-p^{*}\right)($ Exercise $)$

$$
\begin{aligned}
\operatorname{Pr}\left[\left|p-p^{*}\right| \geq \epsilon\right] & =\operatorname{Pr}\left[\left|B / k-p^{*}\right| \geq \epsilon\right] \\
& =\operatorname{Pr}\left[\left|B-k p^{*}\right| \geq k \epsilon\right]
\end{aligned}
$$

Example:Balls in a bin (contd)

Lemma

For $\mathbf{0}<\epsilon<\mathbf{1}, k \geq \mathbf{1}$ and $p=B / k, \operatorname{Pr}\left[\left|p-p^{*}\right| \geq \epsilon\right] \leq 1 / k \epsilon^{2}$.

Proof.

- Recall: X_{i} is $\mathbf{1}$ if $\boldsymbol{i}^{\text {th }}$ ball is black, else $0, B=\sum_{i=1}^{k} X_{i}$. $\mathrm{E}\left[X_{i}\right]=p^{*}, \mathrm{E}[B]=k p^{*} . p=B / k$.
- $\operatorname{Var}(B)=\sum_{i} \operatorname{Var}\left(X_{i}\right)=k p^{*}\left(1-p^{*}\right)($ Exercise $)$

$$
\begin{aligned}
\operatorname{Pr}\left[\left|p-p^{*}\right| \geq \epsilon\right] & =\operatorname{Pr}\left[\left|B / k-p^{*}\right| \geq \epsilon\right] \\
& =\operatorname{Pr}\left[\left|B-k p^{*}\right| \geq k \epsilon\right] \\
(\text { Chebyshev }) & \leq \operatorname{Var}(B) / k^{2} \epsilon^{2}=k p^{*}\left(1-p^{*}\right) / k^{2} \epsilon^{2} \\
& <1 / k \epsilon^{2}
\end{aligned}
$$

Chernoff Bound

Lemma

Let X_{1}, \ldots, X_{k} be \boldsymbol{k} independent binary random variables such that, for each $i \in[1, k], X_{i}$ equals 1 w.p. p_{i}, and 0 w.p. $\left(1-p_{i}\right)$.

Chernoff Bound

Lemma

Let $X_{1}, \ldots, X_{\boldsymbol{k}}$ be \boldsymbol{k} independent binary random variables such that, for each $i \in[1, k], X_{i}$ equals 1 w.p. p_{i}, and 0 w.p. $\left(1-p_{i}\right)$. Let $X=\sum_{i=1}^{k} X_{i}$ and $\mu=\mathrm{E}[X]=\sum_{i} p_{i}$.

Chernoff Bound

Lemma

Let X_{1}, \ldots, X_{k} be \boldsymbol{k} independent binary random variables such that, for each $i \in[1, k], X_{i}$ equals 1 w.p. p_{i}, and 0 w.p. $\left(1-p_{i}\right)$. Let $X=\sum_{i=1}^{k} X_{i}$ and $\mu=\mathrm{E}[X]=\sum_{i} p_{i}$.
For any $\mathbf{0}<\boldsymbol{\delta}<\mathbf{1}$, it holds that:

$$
\operatorname{Pr}[|X-\mu| \geq \delta \mu] \leq 2 e^{\frac{-\delta^{2} \mu}{3}}
$$

Chernoff Bound

Lemma

Let X_{1}, \ldots, X_{k} be \boldsymbol{k} independent binary random variables such that, for each $i \in[1, k], X_{i}$ equals 1 w.p. p_{i}, and 0 w.p. $\left(1-p_{i}\right)$. Let $X=\sum_{i=1}^{k} X_{i}$ and $\mu=\mathrm{E}[X]=\sum_{i} p_{i}$.
For any $\mathbf{0}<\boldsymbol{\delta}<\mathbf{1}$, it holds that:

$$
\begin{gathered}
\operatorname{Pr}[|X-\mu| \geq \delta \mu] \leq 2 e^{\frac{-\delta^{2} \mu}{3}} \\
\operatorname{Pr}[X \geq(1+\delta) \mu] \leq e^{\frac{-\delta^{2} \mu}{3}} \text { and } \operatorname{Pr}[X \leq(1-\delta) \mu] \leq e^{\frac{-\delta^{2} \mu}{2}}
\end{gathered}
$$

Chernoff Bound

Lemma

Let X_{1}, \ldots, X_{k} be \boldsymbol{k} independent binary random variables such that, for each $i \in[1, k], X_{i}$ equals 1 w.p. p_{i}, and 0 w.p. $\left(1-p_{i}\right)$. Let $X=\sum_{i=1}^{k} X_{i}$ and $\mu=\mathrm{E}[X]=\sum_{i} p_{i}$.

For any $\mathbf{0}<\boldsymbol{\delta}<\mathbf{1}$, it holds that:

$$
\operatorname{Pr}[|X-\mu| \geq \delta \mu] \leq 2 e^{\frac{-\delta^{2} \mu}{3}}
$$

$\operatorname{Pr}[X \geq(1+\delta) \mu] \leq e^{\frac{-\delta^{2} \mu}{3}}$ and $\operatorname{Pr}[X \leq(1-\delta) \mu] \leq e^{\frac{-\delta^{2} \mu}{2}}$

Proof.

In notes!

Example:Balls in a bin (Contd.)

Lemma

For any $\mathbf{0}<\epsilon<\mathbf{1}$, and $k \geq \mathbf{1}, \operatorname{Pr}\left[\left|p-p^{*}\right| \geq \epsilon\right] \leq 2 e^{-\frac{k \epsilon^{2}}{3}}$.

Proof.

Recall: $\boldsymbol{X}_{\boldsymbol{i}}$ is $\mathbf{1}$ is $\boldsymbol{i}^{\text {th }}$ ball is black, else $\mathbf{0}$. $B=\sum_{i=1}^{k} X_{i} . \mathrm{E}\left[X_{i}\right]=p^{*}, \mathrm{E}[B]=k p^{*} . p=B / k$.

Example:Balls in a bin (Contd.)

Lemma

For any $0<\epsilon<1$, and $k \geq 1, \operatorname{Pr}\left[\left|p-p^{*}\right| \geq \epsilon\right] \leq 2 e^{-\frac{k \epsilon^{2}}{3}}$.

Proof.

Recall: $\boldsymbol{X}_{\boldsymbol{i}}$ is $\mathbf{1}$ is $i^{\text {th }}$ ball is black, else $\mathbf{0}$.

$$
\begin{aligned}
B=\sum_{i=1}^{k} X_{i} \cdot \mathrm{E}\left[X_{i}\right]=p^{*}, & \mathrm{E}[B]=k p^{*} . p=B / k \\
\operatorname{Pr}\left[\left|p-p^{*}\right| \geq \epsilon\right] & =\operatorname{Pr}\left[\left|\frac{B}{k}-p^{*}\right| \geq \epsilon\right] \\
& =\operatorname{Pr}\left[\left|B-k p^{*}\right| \geq k \epsilon\right] \\
& =\operatorname{Pr}\left[\left|B-k p^{*}\right| \geq\left(\frac{\epsilon}{p^{*}}\right) k p^{*}\right]
\end{aligned}
$$

Example:Balls in a bin (Contd.)

Lemma

For any $\mathbf{0}<\epsilon<\mathbf{1}$, and $k \geq \mathbf{1}, \operatorname{Pr}\left[\left|p-p^{*}\right| \geq \epsilon\right] \leq 2 e^{-\frac{k \epsilon^{2}}{3}}$.

Proof.

Recall: $\boldsymbol{X}_{\boldsymbol{i}}$ is $\mathbf{1}$ is $i^{\text {th }}$ ball is black, else $\mathbf{0}$.

$$
B=\sum_{i=1}^{k} X_{i} . \mathrm{E}\left[X_{i}\right]=p^{*}, \mathrm{E}[B]=k p^{*} . p=B / k .
$$

$$
\begin{aligned}
\operatorname{Pr}\left[\left|p-p^{*}\right| \geq \epsilon\right] & =\operatorname{Pr}\left[\left|\frac{B}{k}-p^{*}\right| \geq \epsilon\right] \\
& =\operatorname{Pr}\left[\left|B-k p^{*}\right| \geq k \epsilon\right] \\
& =\operatorname{Pr}\left[\left|B-k p^{*}\right| \geq\left(\frac{\epsilon}{p^{*}}\right) k p^{*}\right]
\end{aligned}
$$

(Chernoff) $\leq 2 e^{-\frac{\epsilon^{2}}{3 p^{*}} k p^{*}}=2 e^{-\frac{k \epsilon^{2}}{3 p^{*}}}$

$$
\left(p^{*} \leq 1\right) \leq 2 e^{-\frac{k c^{2}}{3}}
$$

Example Summary

The problem was to estimate the fraction of black balls p^{*} in a bin filled with white and black balls. Our estimate was $p=\frac{B}{k}$ instead, where out of k draws (with replacement) B balls turns out black.

Markov's Inequality

For any $k \geq 1, \operatorname{Pr}\left[p \geq 2 p^{*}\right] \leq \frac{1}{2}$
Chebyshev's Inequality
For any $0<\epsilon<1$, and $k \geq 1, \operatorname{Pr}\left[\left|p-p^{*}\right| \geq \epsilon\right] \leq 1 / k \epsilon^{2}$.

Chernoff Bound

For any $0<\epsilon<1$, and $k \geq 1, \operatorname{Pr}\left[\left|p-p^{*}\right| \geq \epsilon\right] \leq 2 e^{-\frac{k \epsilon^{2}}{3}}$.

Part IV

Randomized QuickSort (Contd.)

Randomized QuickSort: Recall

Input: Array \boldsymbol{A} of \boldsymbol{n} numbers. Output: Numbers in sorted order.

Randomized QuickSort

(1) Pick a pivot element uniformly at random from \boldsymbol{A}.
(2) Split array into 3 subarrays: those smaller than pivot, those larger than pivot, and the pivot itself.
(3) Recursively sort the subarrays, and concatenate them.

Note: On every input randomized QuickSort takes $O(n \log n)$ time in expectation. On every input it may take $\boldsymbol{\Omega}\left(\boldsymbol{n}^{2}\right)$ time with some small probability.

Randomized QuickSort: Recall

Input: Array \boldsymbol{A} of \boldsymbol{n} numbers. Output: Numbers in sorted order.

Randomized QuickSort

(1) Pick a pivot element uniformly at random from \boldsymbol{A}.
(2) Split array into 3 subarrays: those smaller than pivot, those larger than pivot, and the pivot itself.
(3) Recursively sort the subarrays, and concatenate them.

Note: On every input randomized QuickSort takes $O(n \log n)$ time in expectation. On every input it may take $\boldsymbol{\Omega}\left(\boldsymbol{n}^{2}\right)$ time with some small probability.

Question: With what probability it takes $O(n \log n)$ time?

Randomized QuickSort: High Probability Analysis

Informal Statement

Random variable $Q(A)=\#$ comparisons done by the algorithm. We will show that $\operatorname{Pr}[Q(A) \leq 32 n \ln n] \geq 1-1 / n^{3}$.

Randomized QuickSort: High Probability Analysis

Informal Statement

Random variable $Q(A)=\#$ comparisons done by the algorithm. We will show that $\operatorname{Pr}[Q(A) \leq 32 n \ln n] \geq 1-1 / n^{3}$.

$$
\text { If } n=100 \text { then this gives } \operatorname{Pr}[Q(A) \leq 32 n \ln n] \geq 0.99999 \text {. }
$$

Randomized QuickSort: High Probability Analysis

Informal Statement

Random variable $Q(A)=\#$ comparisons done by the algorithm. We will show that $\operatorname{Pr}[Q(A) \leq 32 n \ln n] \geq 1-1 / n^{3}$.

Outline of the proof

- \boldsymbol{k} : depth of the recursion. Then $Q(A) \leq k n$.

Randomized QuickSort: High Probability Analysis

Informal Statement

Random variable $Q(A)=\#$ comparisons done by the algorithm. We will show that $\operatorname{Pr}[Q(A) \leq 32 n \ln n] \geq 1-1 / n^{3}$.

Outline of the proof

- k : depth of the recursion. Then $Q(A) \leq k n$.
- Prove that $k \leq 32 \ln n$ with high probability. Which will imply the result.

Randomized QuickSort: High Probability Analysis

Informal Statement

Random variable $Q(A)=\#$ comparisons done by the algorithm. We will show that $\operatorname{Pr}[Q(A) \leq 32 n \ln n] \geq 1-1 / n^{3}$.

Outline of the proof

- k : depth of the recursion. Then $Q(A) \leq k n$.
- Prove that $k \leq 32 \ln n$ with high probability. Which will imply the result.
(1) Focus on a single element. Prove that it "participates" in
$>32 \ln \boldsymbol{n}$ levels with probability at most $1 / \boldsymbol{n}^{4}$.
(2) By union bound, any of the \boldsymbol{n} elements participates in $>32 \ln \boldsymbol{n}$ levels with probability at most

Randomized QuickSort: High Probability Analysis

Informal Statement

Random variable $Q(A)=\#$ comparisons done by the algorithm. We will show that $\operatorname{Pr}[Q(A) \leq 32 n \ln n] \geq 1-1 / n^{3}$.

Outline of the proof

- k : depth of the recursion. Then $Q(A) \leq k n$.
- Prove that $k \leq 32 \ln \boldsymbol{n}$ with high probability. Which will imply the result.
(1) Focus on a single element. Prove that it "participates" in
$>32 \ln n$ levels with probability at most $1 / \boldsymbol{n}^{4}$.
(2) By union bound, any of the \boldsymbol{n} elements participates in $>32 \ln n$ levels with probability at most $1 / \boldsymbol{n}^{\mathbf{3}}$.

Randomized QuickSort: High Probability Analysis

Informal Statement

Random variable $Q(A)=\#$ comparisons done by the algorithm. We will show that $\operatorname{Pr}[Q(A) \leq 32 n \ln n] \geq 1-1 / n^{3}$.

Outline of the proof

- k : depth of the recursion. Then $Q(A) \leq k n$.
- Prove that $k \leq 32 \ln \boldsymbol{n}$ with high probability. Which will imply the result.
(1) Focus on a single element. Prove that it "participates" in
$>32 \ln n$ levels with probability at most $1 / \boldsymbol{n}^{4}$.
(2) By union bound, any of the \boldsymbol{n} elements participates in
$>32 \ln n$ levels with probability at most $1 / n^{3}$.
(3) Therefore, all elements participate in $\leq 32 \ln n$ w.p. $\left(1-1 / n^{3}\right)$.

Randomized QuickSort: High Probability Analysis

- If \boldsymbol{k} levels of recursion then $\boldsymbol{k} \boldsymbol{n}$ comparisons.

Randomized QuickSort: High Probability Analysis

- If \boldsymbol{k} levels of recursion then $\boldsymbol{k} \boldsymbol{n}$ comparisons.
- Fix an element $s \in \boldsymbol{A}$. We will track it at each level.
- Let S_{i} be the partition containing s at $\boldsymbol{i}^{\text {th }}$ level.
- $S_{1}=A$ and $S_{k}=\{s\}$.

Randomized QuickSort: High Probability Analysis

- If k levels of recursion then $k n$ comparisons.
- Fix an element $s \in \boldsymbol{A}$. We will track it at each level.
- Let S_{i} be the partition containing s at $i^{\text {th }}$ level.
- $S_{1}=A$ and $S_{k}=\{s\}$.
- We call s lucky in $i^{\text {th }}$ iteration, if balanced split:

$$
\left|S_{i+1}\right| \leq(3 / 4)\left|S_{i}\right| \text { and }\left|S_{i} \backslash S_{i+1}\right| \leq(3 / 4)\left|S_{i}\right| .
$$

Randomized QuickSort: High Probability Analysis

- If k levels of recursion then $k n$ comparisons.
- Fix an element $s \in \boldsymbol{A}$. We will track it at each level.
- Let S_{i} be the partition containing s at $i^{\text {th }}$ level.
- $S_{1}=A$ and $S_{k}=\{s\}$.
- We call s lucky in $i^{\text {th }}$ iteration, if balanced split:

$$
\left|S_{i+1}\right| \leq(3 / 4)\left|S_{i}\right| \text { and }\left|S_{i} \backslash S_{i+1}\right| \leq(3 / 4)\left|S_{i}\right| .
$$

- If $\rho=$ \#lucky rounds in first k rounds, then $\left|S_{k}\right| \leq(3 / 4)^{\rho} n$.

Randomized QuickSort: High Probability Analysis

- If k levels of recursion then $k n$ comparisons.
- Fix an element $s \in \boldsymbol{A}$. We will track it at each level.
- Let S_{i} be the partition containing s at $i^{\text {th }}$ level.
- $S_{1}=A$ and $S_{k}=\{s\}$.
- We call s lucky in $i^{\text {th }}$ iteration, if balanced split:

$$
\left|S_{i+1}\right| \leq(3 / 4)\left|S_{i}\right| \text { and }\left|S_{i} \backslash S_{i+1}\right| \leq(3 / 4)\left|S_{i}\right| .
$$

- If $\rho=$ \#lucky rounds in first k rounds, then
$\left|S_{k}\right| \leq(3 / 4)^{\rho} n$.
- For $\left|S_{k}\right|=1, \rho=\log _{4 / 3} n \leq 4 \ln n$ suffices.

How many rounds before $4 \ln n$ lucky rounds?

s lucky in round i if $\left|S_{i+1}\right| \leq(3 / 4)\left|S_{i}\right|$ and $\left|S_{i} \backslash S_{i+1}\right| \leq(3 / 4)\left|S_{i}\right|$

How many rounds before $4 \ln n$ lucky rounds?

s lucky in round i if $\left|S_{i+1}\right| \leq(3 / 4)\left|S_{i}\right|$ and $\left|S_{i} \backslash S_{i+1}\right| \leq(3 / 4)\left|S_{i}\right|$

- $X_{i}=1$ if s is lucky in $i^{\text {th }}$ round.

How many rounds before $4 \ln n$ lucky rounds?

s lucky in round i if $\left|S_{i+1}\right| \leq(3 / 4)\left|S_{i}\right|$ and $\left|S_{i} \backslash S_{i+1}\right| \leq(3 / 4)\left|S_{i}\right|$

- $X_{i}=1$ if s is lucky in $i^{\text {th }}$ round.
- Observation: X_{1}, \ldots, X_{k} are independent variables.
- $\operatorname{Pr}\left[X_{i}=1\right]=\frac{1}{2} \quad$ Why?

How many rounds before $4 \ln n$ lucky rounds?

s lucky in round i if $\left|S_{i+1}\right| \leq(3 / 4)\left|S_{i}\right|$ and $\left|S_{i} \backslash S_{i+1}\right| \leq(3 / 4)\left|S_{i}\right|$

- $X_{i}=1$ if s is lucky in $i^{\text {th }}$ round.
- Observation: X_{1}, \ldots, X_{k} are independent variables.
- $\operatorname{Pr}\left[X_{i}=1\right]=\frac{1}{2} \quad$ Why?
- Clearly, $\rho=\sum_{i=1}^{k} X_{i}$. Let $\mu=\mathrm{E}[\rho]=\frac{k}{2}$.

How many rounds before $4 \ln n$ lucky rounds?

s lucky in round i if $\left|S_{i+1}\right| \leq(3 / 4)\left|S_{i}\right|$ and $\left|S_{i} \backslash S_{i+1}\right| \leq(3 / 4)\left|S_{i}\right|$

- $X_{i}=1$ if s is lucky in $i^{\text {th }}$ round.
- Observation: X_{1}, \ldots, X_{k} are independent variables.
- $\operatorname{Pr}\left[X_{i}=1\right]=\frac{1}{2} \quad$ Why?
- Clearly, $\rho=\sum_{i=1}^{k} X_{i}$. Let $\mu=\mathrm{E}[\rho]=\frac{k}{2}$.
- Set $k=32 \ln n$ and $\delta=\frac{3}{4}$. $(1-\delta)=\frac{1}{4}$.

How many rounds before $4 \ln n$ lucky rounds?

s lucky in round i if $\left|S_{i+1}\right| \leq(3 / 4)\left|S_{i}\right|$ and $\left|S_{i} \backslash S_{i+1}\right| \leq(3 / 4)\left|S_{i}\right|$

- $X_{i}=1$ if s is lucky in $i^{\text {th }}$ round.
- Observation: X_{1}, \ldots, X_{k} are independent variables.
- $\operatorname{Pr}\left[X_{i}=1\right]=\frac{1}{2} \quad$ Why?
- Clearly, $\rho=\sum_{i=1}^{k} X_{i}$. Let $\mu=\mathrm{E}[\rho]=\frac{k}{2}$.
- Set $k=32 \ln n$ and $\delta=\frac{3}{4}$. $(1-\delta)=\frac{1}{4}$.

Probability of NOT getting $4 \ln \boldsymbol{n}$ lucky rounds out of $\mathbf{3 2} \ln \boldsymbol{n}$ rounds

How many rounds before $4 \ln n$ lucky rounds?

s lucky in round i if $\left|S_{i+1}\right| \leq(3 / 4)\left|S_{i}\right|$ and $\left|S_{i} \backslash S_{i+1}\right| \leq(3 / 4)\left|S_{i}\right|$

- $X_{i}=1$ if s is lucky in $i^{t h}$ round.
- Observation: X_{1}, \ldots, X_{k} are independent variables.
- $\operatorname{Pr}\left[X_{i}=1\right]=\frac{1}{2} \quad$ Why?
- Clearly, $\rho=\sum_{i=1}^{k} X_{i}$. Let $\mu=\mathrm{E}[\rho]=\frac{k}{2}$.
- Set $k=32 \ln n$ and $\delta=\frac{3}{4}$. $(1-\delta)=\frac{1}{4}$.

Probability of NOT getting $4 \ln \boldsymbol{n}$ lucky rounds out of $\mathbf{3 2} \ln \boldsymbol{n}$ rounds

$$
\begin{aligned}
\operatorname{Pr}[\rho \leq 4 \ln n] & =\operatorname{Pr}[\rho \leq k / 8] \\
& =\operatorname{Pr}[\rho \leq(1-\delta) \mu]
\end{aligned}
$$

How many rounds before $4 \ln n$ lucky rounds?

s lucky in round i if $\left|S_{i+1}\right| \leq(3 / 4)\left|S_{i}\right|$ and $\left|S_{i} \backslash S_{i+1}\right| \leq(3 / 4)\left|S_{i}\right|$

- $X_{i}=1$ if s is lucky in $i^{\text {th }}$ round.
- Observation: X_{1}, \ldots, X_{k} are independent variables.
- $\operatorname{Pr}\left[X_{i}=1\right]=\frac{1}{2} \quad$ Why?
- Clearly, $\rho=\sum_{i=1}^{k} X_{i}$. Let $\mu=\mathrm{E}[\rho]=\frac{k}{2}$.
- Set $k=32 \ln n$ and $\delta=\frac{3}{4} .(1-\delta)=\frac{1}{4}$.

Probability of NOT getting $4 \ln \boldsymbol{n}$ lucky rounds out of $\mathbf{3 2} \boldsymbol{\operatorname { l n }} \boldsymbol{n}$ rounds
$\operatorname{Pr}[\rho \leq 4 \ln n]=\operatorname{Pr}[\rho \leq k / 8]$

$$
=\operatorname{Pr}[\rho \leq(1-\delta) \mu]
$$

(Chernoff) $\leq 2 e^{\frac{-\delta^{2} \mu}{2}}=2 e^{-\frac{9 k}{64}}$

$$
=2 e^{-4.5 \ln n} \leq \frac{1}{n^{4}}
$$

Randomized QuickSort w.h.p. Analysis

- n input elements. Probability that there is some un-lucky element is at most $\frac{1}{n^{4}} * n=\frac{1}{n^{3}}$.

Randomized QuickSort w.h.p. Analysis

- n input elements. Probability that there is some un-lucky element is at most $\frac{1}{n^{4}} * n=\frac{1}{n^{3}}$.
- $\operatorname{Pr}[$ depth of recursion in QuickSort $>32 \ln n] \leq \frac{1}{n^{3}}$.

Randomized QuickSort w.h.p. Analysis

- n input elements. Probability that there is some un-lucky element is at most $\frac{1}{n^{4}} * n=\frac{1}{n^{3}}$.
- $\operatorname{Pr}[$ depth of recursion in QuickSort $>32 \ln n] \leq \frac{1}{n^{3}}$.

Theorem

With high probability (i.e., $1-\frac{1}{n^{3}}$) the depth of the recursion of QuickSort is $\leq \mathbf{3 2} \ln \boldsymbol{n}$. Due to \boldsymbol{n} comparisons in each level, with high probability, the running time of QuickSort is $O(n \ln n)$.

Randomized QuickSort w.h.p. Analysis

- n input elements. Probability that there is some un-lucky element is at most $\frac{1}{n^{4}} * n=\frac{1}{n^{3}}$.
- $\operatorname{Pr}[$ depth of recursion in QuickSort $>32 \ln n] \leq \frac{1}{n^{3}}$.

Theorem

With high probability (i.e., $1-\frac{1}{n^{3}}$) the depth of the recursion of QuickSort is $\leq \mathbf{3 2} \ln \boldsymbol{n}$. Due to \boldsymbol{n} comparisons in each level, with high probability, the running time of QuickSort is $O(n \ln n)$.

Q: How to increase the probability?

