The Fundamental Theorem of Linear Programming. A canonical linear program Π has an optimal solution x^* if and only if the dual linear program Π^* has an optimal solution y^* such that $c \cdot x^* = y^* A x^* = y^* \cdot b$.

Weak duality: If x is feasible for Π, y is feasible for Π^*, then $c \cdot x \leq y^* A x \leq y^* \cdot b$

Proof: x is feasible $\Rightarrow A x \leq b$ $\Rightarrow y A x \leq y^* \cdot b$

y is feasible $\Rightarrow y \geq 0$ $\Rightarrow y A x \leq y^* \cdot b$

Symmetry $\Rightarrow c \cdot x \leq y^* A x$

Strong duality \Rightarrow no gap
Dual variables y^*

Normals to opt. constraints define a coordinate frame.

Dual variables are coeffs of c in this coord frame.

$y^*_x = \text{force applied by constraint 1}$

$y^*_z = \text{force applied by constraint 2}$
\[\text{basis} = \text{set of } d \text{ linearly independent constraints} \]

(ignores degeneracies)

location \(\rightarrow \) solve equations
value of a basis = c \cdot \text{location}

There are exactly \((n+d) \) bases

Basis is feasible if \(Ax \leq b \)
where \(x = \text{location} \)
\(\Rightarrow \) vertex of feasible polyhedron

Basis is locally optimal
\(\Rightarrow \) location is optimal for LP with same obj and only constraints in the basis

\[\begin{align*}
\min & \quad c \cdot y \\
\text{s.t.} & \quad y \cdot A \geq c \\
& \quad y \geq 0
\end{align*} \]

\[\begin{align*}
\max & \quad c \cdot x \\
\text{s.t.} & \quad A \cdot x \leq b \\
& \quad x \geq 0
\end{align*} \]

\(d \) variables
\(> n+d \) constraints

\(n \) vars
\(> d+n \) constraints

Feasible \(\Rightarrow \) vertices of feasible region

Locally Optimal \(\Rightarrow \) dual feasible

\[\text{basis} \leftrightarrow \text{dual basis} \]

\((n+d) = (d+n) \)

\[\begin{align*}
\text{Feasible} & \leftrightarrow \loc \text{ opt.} \\
\loc \text{ opt.} & \leftrightarrow \text{feasible} \\
\text{Optimal} & \leftrightarrow \text{optimal}
\end{align*} \]
PrimalSimplex(H):

if $\cap H = \emptyset$

 return **Infeasible**

$x \leftarrow$ any feasible vertex / basis

while x is not locally optimal

 if every feasible neighbor of x is higher than x
 return **Unbounded**
 else
 $x \leftarrow$ any feasible neighbor of x that is lower than x

Feasibility — depends on b but not c

Local optimality — depends on c but not b
DualSimplex(H):

- If there is no locally optimal vertex, return `UNBOUNDED`.
- Set $x ←$ any locally optimal vertex (basis).

 While x is not feasible:

 - **(pivot upward, maintaining local optimality)**
 - If every locally optimal neighbor of x is lower than x, return `INFEASIBLE`.
 - Else, set $x ←$ any locally optimal neighbor of x that is higher than x.

 Return x.

Note:

- Two bases are neighbors if and only if they share $d-1$ constraints.
Dual-Primal Simplex (H):

1. \(x \leftarrow \text{any vertex} \)
2. \(\hat{H} \leftarrow \text{any rotation of } H \text{ that makes } x \text{ locally optimal} \)

 \[
 \text{Fast while } x \text{ is not feasible }
 \begin{align*}
 &\quad \text{if every locally optimal neighbor of } x \text{ is lower (wrt } \hat{H}) \text{ than } x \\
 &\quad \quad \text{return INFEASIBLE} \\
 &\quad \text{else} \\
 &\quad \quad x \leftarrow \text{any locally optimal neighbor of } x \text{ that is higher (wrt } \hat{H}) \text{ than } x
 \end{align*}

 \text{while } x \text{ is not locally optimal }

 \begin{align*}
 &\quad \text{if every feasible neighbor of } x \text{ is higher than } x \\
 &\quad \quad \text{return UNBOUNDED} \\
 &\quad \text{else} \\
 &\quad \quad x \leftarrow \text{any feasible neighbor of } x \text{ that is lower than } x
 \end{align*}

 return \(x \)
Pick any vertex x

Change offsets b so that x is feasible

Pivot to a local opt

Pivot up to a feasible vertex x^*

$\text{PrimalDualSimplex}(H)$:

$x \leftarrow$ any vertex

$\tilde{H} \leftarrow$ any translation of H that makes x feasible \text{easy}

while x is not locally optimal

if every feasible neighbor of x is higher (wrt \tilde{H}) than x

return UNBOUNDED

else

$x \leftarrow$ any feasible neighbor of x that is lower (wrt \tilde{H}) than x

while x is not feasible

if every locally optimal neighbor of x is lower than x

return INFEASIBLE

else

$x \leftarrow$ any locally-optimal neighbor of x that is higher than x

return x
Brute force enumeration: \(\binom{n^d + d}{d} \) bases
\(\Theta(n^d) \) exponential 😞
Worst case: \(n = d \) \(\binom{2n}{n} \) bases
\(\approx \Theta(4^n \sqrt{n}) \)
Feasible bases: \(\Theta(n^{\frac{d}{2} + 1}) \) \(\mathcal{O}(n) \) when \(d = 2 \cdot 13 \)
\(\mathcal{O}(n^2) \) worst case \(n = d \)

Stupid pivots \(\rightarrow \) exptime
Smart pivots \(\rightarrow \)

best known subexponential super-polynomial # pivots
2d facets in d dim
2d bases
Klee-Minc cubes

\textbf{BIG OPEN QUESTION: Pivot \rightarrow poly # pivots?}

Mostly Fast
Random LP \(\rightarrow \) simplex fast on average
Arbitrary LP + noise \(\rightarrow \) fast on average

"Smoothed analysis" \(\mathcal{O}(n + \log^2 n) \)

Big open question — diameter of feasible polytope
Hirsch conjecture: \(\leq n \) NOPE
Weak \(\leq \mathcal{O}(n) \) OPEN

poly time?
Ellipsoid