Standard flow network:

Directed graph $G = (V, E)$
Capacity $c(e) \geq 0$ for each $e \in E$

Two vertices $s, t \in V$

Feasible Flow =

$F : E \to \mathbb{R}$
$s.t. F(e) \leq c(e)$

$\sum w \in \omega (v \rightarrow w) - \sum u \in u (u \rightarrow v) = b(v)$
for all vertices $v \neq s, t$

Maximize

$\mid F \mid = \sum w \in \omega F(s \rightarrow w) - \sum u \in u F(u \rightarrow s)$

Find a feasible flow if one exists

$\sum b(v) = 0 \Rightarrow \text{demand consumption}$
$b(v) < 0 \Rightarrow \text{supply production}$

F is Feasible $\Rightarrow \sum v \in v (\sum u \in u (u \rightarrow v) - \sum w \in w (v \rightarrow w))$

$= \sum u \in u F(u \rightarrow v) - \sum w \in w F(v \rightarrow w) = 0$

$\sum b(v) = 0$ is necessary but not sufficient

no Feasible Flow because $\sum b(v) \neq 0$
Solve by reducing to standard max flow

Given $G = (V, E)$
$c(e)$ for all $e \in E$
$b(v)$ for all $v \in V$

Construct $G' = (V', E')$
$V' = V \cup \{s, t\}$
$E' = E \cup \{s \rightarrow v \mid b(v) < 0\}$
$E' = E \cup \{v \rightarrow t \mid b(v) > 0\}$
$c(s \rightarrow v) = -b(v)$
$c(v \rightarrow t) = b(v)$

A feasible flow in G and the corresponding saturating flow in G'.

Let F be any feasible flow in G
Define $F'(u \rightarrow v) = \begin{cases} F(u \rightarrow v) & \text{if } u \rightarrow v \in E \\ -b(v) & \text{if } u = s \\ b(v) & \text{if } v = t \end{cases}$

f' saturating $\Rightarrow F'_{e_{in}} = f$ is feasible

Max flow via Orlin's
$O(|V'|E') = O(|V|E)$ time
Max-flow min-cut theorem? For any x,
- Either $|F| \geq x$
- Or $|S,T| \leq x$

In a network with non-zero $b(v)$,
- a cut (S,T) is infeasible if
 \[
 |S,T| = \sum_{u \in S} \sum_{v \in T} c(u \to v) < \sum_{v \in T} b(v) = b(T)
 \]

\[\text{demand of } T\]

Every flow network has either feasible flow or infeasible cut.

Ford-Fulkerson?
Augmenting path?
Residual graph?

\[\text{pseudoFlow: } F: E \to \mathbb{R}\]
- Feasible: $0 \leq F(e) \leq c(e)$ for all e
- Balanced: $\sum_{u \in S} F(u \to v) - \sum_{u \in T} F(u \to v) = b(v)$ for all v
- Flow = balanced pseudoflow

From left to right: A pseudoflow ψ in a flow network G; the residual graph G_{ψ} with one augmenting path highlighted; and the updated pseudoflow after pushing 4 units along the augmenting path.

Aug path = path from u to v such that $b_{\psi}(u) > 0$ and $b_{\psi}(d) > 0$.
\[b_f(v) = b(v) - \left(\sum_u f(u \rightarrow v) - \sum_w f(v \rightarrow w) \right) \]

Feasible Flow \((V, E, c, b)\):

- for every edge \(e \in E \)

 \[\psi(e) \leftarrow 0 \]

 \[B \leftarrow \sum_v |b(v)|/2 \]

 while \(B > 0 \)

 construct \(G_\psi \)

 \(\langle \text{Find augmenting path } \pi \rangle \)

 \(s \leftarrow \text{any vertex with } b_\psi(s) < 0 \)

 if \(s \) cannot reach a vertex \(t \) in \(G_\psi \) with \(b_\psi(t) > 0 \)

 return **INFEASIBLE**

 \(t \leftarrow \text{any vertex reachable from } s \) with \(b_\psi(t) > 0 \)

 \(\pi \leftarrow \text{any path in } G_\psi \text{ from } s \) to \(t \)

 \(\langle \text{Push as much flow as possible along } \pi \rangle \)

 \[R \leftarrow \min \{-b_\psi(s), b_\psi(t), \min_{e \in \pi} c_\psi(e)\} \]

 \[B \leftarrow B - R \]

 for every directed edge \(e \in \pi \)

 if \(e \in E \)

 \[\psi(e) \leftarrow \psi(e) + R \]

 else \(\langle \text{rev}(e) \in E \rangle \)

 \[\psi(e) \leftarrow \psi(e) - R \]

 return \(\psi \)

Integer \(\Rightarrow O(EB) \) time

Orlin’s \(\Rightarrow O(EV) \) time
Maximum Flow with non-zero balances

1. Feasible (balanced) flow F in G
2. Find max flow F' in G_f — standard
3. Return $F + F'$
 value = $|F| + |F'|$

Feasible flow F might have non-zero value

Feasible (balanced) flow

$O(VE)$ time
Max-flow with lower bounds on the edges

1. Find feasible flow F_0 in G
2. Find max-flow f' in G_f
3. Return $f + f'$

$f(u \rightarrow v) = -f(v \rightarrow u)$
$c(u \rightarrow v) = -l(v \rightarrow u)$
$l(u \rightarrow v) = -c(v \rightarrow u)$

1(a) Find a feasible pseudoflow f_0 in G

(b) Find a feasible balanced flow F_1 in G_f

2. Find max (feasible, balanced) flow in G_{f_1}

Max-flow in G_{f_0}

$0 \leq F \leq c$

$0 \leq l - F \leq 0 \leq c - F$

$c - F$

$f - l$

$O(VE)$ time