CS $473 \diamond$ Spring 2020 ค Homework 6 ~

Due Wednesday, March 25, 2020 at 9pm
(after spring break)

Abstract

For the rest of the semester, you are welcome to use randomized algorithms in your homework and exam solutions, but please report your running times carefully. Without further qualification, " $O\left(n^{2}\right)$ time" means $O\left(n^{2}\right)$ time in the worst case. If you mean $O\left(n^{2}\right)$ expected time, or $O\left(n^{2}\right)$ time with high probability, you must write that explicitly.

1. Describe and analyze an even faster algorithm to find the length of the longest substring that appears both forward and backward in an input string $T[1 . . n]$. The forward and backward substrings must not overlap. Here are several examples:

- Given the input string ALGORITHM, your algorithm should return o.
- Given the input string RECURSION, your algorithm should return 1 , for the substring R.
- Given the input string REDIVIDE, your algorithm should return 3, for the substring EDI. (Remember: The forward and backward substrings must not overlap!)

Yes, this exact problem appeared in Midterm 1, so you should already know how to solve it in $O\left(n^{2}\right)$ time. You can do better now.
2. Describe an efficient algorithm to determine if a given $p \times q$ rectangular pattern of bits appears anywhere in an $m \times n$ bitmap. (The pattern may be shifted horizontally and/or vertically, but it may not be rotated or reflected.)

3. Describe an efficient algorithm to decide, given two rooted ordered trees P and T, whether P (the "pattern") occurs anywhere as a subtree of T (the "text").

A rooted ordered tree is a rooted tree where every node has a (possibly empty) sequence of children. The order of these children matters: Two rooted ordered trees are identical if and only if their roots have the same number of children and, for each index i, the subtrees rooted at the i th children of both roots are identical.

For purposes of this problem, a subtree of T contains some node and all its descendants in T, along with the edges of T between those vertices.

There is no data stored in the nodes, only pointers to children (if any). We want an algorithm that compares the shapes of the trees.

For example, in the figure below, P appears exactly once as a subtree of T.

