
CS 473 ] Spring 2020
Y Homework 5 Z

Due Wednesday, March 11, 2020 at 9pm

1. In this problem we consider yet another method for universal hashing. Suppose we are
hashing from the universe U = {0,1, . . . , 2w − 1} of w-bit strings to a hash table of size
m = 2`; that is, we are hashing w-bit words into `-bit labels. To define our universal
family of hash functions, we think of words and labels as boolean vectors of length w and `,
respectively, and we specify our hash function by choosing a random boolean matrix.

For any `×w matrix M of 0s and 1s, define the hash function hM : {0, 1}w→ {0,1}` by
the boolean matrix-vector product

hM (x) = M x mod 2=
w
⊕

i=1

Mi x i =
⊕

i : x i=1

Mi .

where ⊕ denotes bitwise exclusive-or (that is, addition mod 2), Mi denotes the ith column
of M , and x i denotes the ith bit of x . Let M = {hm | M ∈ {0,1}w×`} denote the set of all
such random-matrix hash functions.

For example, suppose w= 8 and `= 4. Let M be the w× ` matrix

M =







0 1 0 0 1 1 1 1
1 0 1 1 0 0 1 1
1 0 0 1 0 1 1 0
1 0 1 0 1 0 1 1







Then we can compute hM (173) = 12 as follows:







0 1 0 0 1 1 1 1
1 0 1 1 0 0 1 1
1 0 0 1 0 1 1 0
1 0 1 0 1 0 1 1





























1
0
1
0
1
1
0
1























=







0
1
1
1






⊕







0
1
0
1






⊕







1
0
0
1






⊕







1
0
1
0






⊕







1
1
0
1






=







1
1
0
0







(a) Prove that M is a universal family of hash functions.
(b) Prove that M is not uniform.
(c) Now consider a modification of the previous scheme, where we specify a hash

function by a random matrix M ∈ {0,1}`×w and an independent random offset vector
b ∈ {0, 1}`:

hM ,b(x) = (M x + b)mod 2 =

� w
⊕

i=1

Mi x i

�

⊕ b

Prove that the family M+ of all such functions is strongly universal (2-uniform).
(d) Prove that M+ is not 4-uniform.
(e) [Extra credit] Prove that M+ is actually 3-uniform.



CS 473 Homework 5 (due March 11) Spring 2020

2. Reservoir sampling is a method for choosing an item uniformly at random from an
arbitrarily long stream of data.

GetOneSample(stream S):
`← 0
while S is not done

x ← next item in S
`← `+ 1
if Random(`) = 1

sample← x (?)
return sample

At the end of the algorithm, the variable ` stores the length of the input stream S; this
number is not known to the algorithm in advance. If S is empty, the output of the algorithm
is (correctly!) undefined.

In the following questions, consider an arbitrary non-empty input stream S, and let n
denote the (unknown) length of S.

(a) Prove that the item returned by GetOneSample(S) is chosen uniformly at random
from S.

(b) What is the exact expected number of times that GetOneSample(S) executes line (?)?

(c) What is the exact expected value of ` when GetOneSample(S) executes line (?) for
the last time?

(d) What is the exact expected value of `when either GetOneSample(S) executes line (?)
for the second time (or the algorithm ends, whichever happens first)?

3. (This is a continuation of the previous problem.) Describe and analyze an algorithm that
returns a subset of k distinct items chosen uniformly at random from a data stream of
length at least k. Prove that your algorithm is correct. Your algorithm should have the
following form:

GetSample(stream S, k):
〈〈Do some preprocessing〉〉
while S is not done

x ← next item in S
〈〈Do something with x〉〉

return 〈〈something〉〉

Both the time for each 〈〈step〉〉 in your algorithm and the space for any necessary data
structures must be bounded by functions of k, not the length of the stream.

For example, if k = 2 and the stream contains the sequence 〈«,ª,©,¨〉, your algorithm
should return the subset {©,«} with probability 1/6.

2


