
CS 473 ] Spring 2020
Y Homework 4 Z

Due Wednesday, March 4, 2020 at 9pm

1. Consider a random walk on a path with vertices numbered 1,2, . . . , n from left to right. At
each step, we flip a coin to decide which direction to walk, moving one step left or one step
right with equal probability. The random walk ends when we fall off one end of the path,
either by moving left from vertex 1 or by moving right from vertex n.

(a) Prove that if we start at vertex 1, the probability that the walk ends by falling off the
right end of the path is exactly 1/(n+ 1).

(b) Prove that if we start at vertex k, the probability that the walk ends by falling off the
right end of the path is exactly k/(n+ 1).

(c) Prove that if we start at vertex 1, the expected number of steps before the random
walk ends is exactly n.

(d) What is the exact expected length of the random walk if we start at vertex k, as a
function of n and k? Prove your result is correct. (For partial credit, give a tight
Θ-bound for the case k = (n+ 1)/2, assuming n is odd.)

[Hint: Trust the recursion fairy. Yes, (b) implies (a) and (d) implies (c).]

2. The following randomized variant of “one-armed quicksort” selects the kth smallest element
in an unsorted array A[1 .. n]. As usual, Partition(A[1 .. n], p) partitions the array A into
three parts by comparing the pivot element A[p] to every other element, using n − 1
comparisons, and returns the new index of the pivot element.

QuickSelect(A[1 .. n], k) :
r ← Partition(A[1 .. n],Random(n))

if k < r
return QuickSelect(A[1 .. r − 1], k)

else if k > r
return QuickSelect(A[r + 1 .. n], k− r)

else
return A[k]

(a) State a recurrence for the expected running time of QuickSelect, as a function of n
and k.

(b) What is the exact probability that QuickSelect compares the ith smallest and jth
smallest elements in the input array? The correct answer is a simple function of i, j,
and k (with a few cases). [Hint: Check your answer by trying a few small examples.]

(c) What is the exact probability that in some recursive call to QuickSelect, the first
argument is the subarray A[i .. j]? The correct answer is a simple function of i, j,
and k (with more cases). [Hint: Check your answer by trying a few small examples.]

(d) Show that for any n and k, QuickSelect runs in Θ(n) expected time. You can use
either the recurrence from part (a) or the probabilities from part (b) or (c).
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3. A meldable priority queue stores a set of priorities from some totally-ordered universe
(such as the integers) and supports the following operations:

• MakeQueue: Return a new priority queue containing the empty set.

• FindMin(Q): Return the smallest element of Q (if any).

• DeleteMin(Q): Remove the smallest element in Q (if any).

• Insert(Q, x): Insert element x into Q, if it is not already there.

• DecreasePriority(Q, x , y): Replace an element x ∈Q with a new element y < x .
(If y ≥ x , the operation fails.) The input includes a pointer directly to the node in Q
containing x .

• Delete(Q, x): Delete the element x ∈Q. The input is a pointer directly to the node
in Q containing x .

• Meld(Q1,Q2): Return a new priority queue containing all the elements of Q1 and Q2;
this operation destroys Q1 and Q2. The elements of Q1 and Q2 could be arbitrarily
intermixed; we do not assume, for example, that every element of Q1 is smaller than
every element of Q2.

A simple way to implement such a data structure is to use a heap-ordered binary tree,
where each node stores a priority, along with pointers to its parent and two children. Meld
can be implemented using the following randomized algorithm. The input consists of
pointers to the roots of the two trees.

Meld(Q1,Q2):
if Q1 = Null then return Q2
if Q2 = Null then return Q1

if priority(Q1)> priority(Q2)
swap Q1↔Q2

with probability 1/2
left(Q1)←Meld(left(Q1),Q2)

else
right(Q1)←Meld(right(Q1),Q2)

return Q1

(a) Prove that for any heap-ordered binary trees Q1 and Q2 (not just those constructed by
the operations listed above), the expected running time of Meld(Q1,Q2) is O(log n),
where n= |Q1|+ |Q2|. [Hint: What is the expected length of a random root-to-leaf
path in an n-node binary tree, where each left/right choice is made with equal
probability?]

(b) Prove that Meld(Q1,Q2) runs in O(log n) time with high probability. [Hint: You can
use Chernoff bounds, but the simpler identity
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≤ (ce)k is actually sufficient.]

(c) Show that each of the other meldable priority queue operations can be implemented
with at most one call to Meld and O(1) additional time. (It follows that every
operation takes O(log n) time with high probability.)
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