1. (a) Give a linear-programming formulation of the bipartite maximum matching problem. The input is a bipartite graph $G = (U \cup V; E)$, where $E \subseteq U \times V$; the output is the largest matching in G. Your linear program should have one variable for each edge. (Don't worry about the optimal solution being integral; it will be.)

(b) Now derive the dual of your linear program from part (a). What do the dual variables represent? What does the objective function represent? What problem is this!?

2. Given points $(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)$ in the plane, the linear regression problem asks for real numbers a and b such that the line $y = ax + b$ fits the points as closely as possible, according to some criterion. The most common fit criterion is minimizing the L_2 error, defined as follows:

$$
\varepsilon_2(a, b) = \sum_{i=1}^{n}(y_i - ax_i - b)^2.
$$

But there are many other ways of measuring a line's fit to a set of points, some of which can be optimized via linear programming.

(a) The L_1 error (or total absolute deviation) of the line $y = ax + b$ is defined as follows:

$$
\varepsilon_1(a, b) = \sum_{i=1}^{n}|y_i - ax_i - b|.
$$

Describe a linear program whose solution (a, b) describes the line with minimum L_1 error.

(b) The L_∞ error (or maximum absolute deviation) of the line $y = ax + b$ is defined as follows:

$$
\varepsilon_\infty(a, b) = \max_{i=1}^{n}|y_i - ax_i - b|.
$$

Describe a linear program whose solution (a, b) describes the line with minimum L_∞ error.

1This measure is also known as sum of squared residuals, and the algorithm to compute the best fit is normally called (ordinary/linear) least squares.
3. Suppose you are given a rooted tree T, where every edge e has two associated values: a non-negative length $\ell(e)$ and a cost $\$e$ (which could be positive, negative, or zero). Your goal is to add a non-negative stretch $s(e) \geq 0$ to the length of every edge e in T, subject to the following conditions:

- Every root-to-leaf path π in T has the same total stretched length $\sum_{e \in \pi} (\ell(e) + s(e))$
- The total weighted stretch $\sum_e s(e) \cdot \$e$ is as small as possible.

(a) Describe an instance of this problem with no optimal solution.

(b) Give a concise linear programming formulation of this problem.

(c) Suppose that for the given tree T and the given lengths and costs, the optimal solution to this problem is unique. Prove that in the optimal solution, $s(e) = 0$ for every edge on some longest root-to-leaf path in T. In other words, prove that the optimally stretched tree has the same depth as the input tree. [Hint: What is a basis in your linear program? When is a basis feasible?]

(d) Describe and analyze an algorithm that solves this problem in $O(n)$ time. Your algorithm should either compute the minimum total weighted stretch, or report correctly that the total weighted stretch can be made arbitrarily negative.