- The World's Most Useful Limit: $\lim_{n\to\infty} \left(1+\frac{\alpha}{n}\right)^n = e^{\alpha}$ for any real number α .
- The World's Most Useful Inequality: $1 + x \le e^x$ for all x

Tail Inequalities

Suppose *X* is the sum of random indicator variables $X_1, X_2, ..., X_n$. For each index *i*, let $p_i = \Pr[X_i = 1] = \mathbb{E}[X_i]$, and let $\mu = \sum_i p_i = \mathbb{E}[X]$.

• Markov's Inequality:

$$\Pr[X \ge x] \le \frac{\mu}{x} \qquad \text{for all } x > 0, \text{ and therefore...}$$
$$\Pr[X \ge (1+\delta)\mu] \le \frac{1}{1+\delta} \qquad \text{for all } \delta > 0$$

• Chebyshev's Inequality: If the variables X_i are pairwise independent, then...

$$Pr[(X - \mu)^{2} \ge z] < \frac{\mu}{z} \qquad \text{for all } z > 0, \text{ and therefore...}$$

$$Pr[X \ge (1 + \delta)\mu] < \frac{1}{\delta^{2}\mu} \qquad \text{for all } \delta > 0$$

$$Pr[X \le (1 - \delta)\mu] < \frac{1}{\delta^{2}\mu} \qquad \text{for all } \delta > 0$$

• Higher Moment Inequalities: If the variables X_i are 2k-wise independent, then...

$$Pr[(X - \mu)^{2k} \ge z] = O\left(\frac{\mu^k}{z}\right) \qquad \text{for all } z > 0, \text{ and therefore.}$$

$$Pr[X \ge (1 + \delta)\mu] = O\left(\frac{1}{\delta^{2k}\mu^k}\right) \qquad \text{for all } \delta > 0$$

$$Pr[X \le (1 - \delta)\mu] = O\left(\frac{1}{\delta^{2k}\mu^k}\right) \qquad \text{for all } \delta > 0$$

• **Chernoff's Inequality:** If the variables *X_i* are fully independent, then. . .

for all $x \ge \mu$, and therefore
for all $0 < \delta < 1$
for all $0 < \delta < 1$
f f

Hashing Properties

 \mathcal{H} is a set of functions from some universe \mathcal{U} to $[m] = \{0, 1, 2, \dots, m-1\}$.

- Universal: $\Pr_{h \in \mathcal{H}}[h(x) = h(y)] \le \frac{1}{m}$ for all distinct items $x \ne y$
- Near-universal: $\Pr_{h \in \mathcal{H}}[h(x) = h(y)] \le O\left(\frac{1}{m}\right)$ for all distinct items $x \ne y$
- Strongly universal: $\Pr_{h \in \mathcal{H}}[h(x) = i \text{ and } h(y) = j] = \frac{1}{m^2}$ for all distinct $x \neq y$ and all i and j
- **2-uniform:** Same as strongly universal.
- Ideal Random: Complete fiction.