CS 473: Algorithms, Spring 2018
HW 5 (due Wednesday, March 7th at 8pm)

This homework contains three problems. Read the instructions for submitting homework
on the course webpage.

Collaboration Policy: For this home work, each student can work in a group with upto three
members. Only one solution for each group needs to be submitted. Follow the submission instruc-
tions carefully.

1. Your boss wants you to find a perfect hash function for mapping a known set of n items into
a table of size m. A hash function is perfect if there are no collisions; each of the n items
is mapped to a different slot in the hash table. Of course, a perfect hash function is only
possible if m > n. After cursing your algorithms instructor for not teaching you about (this
kind of) perfect hashing, you decide to try something simple: repeatedly pick ideal random
hash functions until you find one that happens to be perfect.

Ideal randomness means that the hash function is chosen uniformly at random from the set
of all functions from U to {0,1,---,(m —1)}. Intuitively, an ideal random hash function is a
function h : U — {0,1,--- ;m — 1} such that for each x € U the value of h(x) is decided by
rolling an unbiased m-sided die.

(a) Suppose you pick an ideal random hash function h. What is the ezact expected number
of pair-wise collisions, as a function of n (the number of items) and m (the size of the
table)? Dont worry about how to resolve collisions; just count them. For z # vy, if
h(z) = h(y) then we say that (z,y) constitute a pair-wise collision.

(b) What is the ezact probability that a random hash function is perfect?

(c) What is the ezact expected number of different random hash functions you have to test
before you find a perfect hash function?

(d) What is the ezact probability that none of the first N random hash functions you try is
perfect?

(e) How many ideal random hash functions do you have to test to find a perfect hash function
with high probability?

2. Tabulated hashing uses tables of random numbers to compute hash values. Suppose |U| =
2% x 2¥ and m = 2!, so that the items being hashed are pairs (z,y) where 2 and y are w-bit
strings (or 2w-bit strings broken in half), and hash values are [-bit strings.

Let A[0---2" —1] and B[0--- 2" — 1] be arrays of [-bit strings (A and B can be though of as
2" x | dimensional array of bits). Define the has function hg g : U — [m] by setting

ha,(z,y) = Alz] © Bly]

where @ denotes bit-wise exclusive-or. Let H’' denote the set of all possible functions h A,B-
Note that sampling an hs p € H' uniformly at random is equivalent to setting every bit of
the arrays A and B to 0 or 1 uniformly at random.

For an integer k > 0, we say that a family of hash functions H mapping ¢ to {0,1,--- , (m—1)}
is k-uniform if for any sequence of k disjoint keys and any sequence of k£ hash values, the
probability that each key maps to the corresponding hash value is -

mk

k
1
hEI’;{ j/\l h(z;) =1i;| = —F for all distinct x1,--- 2 € U, and all 41,-- -4 € {0,...,(m—1)}

In the above, h ~ H means function h is picked uniformly at random from family H. (For more
details on k-uniform family of hash functions, see Jeff’s notes (page 3): https://courses.
engr.illinois.edu/cs473/sp2016/notes/12-hashing.pdf.)

(a) Prove that H' is 2-uniform.

(b) Prove that H' is 3-uniform. [Hint: Solve part (a) first.]

(¢) Prove that H' is not 4-uniform.

2

Yes, “see part (b)
correct.

is worth full credit for part (a), but only if your solution to part (b) is

. In lecture we discussed the Karp-Rabin randomized algorithm for pattern matching. The
power of randomization is seen by considering the two-dimensional pattern matching problem.
The input consists of an arbitrary n X n binary matrix 1" and an arbitrary m X m binary matrix
P, where m < n. Our goal is to check if P occurs as a (contiguous) submatrix of 7. Describe
an algorithm that runs in O(n?) time assuming that arithmetic operation in O(logn)-bit
integers can be performed in constant time. This can be done via a modification of the Karp-
Rabin algorithm. To achieve this, you will have to apply some ingenuity in figuring out how
to update the fingerprint in only constant time for most positions in the array.

[Hint: we can view an m X m matriz as an m2-bit integer. Rather than computing its finger-
print directly, compute instead a fingerprint for each row first, and maintain these fingerprints
as you move around.|

https://courses.engr.illinois.edu/cs473/sp2016/notes/12-hashing.pdf
https://courses.engr.illinois.edu/cs473/sp2016/notes/12-hashing.pdf

