Aside: Golden Ratio

Golden Ratio: A universal law.

| yo /
21 ¥l
WD
/34 y | N
|
°& 13
8
a b— \
e
e J |

antby _ 14+v6
an

Golden ratio ¢ = lim,_, = -5

any1 = ap + b,, b, = apn_1

Ruta (UIUC) CS473 1 Spring 2018 1/41

CS 473: Algorithms, Spring 2018

Dynamic Programming |

Lecture 3
Jan 23, 2018

Most slides are courtesy Prof. Chekuri

Ruta (UIUC)

Recursion

Reduction:

Reduce one problem to another

A special case of reduction

© reduce problem to a smaller instance of itself
@ self-reduction

@ Problem instance of size n is reduced to one or more instances
of size n — 1 or less.

@ For termination, problem instances of small size are solved by
some other method as base cases.

Ruta (UIUC) Csa73 3 Spring 2018 3 / 41

Recursion in Algorithm Design

© Tail Recursion: problem reduced to a single recursive call after
some work. Easy to convert algorithm into iterative or greedy
algorithms.

Ruta (UIUC) CS473 4 Spring 2018 4 /41

Recursion in Algorithm Design

© Tail Recursion: problem reduced to a single recursive call after
some work. Easy to convert algorithm into iterative or greedy
algorithms.

© Divide and Conquer: Problem reduced to multiple
independent sub-problems that are solved separately. Conquer
step puts together solution for bigger problem.

Examples: Merge/Quick Sort, FFT

Ruta (UIUC) CS473 4 Spring 2018 4 /41

Recursion in Algorithm Design

© Tail Recursion: problem reduced to a single recursive call after
some work. Easy to convert algorithm into iterative or greedy
algorithms.

© Divide and Conquer: Problem reduced to multiple
independent sub-problems that are solved separately. Conquer
step puts together solution for bigger problem.

Examples: Merge/Quick Sort, FFT

© Dynamic Programming: problem reduced to multiple
(typically) dependent or overlapping sub-problems. Use
memoization to avoid recomputation of common solutions.

Ruta (UIUC) CS473 4 Spring 2018 4 /41

Part |

Recursion and Memoization

Ruta (UIUC)

Recursion, recursion Tree and dependency graph

foo(instance X)

If X is a base case then
solve it and return solution

Else
do some computation
fOO(Xl)
do some computation
foo(X>)
foo(X3)
more computation
Output solution for X

Ruta (UIUC) CS473 6 Spring 2018 6 /41

Recursion, recursion Tree and dependency graph

foo(instance X)

If X is a base case then
solve it and return solution

Else
do some computation
fOO(Xl)
do some computation
foo(X>)
foo(X3)
more computation
Output solution for X

Two objects of interest when analyzing foo(X)
@ recursion tree of the recursive implementation

@ a DAG representing the dependency graph of the distinct
subproblems

Ruta (UIUC) CS473 6 Spring 2018 6 /41

Fibonacci Numbers

Fibonacci (1200 AD), Pingala (200 BCE).
Numbers defined by recurrence:

F(n)=F(n—1)+ F(n—2)and F(0) =0,F(1) = 1.

Ruta (UIUC) CS473 7 Spring 2018 7 /41

Fibonacci Numbers

Fibonacci (1200 AD), Pingala (200 BCE).
Numbers defined by recurrence:

F(n)=F(n—1)+ F(n—2)and F(0) =0,F(1) = 1.

These numbers have many interesting and amazing properties.
A journal The Fibonacci Quarterly!

@ F(n) = (¢" — (1 — »)")/+/5 where ¢ is the golden ratio
(1+ /5)/2 ~ 1.618.
Q lim, oo F(n+1)/F(n) = ¢

Ruta (UIUC) CS473 7 Spring 2018 7 /41

Recursive Algorithm for Fibonacci Numbers

Question: Given n, compute F(n).

Fib(n) :
if (n=0)
return 0
else if (n=1)
return 1
else
return Fib(n — 1) + Fib(n — 2)

Ruta (UIUC) Spring 2018 8 /41

Recursive Algorithm for Fibonacci Numbers

Question: Given n, compute F(n).

Fib(n) :
if (n=0)
return 0
else if (n=1)
return 1
else
return Fib(n — 1) + Fib(n — 2)

Running time? Let T (n) be the number of additions in Fib(n).
T(n)=T(n—1)+T(n—2)+1and T(0)=T(1) =0

Ruta (UIUC) CS473 8 Spring 2018 8 /41

Recursive Algorithm for Fibonacci Numbers

Question: Given n, compute F(n).

Fib(n) :
if (n=0)
return 0
else if (n=1)
return 1
else
return Fib(n — 1) + Fib(n — 2)

Running time? Let T (n) be the number of additions in Fib(n).
T(n)=T(n—1)+T(n—2)+1and T(0)=T(1) =0

Roughly same as F(n)
T(n) = (")

The number of additions is exponential in n.

Ruta (UIUC) 8 Spring 2018 8 /41

Recursion tree vs dependency graph

Fib(5)

Ruta (UIUC) CS473 9 Spring 2018 9 /41

An iterative algorithm for Fibonacci numbers

Fiblter(n) :
if (n=20) then
return 0
if (n=1) then
return 1
F[0]=0
F[1] =1

Ruta (UIUC) Cs473 10 Spring 2018 10 / 41

An iterative algorithm for Fibonacci numbers

Fiblter(n) :
if (n=20) then
return 0
if (n=1) then
return 1
F[o]=0
F[11=1
for i =2 to n do
Flil] = F[i — 1]+ F[i — 2]
return F[n]

Running time: O(n) additions.

Ruta (UIUC)

CS473 10

Spring 2018

10 / 41

What is the difference?

© Recursive algorithm is recomputing same subproblems many
time.

@ lterative algorithm is computing the value of a subproblem only
once by storing them: Memoization.

Ruta (UIUC) Cs473 11 Spring 2018 11/ 41

What is the difference?

© Recursive algorithm is recomputing same subproblems many
time.

@ lterative algorithm is computing the value of a subproblem only
once by storing them: Memoization.

Dynamic Programming:

Finding a recursion that can be effectively/efficiently memoized.

Leads to polynomial time algorithm if number of sub-problems is
polynomial in input size.

Every recursive algorithm can be memoized by working with the
dependency graph.

Ruta (UIUC) Cs473 11 Spring 2018 11 / 41

Automatic Memoization

Can we convert recursive algorithm into an efficient algorithm
without explicitly doing an iterative algorithm?

Ruta (UIUC) CS473 12 Spring 2018 12 / 41

Automatic Memoization

Can we convert recursive algorithm into an efficient algorithm
without explicitly doing an iterative algorithm?

Fib(n):
if (n=0)
return 0
if (n=1)
return 1
if (Fib(n) was previously computed)
return stored value of Fib(n)
else
return Fib(n — 1) + Fib(n — 2)

Ruta (UIUC) CS473 12 Spring 2018 12 / 41

Automatic Memoization

Can we convert recursive algorithm into an efficient algorithm
without explicitly doing an iterative algorithm?

Fib(n):
if (n=0)
return 0
if (n=1)
return 1
if (Fib(n) was previously computed)
return stored value of Fib(n)
else
return Fib(n — 1) + Fib(n — 2)

How do we keep track of previously computed values?

Ruta (UIUC) CS473 12 Spring 2018 12 / 41

Automatic Memoization

Can we convert recursive algorithm into an efficient algorithm
without explicitly doing an iterative algorithm?

Fib(n):
if (n=0)
return 0
if (n=1)
return 1
if (Fib(n) was previously computed)
return stored value of Fib(n)
else
return Fib(n — 1) + Fib(n — 2)

How do we keep track of previously computed values?
Two methods: explicitly and implicitly (via data structure)

Ruta (UIUC) Cs473 12 Spring 2018 12 /41

Automatic explicit memoization

Initialize table/array M of size n such that M[i] = —1 for
i=0,...,n

Ruta (UIUC) Cs473 13 Spring 2018 13 / 41

Automatic explicit memoization

Initialize table/array M of size n such that M[i] = —1 for
i=0,...,n

Fib(n):

if (n=0)
return 0

if (n=1)
return 1

if (M[n] # —1) (* M[n] has stored value of Fib(n) *)
return M[n]

M[n] < Fib(n — 1) + Fib(n — 2)

return M[n]

To allocate memory need to know upfront the number of
subproblems for a given input size n

Ruta (UIUC) Cs473 13 Spring 2018 13 / 41

Automatic implicit memoization

Initialize a (dynamic) dictionary data structure D to empty

Fib(n) :
if (n=0)
return 0
if (n=1)
return 1
if (n is already in D)
return value stored with n in D
val + Fib(n — 1) 4+ Fib(n — 2)
Store (n,val) in D
return val

Ruta (UIUC) CS473 14 Spring 2018 14 / 41

Explicit vs Implicit Memoization

@ Explicit memoization or iterative algorithm preferred if one can
analyze problem ahead of time. Allows for efficient memory
allocation and access.

Ruta (UIUC) Cs473 15 Spring 2018 15 / 41

Explicit vs Implicit Memoization

@ Explicit memoization or iterative algorithm preferred if one can
analyze problem ahead of time. Allows for efficient memory
allocation and access.

@ Implicit and automatic memoization used when problem
structure or algorithm is either not well understood or in fact
unknown to the underlying system.

©® Need to pay overhead of data-structure.
@ Functional languages such as LISP automatically do
memoization, usually via hashing based dictionaries.

Ruta (UIUC) Cs473 15 Spring 2018 15 / 41

Back to Fibonacci Numbers

Saving space. Do we need an array of n numbers?

Ruta (UIUC) Cs473 16 Spring 2018 16 / 41

Back to Fibonacci Numbers

Saving space. Do we need an array of n numbers? Not really.

Fiblter(n):
if (n=0) then
return 0
if (n=1) then
return 1
prev2 =0
prevl =1

for i = 2 to n do
temp = prevl + prev2
prev2 = prevl
prevl = temp

return prevl

Ruta (UIUC) Cs473 16 Spring 2018 16 / 41

What is Dynamic Programming?

Every recursion can be memoized. Automatic memoization does not
help us understand whether the resulting algorithm is efficient or not.

Ruta (UIUC) Cs473 17 Spring 2018 17 / 41

What is Dynamic Programming?

Every recursion can be memoized. Automatic memoization does not
help us understand whether the resulting algorithm is efficient or not.

Dynamic Programming:

—

A recursion that when memoized leads to an efficient algorithm.

Ruta (UIUC) Cs473 17 Spring 2018 17 / 41

What is Dynamic Programming?

Every recursion can be memoized. Automatic memoization does not
help us understand whether the resulting algorithm is efficient or not.

Dynamic Programming:

—

A recursion that when memoized leads to an efficient algorithm.

Key Questions:

@ Given a recursive algorithm, how do we analyze complexity when
it is memoized?

Ruta (UIUC) Cs473 17 Spring 2018 17 / 41

What is Dynamic Programming?

Every recursion can be memoized. Automatic memoization does not
help us understand whether the resulting algorithm is efficient or not.

Dynamic Programming:
A recursion that when memoized leads to an efficient algorithm.

Key Questions:

@ Given a recursive algorithm, how do we analyze complexity when
it is memoized?

@ How do we recognize whether a problem admits a dynamic
programming based efficient algorithm?

Ruta (UIUC) Cs473 17 Spring 2018 17 / 41

What is Dynamic Programming?

Every recursion can be memoized. Automatic memoization does not
help us understand whether the resulting algorithm is efficient or not.

Dynamic Programming:

—

A recursion that when memoized leads to an efficient algorithm.

Key Questions:

@ Given a recursive algorithm, how do we analyze complexity when
it is memoized?

@ How do we recognize whether a problem admits a dynamic
programming based efficient algorithm?

@ How do we further optimize time and space of a dynamic
programming based algorithm?

Ruta (UIUC) Cs473 17 Spring 2018 17 / 41

Part 1l

Ruta (UIUC) Spring 2018 18 / 41

Edit distance between two words X and Y is the number of letter
insertions, letter deletions and letter substitutions required to obtain
Y from X.

Example
The edit distance between FOOD and MONEY is at most 4:

FOOD — MOOD — MONOD — MONED — MONEY

Ruta (UIUC) Cs473 19 Spring 2018 19 / 41

Edit Distance: Alternate View

Alignment

Place words one on top of the other, with gaps in the first word

indicating insertions, and gaps in the second word indicating
deletions.

F O O D
M ONEY

Ruta (UIUC) Cs473 20

Spring 2018 20 / 41

Edit Distance: Alternate View

Alignment

Place words one on top of the other, with gaps in the first word
indicating insertions, and gaps in the second word indicating

deletions.
F O O D

M ONEY

Formally, an alignment is a sequence M of pairs (i,) such that each
index appears exactly once, and there is no “crossing”: if

(iy4)y o5 (i"sj’) then i < i’ and j < j’. One of i or j could be
empty, in which case no comparision. In the above example, this is
M ={(1,1),(2,2),(3,3),(,4),(4,5)}.

Ruta (UIUC) Cs473 20 Spring 2018 20 / 41

Edit Distance: Alternate View

Alignment

Place words one on top of the other, with gaps in the first word
indicating insertions, and gaps in the second word indicating

deletions.
F O O D

M ONEY

Formally, an alignment is a sequence M of pairs (i,) such that each
index appears exactly once, and there is no “crossing”: if

(iy4)y o5 (i"sj’) then i < i’ and j < j’. One of i or j could be
empty, in which case no comparision. In the above example, this is
M ={(1,1),(2,2),(3,3),(,4),(4,5)}.

Cost of an alignment: the number of mismatched columns.

Ruta (UIUC) Cs473 20 Spring 2018 20 / 41

Edit Distance Problem

Problem

Given two words, find the edit distance between them, i.e., an
alignment of smallest cost.

Ruta (UIUC) Cs473 21 Spring 2018 21/ 41

Edit Distance

Basic observation

Let X = ax and Y = By
a, 3: strings. x and y single characters.

Possible alignments between X and Y

(81 X (81 X (69, ¢
or or

B y By B y

Ruta (UIUC) CS473 22 Spring 2018 22 /41

Edit Distance

Basic observation

Let X = ax and Y = By
a, 3: strings. x and y single characters.

Possible alignments between X and Y

(81 X (81 X (69, ¢
or or

B y By B y

Observation
Prefixes must have optimal alignment!

Ruta (UIUC) CS473 22 Spring 2018 22 /41

Edit Distance

Basic observation

Let X = ax and Y = By
a, 3: strings. x and y single characters.

Possible alignments between X and Y

(81 X (81 X (69, ¢
or or

B y By B y

Observation
Prefixes must have optimal alignment!

EDIST (v, B) + [x # y]
EDIST(X,Y) = min{ 1+ EDIST (a, Y)
1+ EDIST(X, B)

Ruta (UIUC) CS473 22 Spring 2018 22 /41

Recursive Algorithm

Assume X is stored in array A[l..m] and Y is stored in B[1..n]

EDIST (A[1..m], B[1..n])
If (m=0) return n
If (n=0) return m

Ruta (UIUC) Cs473 23 Spring 2018 23 / 41

Recursive Algorithm

Assume X is stored in array A[l..m] and Y is stored in B[1..n]

EDIST (A[1..m], B[1..n])
If (m=0) return n
If (n=0) return m
my =1+ EDIST(A[1..(m — 1)], B[1..n])
my =1+ EDIST(A[1..m], B[1..(n — 1)]))
1f (A[m] = B[n]) then
m3 = EDIST (A[L..(m — 1)], B[1..(n — 1)])
Else
m3 =1+ EDIST(A[1..(m — 1)], B[1..(n — 1)])
return min(my, my, ms)

Ruta (UIUC) Cs473 23 Spring 2018 23 / 41

DEED and DREAD

Ruta (UIUC) CS473 24 Spring 2018 24 / 41

Subproblems and Recurrence

Each subproblem corresponds to a prefix of X and a prefix of Y

Optimal Costs

Let Opt(i,) be optimal cost of aligning x; - - - x; and yj « - - y;.
Then

[xi # yjl + Opt(i — 1,j — 1),
Opt(i,j) = min< 1+ Opt(i — 1,j),
1+ Opt(iaj - 1)

Base Cases: Opt(i,0) = i and Opt(0,)) = j

Ruta (UIUC) Cs473 25 Spring 2018 25 / 41

Memoizing the Recursive Algorithm

int M[0..m][0..n]
Initialize all entries of MIJi][j] to oo
return EDIST(A[l..m], B[1..n])

Ruta (UIUC) Cs473 26 Spring 2018 26 / 41

Memoizing the Recursive Algorithm

int M[0..m][0..n]
Initialize all entries of MIJi][j] to oo
return EDIST(A[l..m], B[1..n])

EDIST (A[1..m], B[1..n])
If (M[i][j] < o©) return MIi][j] (* return stored value *)

If (im=0)
M[il[j]l]=n

ElseIf (n=0)
MLl = m

Ruta (UIUC) Cs473 26 Spring 2018 26 / 41

Memoizing the Recursive Algorithm

int M[0..m][0..n]
Initialize all entries of MIJi][j] to oo
return EDIST(A[l..m], B[1..n])

EDIST (A[1..m], B[1..n])
If (M[i][j] < o©) return MIi][j] (* return stored value *)

If (im=0)
M[illil1=n
ElseIf (n=0)
M[illj] = m
Else

m; = 14 EDIST(A[1..(m — 1)], B[1..n])
my =1+ EDIST(A[1..m], B[1..(n — 1)]))
1f (A[m] = B[n]) m; = EDIST(A[1..(m — 1)], B[1..(n — 1)])
Else ms = 1+ EDIST(A[l..(m — 1)], B[1..(n — 1)])
MIi][j] = min(my, my, m3)
return MJi][j]

Ruta (UIUC) Spring 2018 26 / 41

Matrix and DAG of Computation

Matrix M:

-

Figure: Dependency of matrix entries in the recursive algorithm of
previous slide

Ruta (UIUC) Cs473 27 Spring 2018 27 / 41

Removing Recursion to obtain lterative Algorithm

EDIST(A[1..m], B[1..n])
int MJ[0..m][0..n]
for i=1 to m do M[i,0] =i
for j=1 to n do M[0,j] =j

for i=1 to m do
for j=1 to n do

[xi = y;] + M[i —1][j — 1],
MI[il[j] = min < 1 + M[i — 1][/],
1+ MJilj — 1]

Ruta (UIUC) Cs473 28 Spring 2018 28 / 41

Removing Recursion to obtain Iterative Algorithm

EDIST(A[1..m], B[1..n])
int MJ[0..m][0..n]
for i=1 to m do M[i,0] =i
for j=1 to n do M[0,j] =j

for i=1 to m do
for j=1 to n do

[xi = y;] + M[i —1][j — 1],
MIil[j] = min ¢ 1 + M[i — 1][j],
1+ MJilj — 1]

_

Ruta (UIUC) Cs473 28 Spring 2018 28 / 41

Removing Recursion to obtain Iterative Algorithm

EDIST(A[1..m], B[1..n])
int MJ[0..m][0..n]
for i=1 to m do M[i,0] =i
for j=1 to n do M[0,j] =j

for i=1 to m do
for j=1 to n do

[xi = y;] + M[i —1][j — 1],
MIil[j] = min ¢ 1 + M[i — 1][j],
1+ MJilj — 1]

@ Running time is O(mn).
@ Space used is O(mn).

Ruta (UIUC) Cs473 28 Spring 2018 28 / 41

Matrix and DAG of Computation (revisited)

Matrix M:

Figure: Iterative algorithm in previous slide computes values in row order.

Ruta (UIUC) Cs473 29 Spring 2018 29 / 41

Finding an Optimum Solution

The DP algorithm finds the minimum edit distance in O(nm) space
and time.

Question: Can we find a specific alignment which achieves the
minimum?

Ruta (UIUC) Cs473 30 Spring 2018 30 / 41

Finding an Optimum Solution

The DP algorithm finds the minimum edit distance in O(nm) space
and time.

Question: Can we find a specific alignment which achieves the
minimum?

Exercise: Show that one can find an optimum solution after
computing the optimum value. Key idea is to store back pointers
when computing Opt(i,) to know how we calculated it. See notes
for more details.

Ruta (UIUC) Cs473 30 Spring 2018 30 / 41

Dynamic Programming Template

©@ Come up with a recursive algorithm to solve problem

@ Understand the structure/number of the subproblems generated
by recursion

© Memoize the recursion — DP

e set up compact notation for subproblems
o set up a data structure for storing subproblems

© lterative algorithm

e Understand dependency graph on subproblems
e Pick an evaluation order (any topological sort of the
dependency dag)

© Analyze time and space
© Optimize

Ruta (UIUC) Cs473 31 Spring 2018 31/ 41

Part |11

Knapsack

Ruta (UIUC) 2 Spring 2018 32 /41

Knapsack Problem

Input Given a Knapsack of capacity W Ibs. and n objects
with ith object having weight w; and value v;; assume
W, w;, v; are all positive integers

Goal Fill the Knapsack without exceeding weight limit while
maximizing value.

Ruta (UIUC) Cs473 EE Spring 2018 33/ 41

Knapsack Problem

Input Given a Knapsack of capacity W Ibs. and n objects
with ith object having weight w; and value v;; assume
W, w;, v; are all positive integers

Goal Fill the Knapsack without exceeding weight limit while
maximizing value.

Basic problem that arises in many applications as a sub-problem.

Ruta (UIUC) Cs473 EE Spring 2018 33/ 41

Knapsack Example

‘Item ‘11‘12‘I3‘I4‘I5‘

Value 1(6]18]22|28
Weight | 1 |2 | 5|6 | 7

If W = 11, the best is {3, I} giving value 40.

Ruta (UIUC) CS473 34 Spring 2018 34 /41

Knapsack Example

‘Item ‘11‘12‘13‘14‘15‘

Value 1(6]18]22|28
Weight | 1 |2 | 5|6 | 7

If W = 11, the best is {3, I} giving value 40.

Special Case

When v; = wj;, the Knapsack problem is called the Subset Sum
Problem.]

Ruta (UIUC) Cs473 34 Spring 2018 34 / 41

For the following instance of Knapsack:

‘ ltem H Il ‘ 12 ‘ I3 ‘ I4 ‘ I5 ‘
Value 1616|2228
Weight || 1 |2 | 5|6 |7

and weight limit W = 15. The best solution has value:
(A) 22
(B) 28
(C) 38
(D) 50
(E) 56

Ruta (UIUC) Cs473 35 Spring 2018 35 / 41

Greedy Approach

@ Pick objects with greatest value
O let W=2wi=wm=1 w3=2 vy =v=2and
vz =3;

Ruta (UIUC) Cs473 36 Spring 2018 36 / 41

Greedy Approach

@ Pick objects with greatest value
O let W=2wi=wm=1 w3=2 vy =v=2and
v3 = 3;greedy strategy will pick {3}, but the optimal is {1, 2}
@ Pick objects with smallest weight
O let W=2wi=1ww=2 vi=1and v, =3;

Ruta (UIUC) Cs473 36 Spring 2018 36 / 41

Greedy Approach

@ Pick objects with greatest value
O let W=2wi=wm=1 w3=2 vy =v=2and
v3 = 3;greedy strategy will pick {3}, but the optimal is {1, 2}
@ Pick objects with smallest weight
O Llet W=2 w; =1 w =2, v =1 and v, = 3;greedy
strategy will pick {1}, but the optimal is {2}
@ Pick objects with largest v;/w; ratio
QO let W=4 wi=wy=2 w3=3, vy=wvy =3and
vy = 5;

Ruta (UIUC) Cs473 36 Spring 2018 36 / 41

Greedy Approach

@ Pick objects with greatest value
O let W=2wi=wm=1 w3=2 vy =v=2and
v3 = 3;greedy strategy will pick {3}, but the optimal is {1, 2}
@ Pick objects with smallest weight
O Llet W=2 w; =1 w =2, v =1 and v, = 3;greedy
strategy will pick {1}, but the optimal is {2}
@ Pick objects with largest v;/w; ratio
QO let W=4 wi=wy=2 w3=3, vy=wvy =3and
v3 = 5;greedy strategy will pick {3}, but the optimal is {1, 2}

Ruta (UIUC) Cs473 36 Spring 2018 36 / 41

Greedy Approach

@ Pick objects with greatest value
O let W=2wi=wm=1 w3=2 vy =v=2and
v3 = 3;greedy strategy will pick {3}, but the optimal is {1, 2}
@ Pick objects with smallest weight
O Llet W=2 w; =1 w =2, v =1 and v, = 3;greedy
strategy will pick {1}, but the optimal is {2}
@ Pick objects with largest v;/w; ratio
QO let W=4 wi=wy=2 w3=3, vy=wvy =3and
v3 = 5;greedy strategy will pick {3}, but the optimal is {1, 2}
@ Aside: Can show that a slight modification always gives half
the optimum profit: pick the better of the output of this
algorithm and the largest value item. Also, the algorithms gives
better approximations when all item weights are small when
compared to W.

Ruta (UIUC) Cs473 36 Spring 2018 36 / 41

Towards a Recursive Algorithms

First guess: Opt(f) is the optimum solution value for items 1,...,i.

Observation

Consider an optimal solution O for1,...,i

Case item 1 € O O is an optimal solution to items 1 toi — 1

Case item i € O Then O — {i} is an optimum solution for items 1

to i — 1 in knapsack of capacity W — w;.

Ruta (UIUC) Cs473 37

Spring 2018

37 /41

Towards a Recursive Algorithms

First guess: Opt(f) is the optimum solution value for items 1,...,i.

Observation
Consider an optimal solution O for1,...,i

Case item 1 € O O is an optimal solution to items 1 toi — 1

Case item i € O Then O — {i} is an optimum solution for items 1
to i — 1 in knapsack of capacity W — w;.
Subproblems depend also on remaining capacity. Cannot
write subproblem only in terms of
Opt(1),...,O0pt(i — 1).

Ruta (UIUC) Cs473 37 Spring 2018 37 / 41

Towards a Recursive Algorithms

First guess: Opt(f) is the optimum solution value for items 1,...,i.

Observation
Consider an optimal solution O for1,...,i

Case item 1 € O O is an optimal solution to items 1 toi — 1

Case item i € O Then O — {i} is an optimum solution for items 1
to i — 1 in knapsack of capacity W — w;.
Subproblems depend also on remaining capacity. Cannot
write subproblem only in terms of
Opt(1),...,O0pt(i — 1).

Opt(i, w): optimum profit for items 1 to i in knapsack of size w
Goal: compute Opt(n, W)

Ruta (UIUC) Cs473 37 Spring 2018 37 / 41

Dynamic Programming Solution

Definition

Let Opt(i, w) be the optimal way of picking items from 1 to i, with
total weight not exceeding w.

0 fr=20
) Opt(i — 1, w) if w; > w
Opt(i, w) = Opt(i — 1, w) |
max otherwise

Opt(i —1,w — w;) + v;

Number of subproblem generated by Opt(n, W) is O(nW).

Ruta (UIUC) Cs473 38 Spring 2018 38 / 41

An lterative Algorithm

for w=0 to W do
M[0O,w] =0
for i=1 to n do
for w=1 to W do
if (w; > w) then
Mli,w] = M[i — 1, w]

else

Mli, w] = max(M[i — 1, w],M[i — 1, w — w;] + v;)

Running Time

Ruta (UIUC) Cs473 39 Spring 2018 39 / 41

An lterative Algorithm

for w=0 to W do
M[0O,w] =0
for i=1 to n do
for w=1 to W do
if (w; > w) then
Mli,w] = M[i — 1, w]

else

Mli, w] = max(M[i — 1, w],M[i — 1, w — w;] + v;)

Running Time
© Time taken is O(nW)

Ruta (UIUC) Cs473 39 Spring 2018 39 / 41

An lterative Algorithm

for w=0 to W do
M[0O,w] =0
for i=1 to n do
for w=1 to W do
if (w; > w) then
Mli,w] = M[i — 1, w]

else

Mli, w] = max(M[i — 1, w],M[i — 1, w — w;] + v;)

Running Time
© Time taken is O(nW)

@ Input has size O(n + log W + 7" (log v; + log w;)); so
running time not polynomial but “pseudo-polynomial™!

Ruta (UIUC) Cs473 39 Spring 2018 39 / 41

Introducing a Variable

For the Knapsack problem obtaining a recursive algorithm required
introducing a new variable, namely the size of the knapsack.

This is a key idea that recurs in many dynamic programming
problems.

Ruta (UIUC) CS473 40 Spring 2018 40 / 41

Introducing a Variable

For the Knapsack problem obtaining a recursive algorithm required
introducing a new variable, namely the size of the knapsack.

This is a key idea that recurs in many dynamic programming
problems.

How do we figure out when this is possible?
Heuristic answer that works for many problems: Try divide and
conquer or obvious recursion: if problem is not decomposable then

introduce the “information” required to decompose as new
variable(s). Will see several examples to make this idea concrete.

Ruta (UIUC) CS473 40 Spring 2018 40 / 41

Knapsack Algorithm and Polynomial time

@ Input size for Knapsack:

O(n) + log W + 37 (log w; + log v;).
@ Running time of dynamic programming algorithm: O(nW).
© Not a polynomial time algorithm.

Ruta (UIUC) CS473 41 Spring 2018 41 / 41

Knapsack Algorithm and Polynomial time

@ Input size for Knapsack:

O(n) + log W + 37 (log w; + log v;).
@ Running time of dynamic programming algorithm: O(nW).
© Not a polynomial time algorithm.

@ Example: W = 2" and wj;, v; € [1..2"]. Input size is O(n?),
running time is O(n2") arithmetic/comparisons.

Ruta (UIUC) CS473 41 Spring 2018 41 / 41

Knapsack Algorithm and Polynomial time

@ Input size for Knapsack:
O(n) + log W + 37 (log w; + log v;).
@ Running time of dynamic programming algorithm: O(nW).
© Not a polynomial time algorithm.
@ Example: W = 2" and wj;, v; € [1..2"]. Input size is O(n?),
running time is O(n2") arithmetic/comparisons.
© Algorithm is called a pseudo-polynomial time algorithm

because running time is polynomial if numbers in input are of
size polynomial in the combinatorial size of problem.

© Knapsack is NP-Hard if numbers are not polynomial in n.

Ruta (UIUC) CS473 41 Spring 2018 41 / 41

	Recursion and Memoization
	Edit Distance
	Knapsack

