
Aside: Golden Ratio

Golden Ratio: A universal law.

Golden ratio φ = limn→∞
an+bn

an
= 1+

√
5

2

an+1 = an + bn, bn = an−1
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Recursion

Reduction:
Reduce one problem to another

Recursion
A special case of reduction

1 reduce problem to a smaller instance of itself

2 self-reduction

1 Problem instance of size n is reduced to one or more instances
of size n − 1 or less.

2 For termination, problem instances of small size are solved by
some other method as base cases.
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Recursion in Algorithm Design

1 Tail Recursion: problem reduced to a single recursive call after
some work. Easy to convert algorithm into iterative or greedy
algorithms.

2 Divide and Conquer: Problem reduced to multiple
independent sub-problems that are solved separately. Conquer
step puts together solution for bigger problem.

Examples: Merge/Quick Sort, FFT

3 Dynamic Programming: problem reduced to multiple
(typically) dependent or overlapping sub-problems. Use
memoization to avoid recomputation of common solutions.
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Part I

Recursion and Memoization
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Recursion, recursion Tree and dependency graph

foo(instance X )
If X is a base case then

solve it and return solution

Else

do some computation

foo(X1)
do some computation

foo(X2)
foo(X3)
more computation

Output solution for X

Two objects of interest when analyzing foo(X )

recursion tree of the recursive implementation

a DAG representing the dependency graph of the distinct
subproblems
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Fibonacci Numbers

Fibonacci (1200 AD), Pingala (200 BCE).
Numbers defined by recurrence:

F (n) = F (n − 1) + F (n − 2) and F (0) = 0,F (1) = 1.

These numbers have many interesting and amazing properties.
A journal The Fibonacci Quarterly!

1 F (n) = (φn − (1− φ)n)/
√

5 where φ is the golden ratio

(1 +
√

5)/2 ' 1.618.

2 limn→∞F (n + 1)/F (n) = φ
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Recursive Algorithm for Fibonacci Numbers

Question: Given n, compute F (n).

Fib(n):
if (n = 0)

return 0

else if (n = 1)
return 1

else
return Fib(n − 1) + Fib(n − 2)

Running time? Let T (n) be the number of additions in Fib(n).

T (n) = T (n − 1) + T (n − 2) + 1 and T (0) = T (1) = 0

Roughly same as F (n)

T (n) = Θ(φn)

The number of additions is exponential in n.
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Recursion tree vs dependency graph

Fib(5)
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An iterative algorithm for Fibonacci numbers

FibIter(n):
if (n = 0) then

return 0

if (n = 1) then
return 1

F [0] = 0
F [1] = 1

for i = 2 to n do
F [i ] = F [i − 1] + F [i − 2]

return F [n]

Running time: O(n) additions.
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What is the difference?

1 Recursive algorithm is recomputing same subproblems many
time.

2 Iterative algorithm is computing the value of a subproblem only
once by storing them: Memoization.

Dynamic Programming:

Finding a recursion that can be effectively/efficiently memoized.

Leads to polynomial time algorithm if number of sub-problems is
polynomial in input size.
Every recursive algorithm can be memoized by working with the
dependency graph.
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Automatic Memoization

Can we convert recursive algorithm into an efficient algorithm
without explicitly doing an iterative algorithm?

Fib(n):
if (n = 0)

return 0
if (n = 1)

return 1
if (Fib(n) was previously computed)

return stored value of Fib(n)

else
return Fib(n − 1) + Fib(n − 2)

How do we keep track of previously computed values?
Two methods: explicitly and implicitly (via data structure)
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Automatic explicit memoization

Initialize table/array M of size n such that M[i ] = −1 for
i = 0, . . . , n.

Fib(n):
if (n = 0)

return 0

if (n = 1)
return 1

if (M[n] 6= −1) (* M[n] has stored value of Fib(n) *)

return M[n]
M[n]← Fib(n − 1) + Fib(n − 2)
return M[n]

To allocate memory need to know upfront the number of
subproblems for a given input size n
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Automatic implicit memoization

Initialize a (dynamic) dictionary data structure D to empty

Fib(n):
if (n = 0)

return 0

if (n = 1)
return 1

if (n is already in D)

return value stored with n in D
val ← Fib(n − 1) + Fib(n − 2)
Store (n, val) in D
return val
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Explicit vs Implicit Memoization

1 Explicit memoization or iterative algorithm preferred if one can
analyze problem ahead of time. Allows for efficient memory
allocation and access.

2 Implicit and automatic memoization used when problem
structure or algorithm is either not well understood or in fact
unknown to the underlying system.

1 Need to pay overhead of data-structure.
2 Functional languages such as LISP automatically do

memoization, usually via hashing based dictionaries.
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Back to Fibonacci Numbers

Saving space. Do we need an array of n numbers?

Not really.

FibIter(n):
if (n = 0) then

return 0

if (n = 1) then
return 1

prev2 = 0
prev1 = 1
for i = 2 to n do

temp = prev1 + prev2
prev2 = prev1
prev1 = temp

return prev1
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What is Dynamic Programming?

Every recursion can be memoized. Automatic memoization does not
help us understand whether the resulting algorithm is efficient or not.

Dynamic Programming:
A recursion that when memoized leads to an efficient algorithm.

Key Questions:

Given a recursive algorithm, how do we analyze complexity when
it is memoized?

How do we recognize whether a problem admits a dynamic
programming based efficient algorithm?

How do we further optimize time and space of a dynamic
programming based algorithm?
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Part II

Edit Distance
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Edit Distance

Definition
Edit distance between two words X and Y is the number of letter
insertions, letter deletions and letter substitutions required to obtain
Y from X .

Example
The edit distance between FOOD and MONEY is at most 4:

FOOD→MOOD→MONOD→MONED→MONEY
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Edit Distance: Alternate View

Alignment
Place words one on top of the other, with gaps in the first word
indicating insertions, and gaps in the second word indicating
deletions.

F O O D
M O N E Y

Formally, an alignment is a sequence M of pairs (i , j) such that each
index appears exactly once, and there is no “crossing”: if
(i , j), ..., (i ′, j ′) then i < i ′ and j < j ′. One of i or j could be
empty, in which case no comparision.

In the above example, this is
M = {(1, 1), (2, 2), (3, 3), ( , 4), (4, 5)}.
Cost of an alignment: the number of mismatched columns.
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Edit Distance Problem

Problem
Given two words, find the edit distance between them, i.e., an
alignment of smallest cost.
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Edit Distance
Basic observation

Let X = αx and Y = βy
α, β: strings. x and y single characters.

Possible alignments between X and Y
α x
β y or

α x
βy or

αx
β y

Observation
Prefixes must have optimal alignment!

EDIST (X ,Y ) = min


EDIST (α, β) + [x 6= y ]

1 + EDIST (α,Y )

1 + EDIST (X , β)
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Recursive Algorithm

Assume X is stored in array A[1..m] and Y is stored in B[1..n]

EDIST (A[1..m],B[1..n])
If (m = 0) return n
If (n = 0) return m

m1 = 1 + EDIST (A[1..(m − 1)],B[1..n])
m2 = 1 + EDIST (A[1..m],B[1..(n − 1)]))
If (A[m] = B[n]) then

m3 = EDIST (A[1..(m − 1)],B[1..(n − 1)])
Else

m3 = 1 + EDIST (A[1..(m − 1)],B[1..(n − 1)])
return min(m1,m2,m3)
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Example

DEED and DREAD
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Subproblems and Recurrence

Each subproblem corresponds to a prefix of X and a prefix of Y

Optimal Costs

Let Opt(i , j) be optimal cost of aligning x1 · · · xi and y1 · · · yj .
Then

Opt(i , j) = min


[xi 6= yj ] + Opt(i − 1, j − 1),

1 + Opt(i − 1, j),
1 + Opt(i , j − 1)

Base Cases: Opt(i , 0) = i and Opt(0, j) = j
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Memoizing the Recursive Algorithm

int M[0..m][0..n]
Initialize all entries of M[i ][j ] to ∞
return EDIST (A[1..m],B[1..n])

EDIST (A[1..m],B[1..n])
If (M[i ][j ] <∞) return M[i ][j ] (* return stored value *)

If (m = 0)
M[i ][j ] = n

ElseIf (n = 0)
M[i ][j ] = m

Else

m1 = 1 + EDIST (A[1..(m − 1)],B[1..n])
m2 = 1 + EDIST (A[1..m],B[1..(n − 1)]))
If (A[m] = B[n]) m3 = EDIST (A[1..(m − 1)],B[1..(n − 1)])
Else m3 = 1 + EDIST (A[1..(m − 1)],B[1..(n − 1)])
M[i ][j ] = min(m1,m2,m3)

return M[i ][j ]
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Matrix and DAG of Computation

Matrix M:

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
...

...

i, j

m, n

0, 0

i, j-1

i-1, ji-1, j-1

Figure: Dependency of matrix entries in the recursive algorithm of
previous slide
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Removing Recursion to obtain Iterative Algorithm

EDIST (A[1..m],B[1..n])
int M[0..m][0..n]
for i = 1 to m do M[i , 0] = i
for j = 1 to n do M[0, j ] = j

for i = 1 to m do
for j = 1 to n do

M[i ][j ] = min


[xi = yj ] + M[i − 1][j − 1],

1 + M[i − 1][j ],
1 + M[i ][j − 1]

Analysis
1 Running time is O(mn).
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Matrix and DAG of Computation (revisited)

Matrix M:

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
...

...

i, j

m, n

0, 0

i, j-1

i-1, ji-1, j-1

Figure: Iterative algorithm in previous slide computes values in row order.
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Finding an Optimum Solution

The DP algorithm finds the minimum edit distance in O(nm) space
and time.

Question: Can we find a specific alignment which achieves the
minimum?

Exercise: Show that one can find an optimum solution after
computing the optimum value. Key idea is to store back pointers
when computing Opt(i , j) to know how we calculated it. See notes
for more details.

Ruta (UIUC) CS473 30 Spring 2018 30 / 41



Finding an Optimum Solution

The DP algorithm finds the minimum edit distance in O(nm) space
and time.

Question: Can we find a specific alignment which achieves the
minimum?

Exercise: Show that one can find an optimum solution after
computing the optimum value. Key idea is to store back pointers
when computing Opt(i , j) to know how we calculated it. See notes
for more details.

Ruta (UIUC) CS473 30 Spring 2018 30 / 41



Dynamic Programming Template

1 Come up with a recursive algorithm to solve problem

2 Understand the structure/number of the subproblems generated
by recursion

3 Memoize the recursion→ DP

set up compact notation for subproblems
set up a data structure for storing subproblems

4 Iterative algorithm

Understand dependency graph on subproblems
Pick an evaluation order (any topological sort of the
dependency dag)

5 Analyze time and space

6 Optimize
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Part III

Knapsack
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Knapsack Problem

Input Given a Knapsack of capacity W lbs. and n objects
with i th object having weight wi and value vi ; assume
W ,wi , vi are all positive integers

Goal Fill the Knapsack without exceeding weight limit while
maximizing value.

Basic problem that arises in many applications as a sub-problem.
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Knapsack Example

Example

Item I1 I2 I3 I4 I5
Value 1 6 18 22 28
Weight 1 2 5 6 7

If W = 11, the best is {I3, I4} giving value 40.

Special Case
When vi = wi , the Knapsack problem is called the Subset Sum
Problem.
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Knapsack

For the following instance of Knapsack:

Item I1 I2 I3 I4 I5
Value 1 6 16 22 28
Weight 1 2 5 6 7

and weight limit W = 15. The best solution has value:

(A) 22

(B) 28

(C) 38

(D) 50

(E) 56
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Greedy Approach

1 Pick objects with greatest value
1 Let W = 2, w1 = w2 = 1, w3 = 2, v1 = v2 = 2 and

v3 = 3;

greedy strategy will pick {3}, but the optimal is {1, 2}
2 Pick objects with smallest weight

1 Let W = 2, w1 = 1, w2 = 2, v1 = 1 and v2 = 3;greedy
strategy will pick {1}, but the optimal is {2}

3 Pick objects with largest vi/wi ratio
1 Let W = 4, w1 = w2 = 2, w3 = 3, v1 = v2 = 3 and

v3 = 5;greedy strategy will pick {3}, but the optimal is {1, 2}
2 Aside: Can show that a slight modification always gives half

the optimum profit: pick the better of the output of this
algorithm and the largest value item. Also, the algorithms gives
better approximations when all item weights are small when
compared to W .
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Towards a Recursive Algorithms

First guess: Opt(i) is the optimum solution value for items 1, . . . , i .

Observation
Consider an optimal solution O for 1, . . . , i
Case item i 6∈ O O is an optimal solution to items 1 to i − 1

Case item i ∈ O Then O − {i} is an optimum solution for items 1
to i − 1 in knapsack of capacity W − wi .

Subproblems depend also on remaining capacity. Cannot
write subproblem only in terms of
Opt(1), . . . ,Opt(i − 1).

Opt(i ,w): optimum profit for items 1 to i in knapsack of size w
Goal: compute Opt(n,W )
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Dynamic Programming Solution

Definition
Let Opt(i ,w) be the optimal way of picking items from 1 to i , with
total weight not exceeding w .

Opt(i ,w) =


0 if i = 0
Opt(i − 1,w) if wi > w

max

{
Opt(i − 1,w)

Opt(i − 1,w − wi) + vi
otherwise

Number of subproblem generated by Opt(n,W ) is O(nW ).
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An Iterative Algorithm

for w = 0 to W do
M[0,w ] = 0

for i = 1 to n do
for w = 1 to W do

if (wi > w) then
M[i ,w ] = M[i − 1,w ]

else
M[i ,w ] = max(M[i − 1,w ],M[i − 1,w − wi ] + vi )

Running Time

1 Time taken is O(nW )

2 Input has size O(n + log W +
∑n

i=1(log vi + log wi)); so
running time not polynomial but “pseudo-polynomial”!

Ruta (UIUC) CS473 39 Spring 2018 39 / 41



An Iterative Algorithm

for w = 0 to W do
M[0,w ] = 0

for i = 1 to n do
for w = 1 to W do

if (wi > w) then
M[i ,w ] = M[i − 1,w ]

else
M[i ,w ] = max(M[i − 1,w ],M[i − 1,w − wi ] + vi )

Running Time
1 Time taken is O(nW )

2 Input has size O(n + log W +
∑n

i=1(log vi + log wi)); so
running time not polynomial but “pseudo-polynomial”!

Ruta (UIUC) CS473 39 Spring 2018 39 / 41



An Iterative Algorithm

for w = 0 to W do
M[0,w ] = 0

for i = 1 to n do
for w = 1 to W do

if (wi > w) then
M[i ,w ] = M[i − 1,w ]

else
M[i ,w ] = max(M[i − 1,w ],M[i − 1,w − wi ] + vi )

Running Time
1 Time taken is O(nW )

2 Input has size O(n + log W +
∑n

i=1(log vi + log wi)); so
running time not polynomial but “pseudo-polynomial”!

Ruta (UIUC) CS473 39 Spring 2018 39 / 41



Introducing a Variable

For the Knapsack problem obtaining a recursive algorithm required
introducing a new variable, namely the size of the knapsack.

This is a key idea that recurs in many dynamic programming
problems.

How do we figure out when this is possible?

Heuristic answer that works for many problems: Try divide and
conquer or obvious recursion: if problem is not decomposable then
introduce the “information” required to decompose as new
variable(s). Will see several examples to make this idea concrete.
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Knapsack Algorithm and Polynomial time

1 Input size for Knapsack:
O(n) + log W +

∑n
i=1(log wi + log vi).

2 Running time of dynamic programming algorithm: O(nW ).

3 Not a polynomial time algorithm.

4 Example: W = 2n and wi , vi ∈ [1..2n]. Input size is O(n2),
running time is O(n2n) arithmetic/comparisons.

5 Algorithm is called a pseudo-polynomial time algorithm
because running time is polynomial if numbers in input are of
size polynomial in the combinatorial size of problem.

6 Knapsack is NP-Hard if numbers are not polynomial in n.
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