Aside: Golden Ratio

Golden Ratio: A universal law.
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Recursion

Reduction:

Reduce one problem to another

A special case of reduction

© reduce problem to a smaller instance of itself
@ self-reduction

@ Problem instance of size n is reduced to one or more instances
of size n — 1 or less.

@ For termination, problem instances of small size are solved by
some other method as base cases.
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Recursion in Algorithm Design

© Tail Recursion: problem reduced to a single recursive call after
some work. Easy to convert algorithm into iterative or greedy
algorithms.
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Recursion in Algorithm Design

© Tail Recursion: problem reduced to a single recursive call after
some work. Easy to convert algorithm into iterative or greedy
algorithms.

© Divide and Conquer: Problem reduced to multiple
independent sub-problems that are solved separately. Conquer
step puts together solution for bigger problem.

Examples: Merge/Quick Sort, FFT
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Recursion in Algorithm Design

© Tail Recursion: problem reduced to a single recursive call after
some work. Easy to convert algorithm into iterative or greedy
algorithms.

© Divide and Conquer: Problem reduced to multiple
independent sub-problems that are solved separately. Conquer
step puts together solution for bigger problem.

Examples: Merge/Quick Sort, FFT

© Dynamic Programming: problem reduced to multiple
(typically) dependent or overlapping sub-problems. Use
memoization to avoid recomputation of common solutions.
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Part |

Recursion and Memoization
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Recursion, recursion Tree and dependency graph

foo(instance X)

If X is a base case then
solve it and return solution

Else
do some computation
fOO(Xl)
do some computation
foo(X>)
foo(X3)
more computation
Output solution for X
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Recursion, recursion Tree and dependency graph

foo(instance X)

If X is a base case then
solve it and return solution

Else
do some computation
fOO(Xl)
do some computation
foo(X>)
foo(X3)
more computation
Output solution for X

Two objects of interest when analyzing foo(X)
@ recursion tree of the recursive implementation

@ a DAG representing the dependency graph of the distinct
subproblems
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Fibonacci Numbers

Fibonacci (1200 AD), Pingala (200 BCE).
Numbers defined by recurrence:

F(n)=F(n—1)+ F(n—2)and F(0) =0,F(1) = 1.

Ruta (UIUC) CS473 7 Spring 2018 7 /41



Fibonacci Numbers

Fibonacci (1200 AD), Pingala (200 BCE).
Numbers defined by recurrence:

F(n)=F(n—1)+ F(n—2)and F(0) =0,F(1) = 1.

These numbers have many interesting and amazing properties.
A journal The Fibonacci Quarterly!

@ F(n) = (¢" — (1 — »)")/+/5 where ¢ is the golden ratio
(1+ /5)/2 ~ 1.618.
Q lim, oo F(n+1)/F(n) = ¢
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Recursive Algorithm for Fibonacci Numbers

Question: Given n, compute F(n).

Fib(n) :
if (n=0)
return 0
else if (n=1)
return 1
else
return Fib(n — 1) + Fib(n — 2)
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Recursive Algorithm for Fibonacci Numbers

Question: Given n, compute F(n).

Fib(n) :
if (n=0)
return 0
else if (n=1)
return 1
else
return Fib(n — 1) + Fib(n — 2)

Running time? Let T (n) be the number of additions in Fib(n).
T(n)=T(n—1)+T(n—2)+1and T(0)=T(1) =0
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Recursive Algorithm for Fibonacci Numbers

Question: Given n, compute F(n).

Fib(n) :
if (n=0)
return 0
else if (n=1)
return 1
else
return Fib(n — 1) + Fib(n — 2)

Running time? Let T (n) be the number of additions in Fib(n).
T(n)=T(n—1)+T(n—2)+1and T(0)=T(1) =0

Roughly same as F(n)
T(n) = (")

The number of additions is exponential in n.
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Recursion tree vs dependency graph

Fib(5)
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An iterative algorithm for Fibonacci numbers

Fiblter(n) :
if (n=20) then
return 0
if (n=1) then
return 1
F[0]=0
F[1] =1
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An iterative algorithm for Fibonacci numbers

Fiblter(n) :
if (n=20) then
return 0
if (n=1) then
return 1
F[o]=0
F[11=1
for i =2 to n do
Flil] = F[i — 1]+ F[i — 2]
return F[n]

Running time: O(n) additions.

Ruta (UIUC)
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What is the difference?

© Recursive algorithm is recomputing same subproblems many
time.

@ lterative algorithm is computing the value of a subproblem only
once by storing them: Memoization.
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What is the difference?

© Recursive algorithm is recomputing same subproblems many
time.

@ lterative algorithm is computing the value of a subproblem only
once by storing them: Memoization.

Dynamic Programming:

Finding a recursion that can be effectively/efficiently memoized.

Leads to polynomial time algorithm if number of sub-problems is
polynomial in input size.

Every recursive algorithm can be memoized by working with the
dependency graph.
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Automatic Memoization

Can we convert recursive algorithm into an efficient algorithm
without explicitly doing an iterative algorithm?
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Automatic Memoization

Can we convert recursive algorithm into an efficient algorithm
without explicitly doing an iterative algorithm?

Fib(n):
if (n=0)
return 0
if (n=1)
return 1
if (Fib(n) was previously computed)
return stored value of Fib(n)
else
return Fib(n — 1) + Fib(n — 2)
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Automatic Memoization

Can we convert recursive algorithm into an efficient algorithm
without explicitly doing an iterative algorithm?

Fib(n):
if (n=0)
return 0
if (n=1)
return 1
if (Fib(n) was previously computed)
return stored value of Fib(n)
else
return Fib(n — 1) + Fib(n — 2)

How do we keep track of previously computed values?
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Automatic Memoization

Can we convert recursive algorithm into an efficient algorithm
without explicitly doing an iterative algorithm?

Fib(n):
if (n=0)
return 0
if (n=1)
return 1
if (Fib(n) was previously computed)
return stored value of Fib(n)
else
return Fib(n — 1) + Fib(n — 2)

How do we keep track of previously computed values?
Two methods: explicitly and implicitly (via data structure)
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Automatic explicit memoization

Initialize table/array M of size n such that M[i] = —1 for
i=0,...,n
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Automatic explicit memoization

Initialize table/array M of size n such that M[i] = —1 for
i=0,...,n

Fib(n):

if (n=0)
return 0

if (n=1)
return 1

if (M[n] # —1) (* M[n] has stored value of Fib(n) *)
return M[n]

M[n] < Fib(n — 1) + Fib(n — 2)

return M[n]

To allocate memory need to know upfront the number of
subproblems for a given input size n
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Automatic implicit memoization

Initialize a (dynamic) dictionary data structure D to empty

Fib(n) :
if (n=0)
return 0
if (n=1)
return 1
if (n is already in D)
return value stored with n in D
val + Fib(n — 1) 4+ Fib(n — 2)
Store (n,val) in D
return val
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Explicit vs Implicit Memoization

@ Explicit memoization or iterative algorithm preferred if one can
analyze problem ahead of time. Allows for efficient memory
allocation and access.
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Explicit vs Implicit Memoization

@ Explicit memoization or iterative algorithm preferred if one can
analyze problem ahead of time. Allows for efficient memory
allocation and access.

@ Implicit and automatic memoization used when problem
structure or algorithm is either not well understood or in fact
unknown to the underlying system.

©® Need to pay overhead of data-structure.
@ Functional languages such as LISP automatically do
memoization, usually via hashing based dictionaries.
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Back to Fibonacci Numbers

Saving space. Do we need an array of n numbers?
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Back to Fibonacci Numbers

Saving space. Do we need an array of n numbers? Not really.

Fiblter(n):
if (n=0) then
return 0
if (n=1) then
return 1
prev2 =0
prevl =1

for i = 2 to n do
temp = prevl + prev2
prev2 = prevl
prevl = temp

return prevl
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What is Dynamic Programming?

Every recursion can be memoized. Automatic memoization does not
help us understand whether the resulting algorithm is efficient or not.
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What is Dynamic Programming?

Every recursion can be memoized. Automatic memoization does not
help us understand whether the resulting algorithm is efficient or not.

Dynamic Programming:

—

A recursion that when memoized leads to an efficient algorithm.
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What is Dynamic Programming?

Every recursion can be memoized. Automatic memoization does not
help us understand whether the resulting algorithm is efficient or not.

Dynamic Programming:

—

A recursion that when memoized leads to an efficient algorithm.

Key Questions:

@ Given a recursive algorithm, how do we analyze complexity when
it is memoized?
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What is Dynamic Programming?

Every recursion can be memoized. Automatic memoization does not
help us understand whether the resulting algorithm is efficient or not.

Dynamic Programming:
A recursion that when memoized leads to an efficient algorithm.

Key Questions:

@ Given a recursive algorithm, how do we analyze complexity when
it is memoized?

@ How do we recognize whether a problem admits a dynamic
programming based efficient algorithm?
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What is Dynamic Programming?

Every recursion can be memoized. Automatic memoization does not
help us understand whether the resulting algorithm is efficient or not.

Dynamic Programming:

—

A recursion that when memoized leads to an efficient algorithm.

Key Questions:

@ Given a recursive algorithm, how do we analyze complexity when
it is memoized?

@ How do we recognize whether a problem admits a dynamic
programming based efficient algorithm?

@ How do we further optimize time and space of a dynamic
programming based algorithm?
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Part 1l
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Edit distance between two words X and Y is the number of letter
insertions, letter deletions and letter substitutions required to obtain
Y from X.

Example
The edit distance between FOOD and MONEY is at most 4:

FOOD — MOOD — MONOD — MONED — MONEY
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Edit Distance: Alternate View

Alignment

Place words one on top of the other, with gaps in the first word

indicating insertions, and gaps in the second word indicating
deletions.

F O O D
M ONEY
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Edit Distance: Alternate View

Alignment

Place words one on top of the other, with gaps in the first word
indicating insertions, and gaps in the second word indicating

deletions.
F O O D

M ONEY

Formally, an alignment is a sequence M of pairs (i, ) such that each
index appears exactly once, and there is no “crossing”: if

(iy4)y o5 (i"sj’) then i < i’ and j < j’. One of i or j could be
empty, in which case no comparision. In the above example, this is
M ={(1,1),(2,2),(3,3),(,4),(4,5)}.
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Edit Distance: Alternate View

Alignment

Place words one on top of the other, with gaps in the first word
indicating insertions, and gaps in the second word indicating

deletions.
F O O D

M ONEY

Formally, an alignment is a sequence M of pairs (i, ) such that each
index appears exactly once, and there is no “crossing”: if

(iy4)y o5 (i"sj’) then i < i’ and j < j’. One of i or j could be
empty, in which case no comparision. In the above example, this is
M ={(1,1),(2,2),(3,3),(,4),(4,5)}.

Cost of an alignment: the number of mismatched columns.
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Edit Distance Problem

Problem

Given two words, find the edit distance between them, i.e., an
alignment of smallest cost.
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Edit Distance

Basic observation

Let X = ax and Y = By
a, 3: strings. x and y single characters.

Possible alignments between X and Y

(81 X (81 X (69, ¢
or or

B y By B y
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Edit Distance

Basic observation

Let X = ax and Y = By
a, 3: strings. x and y single characters.

Possible alignments between X and Y

(81 X (81 X (69, ¢
or or

B y By B y

Observation
Prefixes must have optimal alignment!
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Edit Distance

Basic observation

Let X = ax and Y = By
a, 3: strings. x and y single characters.

Possible alignments between X and Y

(81 X (81 X (69, ¢
or or

B y By B y

Observation
Prefixes must have optimal alignment!

EDIST (v, B) + [x # y]
EDIST(X,Y) = min{ 1+ EDIST (a, Y)
1+ EDIST(X, B)
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Recursive Algorithm

Assume X is stored in array A[l..m] and Y is stored in B[1..n]

EDIST (A[1..m], B[1..n])
If (m=0) return n
If (n=0) return m
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Recursive Algorithm

Assume X is stored in array A[l..m] and Y is stored in B[1..n]

EDIST (A[1..m], B[1..n])
If (m=0) return n
If (n=0) return m
my =1+ EDIST(A[1..(m — 1)], B[1..n])
my =1+ EDIST(A[1..m], B[1..(n — 1)]))
1f (A[m] = B[n]) then
m3 = EDIST (A[L..(m — 1)], B[1..(n — 1)])
Else
m3 =1+ EDIST(A[1..(m — 1)], B[1..(n — 1)])
return min(my, my, ms)
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DEED and DREAD
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Subproblems and Recurrence

Each subproblem corresponds to a prefix of X and a prefix of Y

Optimal Costs

Let Opt(i, ) be optimal cost of aligning x; - - - x; and yj « - - y;.
Then

[xi # yjl + Opt(i — 1,j — 1),
Opt(i,j) = min< 1+ Opt(i — 1,j),
1+ Opt(iaj - 1)

Base Cases: Opt(i,0) = i and Opt(0,)) = j
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Memoizing the Recursive Algorithm

int  M[0..m][0..n]
Initialize all entries of MIJi][j] to oo
return EDIST(A[l..m], B[1..n])
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Memoizing the Recursive Algorithm

int  M[0..m][0..n]
Initialize all entries of MIJi][j] to oo
return EDIST(A[l..m], B[1..n])

EDIST (A[1..m], B[1..n])
If (M[i][j] < o©) return MIi][j] (* return stored value *)

If (im=0)
M[il[j]l]=n

ElseIf (n=0)
MLl = m
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Memoizing the Recursive Algorithm

int  M[0..m][0..n]
Initialize all entries of MIJi][j] to oo
return EDIST(A[l..m], B[1..n])

EDIST (A[1..m], B[1..n])
If (M[i][j] < o©) return MIi][j] (* return stored value *)

If (im=0)
M[illil1=n
ElseIf (n=0)
M[illj] = m
Else

m; = 14 EDIST(A[1..(m — 1)], B[1..n])
my =1+ EDIST(A[1..m], B[1..(n — 1)]))
1f (A[m] = B[n]) m; = EDIST(A[1..(m — 1)], B[1..(n — 1)])
Else ms = 1+ EDIST(A[l..(m — 1)], B[1..(n — 1)])
MIi][j] = min(my, my, m3)
return MJi][j]
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Matrix and DAG of Computation

Matrix M:

-

Figure: Dependency of matrix entries in the recursive algorithm of
previous slide
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Removing Recursion to obtain lterative Algorithm

EDIST(A[1..m], B[1..n])
int  MJ[0..m][0..n]
for i=1 to m do M[i,0] =i
for j=1 to n do M[0,j] =j

for i=1 to m do
for j=1 to n do

[xi = y;] + M[i —1][j — 1],
MI[il[j] = min < 1 + M[i — 1][/],
1+ MJilj — 1]
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Removing Recursion to obtain Iterative Algorithm

EDIST(A[1..m], B[1..n])
int  MJ[0..m][0..n]
for i=1 to m do M[i,0] =i
for j=1 to n do M[0,j] =j

for i=1 to m do
for j=1 to n do

[xi = y;] + M[i —1][j — 1],
MIil[j] = min ¢ 1 + M[i — 1][j],
1+ MJilj — 1]

_
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Removing Recursion to obtain Iterative Algorithm

EDIST(A[1..m], B[1..n])
int  MJ[0..m][0..n]
for i=1 to m do M[i,0] =i
for j=1 to n do M[0,j] =j

for i=1 to m do
for j=1 to n do

[xi = y;] + M[i —1][j — 1],
MIil[j] = min ¢ 1 + M[i — 1][j],
1+ MJilj — 1]

@ Running time is O(mn).
@ Space used is O(mn).
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Matrix and DAG of Computation (revisited)

Matrix M:

Figure: Iterative algorithm in previous slide computes values in row order.
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Finding an Optimum Solution

The DP algorithm finds the minimum edit distance in O(nm) space
and time.

Question: Can we find a specific alignment which achieves the
minimum?
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Finding an Optimum Solution

The DP algorithm finds the minimum edit distance in O(nm) space
and time.

Question: Can we find a specific alignment which achieves the
minimum?

Exercise: Show that one can find an optimum solution after
computing the optimum value. Key idea is to store back pointers
when computing Opt(i, ) to know how we calculated it. See notes
for more details.
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Dynamic Programming Template

©@ Come up with a recursive algorithm to solve problem

@ Understand the structure/number of the subproblems generated
by recursion

© Memoize the recursion — DP

e set up compact notation for subproblems
o set up a data structure for storing subproblems

© lterative algorithm

e Understand dependency graph on subproblems
e Pick an evaluation order (any topological sort of the
dependency dag)

© Analyze time and space
© Optimize
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Part |11

Knapsack
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Knapsack Problem

Input Given a Knapsack of capacity W Ibs. and n objects
with ith object having weight w; and value v;; assume
W, w;, v; are all positive integers

Goal Fill the Knapsack without exceeding weight limit while
maximizing value.
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Knapsack Problem

Input Given a Knapsack of capacity W Ibs. and n objects
with ith object having weight w; and value v;; assume
W, w;, v; are all positive integers

Goal Fill the Knapsack without exceeding weight limit while
maximizing value.

Basic problem that arises in many applications as a sub-problem.

Ruta (UIUC) Cs473 EE Spring 2018 33/ 41



Knapsack Example

‘Item ‘11‘12‘I3‘I4‘I5‘

Value 1(6]18]22|28
Weight | 1 |2 | 5|6 | 7

If W = 11, the best is {3, I} giving value 40.
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Knapsack Example

‘Item ‘11‘12‘13‘14‘15‘

Value 1(6]18]22|28
Weight | 1 |2 | 5|6 | 7

If W = 11, the best is {3, I} giving value 40.

Special Case

When v; = wj;, the Knapsack problem is called the Subset Sum
Problem. ]
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For the following instance of Knapsack:

‘ ltem H Il ‘ 12 ‘ I3 ‘ I4 ‘ I5 ‘
Value 1616|2228
Weight || 1 |2 | 5|6 |7

and weight limit W = 15. The best solution has value:
(A) 22
(B) 28
(C) 38
(D) 50
(E) 56
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Greedy Approach

@ Pick objects with greatest value
O let W=2wi=wm=1 w3=2 vy =v=2and
vz =3;
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Greedy Approach

@ Pick objects with greatest value
O let W=2wi=wm=1 w3=2 vy =v=2and
v3 = 3;greedy strategy will pick {3}, but the optimal is {1, 2}
@ Pick objects with smallest weight
O let W=2wi=1ww=2 vi=1and v, =3;
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Greedy Approach

@ Pick objects with greatest value
O let W=2wi=wm=1 w3=2 vy =v=2and
v3 = 3;greedy strategy will pick {3}, but the optimal is {1, 2}
@ Pick objects with smallest weight
O Llet W=2 w; =1 w =2, v =1 and v, = 3;greedy
strategy will pick {1}, but the optimal is {2}
@ Pick objects with largest v;/w; ratio
QO let W=4 wi=wy=2 w3=3, vy=wvy =3and
vy = 5;
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Greedy Approach

@ Pick objects with greatest value
O let W=2wi=wm=1 w3=2 vy =v=2and
v3 = 3;greedy strategy will pick {3}, but the optimal is {1, 2}
@ Pick objects with smallest weight
O Llet W=2 w; =1 w =2, v =1 and v, = 3;greedy
strategy will pick {1}, but the optimal is {2}
@ Pick objects with largest v;/w; ratio
QO let W=4 wi=wy=2 w3=3, vy=wvy =3and
v3 = 5;greedy strategy will pick {3}, but the optimal is {1, 2}
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Greedy Approach

@ Pick objects with greatest value
O let W=2wi=wm=1 w3=2 vy =v=2and
v3 = 3;greedy strategy will pick {3}, but the optimal is {1, 2}
@ Pick objects with smallest weight
O Llet W=2 w; =1 w =2, v =1 and v, = 3;greedy
strategy will pick {1}, but the optimal is {2}
@ Pick objects with largest v;/w; ratio
QO let W=4 wi=wy=2 w3=3, vy=wvy =3and
v3 = 5;greedy strategy will pick {3}, but the optimal is {1, 2}
@ Aside: Can show that a slight modification always gives half
the optimum profit: pick the better of the output of this
algorithm and the largest value item. Also, the algorithms gives
better approximations when all item weights are small when
compared to W.
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Towards a Recursive Algorithms

First guess: Opt(f) is the optimum solution value for items 1,...,i.

Observation

Consider an optimal solution O for1,...,i

Case item 1 € O O is an optimal solution to items 1 toi — 1

Case item i € O Then O — {i} is an optimum solution for items 1

to i — 1 in knapsack of capacity W — w;.
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Towards a Recursive Algorithms

First guess: Opt(f) is the optimum solution value for items 1,...,i.

Observation
Consider an optimal solution O for1,...,i

Case item 1 € O O is an optimal solution to items 1 toi — 1

Case item i € O Then O — {i} is an optimum solution for items 1
to i — 1 in knapsack of capacity W — w;.
Subproblems depend also on remaining capacity. Cannot
write subproblem only in terms of
Opt(1),...,O0pt(i — 1).
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Towards a Recursive Algorithms

First guess: Opt(f) is the optimum solution value for items 1,...,i.

Observation
Consider an optimal solution O for1,...,i

Case item 1 € O O is an optimal solution to items 1 toi — 1

Case item i € O Then O — {i} is an optimum solution for items 1
to i — 1 in knapsack of capacity W — w;.
Subproblems depend also on remaining capacity. Cannot
write subproblem only in terms of
Opt(1),...,O0pt(i — 1).

Opt(i, w): optimum profit for items 1 to i in knapsack of size w
Goal: compute Opt(n, W)
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Dynamic Programming Solution

Definition

Let Opt(i, w) be the optimal way of picking items from 1 to i, with
total weight not exceeding w.

0 fr=20
) Opt(i — 1, w) if w; > w
Opt(i, w) = Opt(i — 1, w) |
max otherwise

Opt(i —1,w — w;) + v;

Number of subproblem generated by Opt(n, W) is O(nW).
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An lterative Algorithm

for w=0 to W do
M[0O,w] =0
for i=1 to n do
for w=1 to W do
if (w; > w) then
Mli,w] = M[i — 1, w]

else

Mli, w] = max(M[i — 1, w],M[i — 1, w — w;] + v;)

Running Time
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An lterative Algorithm

for w=0 to W do
M[0O,w] =0
for i=1 to n do
for w=1 to W do
if (w; > w) then
Mli,w] = M[i — 1, w]

else

Mli, w] = max(M[i — 1, w],M[i — 1, w — w;] + v;)

Running Time
© Time taken is O(nW)
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An lterative Algorithm

for w=0 to W do
M[0O,w] =0
for i=1 to n do
for w=1 to W do
if (w; > w) then
Mli,w] = M[i — 1, w]

else

Mli, w] = max(M[i — 1, w],M[i — 1, w — w;] + v;)

Running Time
© Time taken is O(nW)

@ Input has size O(n + log W + 7" (log v; + log w;)); so
running time not polynomial but “pseudo-polynomial™!
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Introducing a Variable

For the Knapsack problem obtaining a recursive algorithm required
introducing a new variable, namely the size of the knapsack.

This is a key idea that recurs in many dynamic programming
problems.
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Introducing a Variable

For the Knapsack problem obtaining a recursive algorithm required
introducing a new variable, namely the size of the knapsack.

This is a key idea that recurs in many dynamic programming
problems.

How do we figure out when this is possible?
Heuristic answer that works for many problems: Try divide and
conquer or obvious recursion: if problem is not decomposable then

introduce the “information” required to decompose as new
variable(s). Will see several examples to make this idea concrete.
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Knapsack Algorithm and Polynomial time

@ Input size for Knapsack:

O(n) + log W + 37 (log w; + log v;).
@ Running time of dynamic programming algorithm: O(nW).
© Not a polynomial time algorithm.
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Knapsack Algorithm and Polynomial time

@ Input size for Knapsack:

O(n) + log W + 37 (log w; + log v;).
@ Running time of dynamic programming algorithm: O(nW).
© Not a polynomial time algorithm.

@ Example: W = 2" and wj;, v; € [1..2"]. Input size is O(n?),
running time is O(n2") arithmetic/comparisons.
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Knapsack Algorithm and Polynomial time

@ Input size for Knapsack:
O(n) + log W + 37 (log w; + log v;).
@ Running time of dynamic programming algorithm: O(nW).
© Not a polynomial time algorithm.
@ Example: W = 2" and wj;, v; € [1..2"]. Input size is O(n?),
running time is O(n2") arithmetic/comparisons.
© Algorithm is called a pseudo-polynomial time algorithm

because running time is polynomial if numbers in input are of
size polynomial in the combinatorial size of problem.

© Knapsack is NP-Hard if numbers are not polynomial in n.
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