Given on exam:
Prob. inequalities
NP-hard problems
Standard rubrics — DP, Graph reduction, NP-hardness...

"Prove" → we want a proof
"Prove" → we do not want a proof

Linear arrangement problem
Input: Directed graph $G = (V, E)$
Output: Indexing of $V = \{v_1, v_2, ..., v_n\}$
s.t. #edges $v_i \rightarrow v_j$ with $i < j$
is maximized.

If G is a dag? Topological sort!
In general NP-hard
Question: Design a fast 2-approximation algorithm.

We know $OPT \leq E$.

1. Sort by outdegree.
2. Pick arbitrary ordering.
 If $\geq E/2$ forward edges, done.
 Else reverse everything.

SP 2015 Final #2
m soldiers
n tasks
$\geq k$ soldiers qualified for each task
Select a set S of soldiers
maximizing # tasks with ONE qualified soldier in S.

(a) Choose each soldier with prob p.
$$E[\#\text{tasks}] = \sum_{i=1}^{n} \Pr(\text{task } i \text{ is completed})$$
$$= n \cdot p \cdot (1-p)^{k-1} \cdot k$$
(b) Best value of $p =$?
\[\frac{d}{dp} p(1-p)^k = (1-p)^{k-1} + p(k-1)(1-p)^{k-2} = 0 \]

\[(1-p) = p(k-1) \]

\[1 = pk - p + p \]

\[P = \left(1 - \frac{p}{k}\right)^k \]

\[E(\text{#tasks}) = n \cdot (1 - \frac{1}{k}) \]

\[E(\text{approx}) \approx \frac{n}{e} \]

\[0(1) \text{- approx algo} \]

\[\Box \]

FF: \(O(E |F|) \) time

Orlin: \(O(VE) \) time

- edges have capacities and/or have lower bounds
- vertices have capacities and/or have lower bounds
 - on incoming flow (or outgoing flow)
 - multiple sources, multiple sinks, or no
 - feasible? max. value
- vertices can have non-zero balances
- Flow decomposition - integer flow

\[n \times n \text{ checkerboard with some squares removed} \]

\[\text{cover every square exactly once with dominoes: } 2 \times 1 \text{ or } 1 \times 2 \text{ rectangles} \]

Bipartite matching (L, R, E)

\[L = \text{white squares} \quad R = \text{black squares} \]

\[E = \text{adj squares - share boundary side} \]

\[\text{domino} = \text{edge} \]

\[\text{Cover with domino perfect matching} \quad \text{time: } O(VE) = O(n^2) \]
Double Hamiltonian circuit is NP-hard
Reduce from Ham cycle

\[\text{HamCycle} \rightarrow \text{2Ham} \]

Given \(G(V,E) \) construct \(G'(V',E') \)
Attach a lollipop to every vertex

\(G \) has Ham cycle \(\rightarrow \) \(G' \) has double Ham. √
\(G' \) has double Ham.

Case analysis:
within each gadget
\[\text{2Ham} \quad \frac{\text{poly time}}{\log n} \]
Delete gadgets, left Ham cycle in \(G \).

Sp 2016 Final #1
A triple Hamiltonian cycle = closed walk that visits every vertex exactly 3 times.

Max flow notes problem 6.
\(G=(V,E) \) Flow network
every edge has capacity 1
shortest path from \(s \) to \(t \) is \(\geq d \).

3) max flow \(\leq \frac{E}{d} \)

Suppose \(f^* \) is max flow
Decompose into \(|f^*| \) paths edge-disjoint
each path has length \(\geq d \)
Total #edges covered by flow \(\geq d \cdot |f^*| \)
\[\frac{|f^*| \leq E}{\square} \]
Nuts + Bolts notes Problem 7

Given X randomly permuted
X[\text{next}[i]] is successor of \text{[i]} in sorted order

Given x, is x in X?

Goal: \(O(\sqrt{n}) \) time

Algorithm:
- Choose \(k \) elements of \(X \) at random.
- Find largest sample smaller than \(x \). - \(O(k) \) time
- Scan forward to \(\geq x \) - \(O(n/k) \) exp. time.
- \(2n/k + 1 \)

Describe \(\square \) by center \((x,y)\)
edge length \(l \)

\[
\max l \quad \text{s.t. } a_i(x + \frac{l}{2}) + b_i(y + \frac{l}{2}) \leq c_i \quad \text{for all } i
\]

4 constraints for each \(i \)

Spring 2015 Final #6

Given linear inequalities
\(a_i x + b_i y \leq c_i \)

Describe LP whose solution describes largest square in feasible polygon \(P \)

Describe \(O(n \log^4 n) \)
Sp 2016 Final #5

a. Assign random priority to every vertex $S = \{ v \mid \text{priority}(v) \geq \min_{uv} \text{priority}(u) \}$

Pr[S is a vertex cover] = 1

b. G cycle of length n

$$E[|S|] = \sum_{i=1}^{\frac{n}{2}} \Pr[v_i \in S] = \frac{n}{2} \cdot \frac{2}{3} = \frac{2n}{3}$$

c. G star with $n-1$ leaves

$$E[|S|] = \sum_{i=1}^{\frac{n}{2}} \Pr[v_i \in S] = (n-1)\Pr[\text{leaf} \in S] + \Pr[\text{center} \in S]$$

$$= \frac{n-1}{2} + \frac{n-1}{n} = \frac{n+1-1}{2} = \frac{n}{2}$$

d. Star. Choose S_1, S_2, \ldots, S_n independently

How large N so that some S_i is a min vertex cover w.h.p.

$$\Pr[S = \text{min VC}] = \Pr[\text{priority}(v_i) \geq \text{priority}(u_i) \text{ for all } i]$$

$$= \frac{1}{n}$$

$$\Pr[\text{no min VC is one of } S_1, S_2, \ldots, S_n]$$

$$= 1 - \Pr[\text{none of } S_1, S_2, \ldots, S_n \text{ is min VC}]$$

$$= 1 - (1 - \frac{1}{n})^N \geq 1 - \frac{1}{n^a}$$

if $N \geq a \log n$

$$= 2(n \log n)$$

$$N \geq \alpha n \log n$$

$$\frac{N}{n} \geq \alpha \log n$$

$$e^{N/n} \approx n^a$$

$$e^{-N/n} \approx (1 - \frac{1}{n})^N \leq \frac{1}{n^a}$$

$$1 - (1 - \frac{1}{n})^N \geq 1 - \frac{1}{n^a}$$
Solution 1
Disjoint path cover
Define dag \(G = (V, E) \)
\(V = \) boxes
\(E = \{ u \to v \mid v \text{ fits inside } u \} \) after some rotation \(\S \) dag \(\S \)
\(\text{min dim } u < \text{min dim } v \)
path = seq of nested boxes
outermost is only visible vertex
\(\text{min # visible boxes} \leq \text{min # disjoint paths cover } G \)

time = \(O(VE) = O(n^3) \) time

Solution 2: Matching
\(G = (L, U, R, E) \)
\(L = \) boxes
\(U = \) boxes
\(R = \) boxes
\(E = \{ u \to v \mid u \text{ fits inside } v \} \)
Intuition \(u \in \text{match} \) \(\text{if } v \text{ is smallest box containing } u \)
Visible box = unmatched vertex in \(L \)
\(O(VE) = O(n^3) \) time