
The tree which fills the arms grew from the tiniest sprout;
the tower of nine storeys rose from a (small) heap of earth;
the journey of a thousand li commenced with a single step.

— Lao-Tzu, Tao Te Ching, chapter 64 (6th century BC),translated by J. Legge (1891)
And I would walk five hundred miles,
And I would walk five hundred more,
Just to be the man who walks a thousand miles
To fall down at your door.

— The Proclaimers, “Five Hundred Miles (I’m Gonna Be)”,
Sunshine on Leith (2001)

Almost there. . . Almost there. . .
— Red Leader [Drewe Henley], Star Wars (1977)

CHAPTER 9
All-Pairs Shortest Paths

ÆÆÆThis is the Spring 2016 revision in the new skin; it still needs significant revision. In par-ticular, several figures need to be redrawn in OmniGraffle.
In the previous chapter, we saw algorithms to find the shortest path from a source

vertex s to a target vertex t in a directed graph. As it turns out, the best algorithms for
this problem actually find the shortest path from s to every possible target (or from every
possible source to t) by constructing a shortest path tree. The shortest path tree specifies
two pieces of information for each node v in the graph:

• dist(v) is the length of the shortest path (if any) from s to v;

• pred(v) is the second-to-last vertex (if any) the shortest path (if any) from s to v.

In this chapter, we will generalize the shortest path problem even further. In the all
pairs shortest path problem, we want to find the shortest path from every possible source
to every possible destination. Specifically, for every pair of vertices u and v, we need to
compute the following information:

• dist(u, v) is the length of the shortest path (if any) from u to v;

• pred(u, v) is the second-to-last vertex (if any) on the shortest path (if any) from u to
v.

© Copyright 2017 Jeff Erickson.This work is licensed under a Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/4.0/).Free distribution is strongly encouraged; commercial distribution is expressly forbidden.See http://jeffe.cs.illinois.edu/teaching/algorithms/ for the most recent revision. 1

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://jeffe.cs.illinois.edu/teaching/algorithms/

9. ALL-PAIRS SHORTEST PATHS

For example, for any vertex v, we have dist(v, v) = 0 and pred(v, v) = Null. If the shortest
path from u to v is only one edge long, then dist(u, v) = w(u�v) and pred(u, v) = u. If
there is no shortest path from u to v—either because there’s no path at all, or because
there’s a negative cycle—then dist(u, v) =∞ and pred(v, v) = Null.

The output of our shortest path algorithms will be a pair of V × V arrays encoding
all V 2 distances and predecessors. Many maps include a distance matrix—to find
the distance from (say) Champaign to (say) Columbus, you would look in the row
labeled ‘Champaign’ and the column labeled ‘Columbus’. In these notes, I’ll focus almost
exclusively on computing the distance array. The predecessor array, from which you
would compute the actual shortest paths, can be computed with only minor additions to
the algorithms I’ll describe (hint, hint).

9.1 Lots of Single Sources

The obvious solution to the all-pairs shortest path problem is just to run a single-source
shortest path algorithm V times, once for every possible source vertex! Specifically, to
fill in the one-dimensional subarray dist[s, ·], we invoke either Dijkstra’s or Shimbel’s
algorithm starting at the source vertex s.

ObviousAPSP(V, E, w):
for every vertex s

dist[s, ·]← SSSP(V, E, w, s)

The running time of this algorithm depends on which single-source shortest path
algorithm we use. If we use Shimbel’s algorithm, the overall running time is Θ(V2E)=
O(V 4). If all the edge weights are non-negative, we can use Dijkstra’s algorithm instead,
which decreases the running time to Θ(VE + V2 log V) = O(V 3). For graphs with
negative edge weights, Dijkstra’s algorithm can take exponential time, so we can’t get
this improvement directly.

9.2 Reweighting

One idea that occurs to most people is increasing the weights of all the edges by the
same amount so that all the weights become positive, and then applying Dijkstra’s
algorithm. Unfortunately, this simple idea doesn’t work. Different paths change by
different amounts, which means the shortest paths in the reweighted graph may not be
the same as in the original graph.

However, there is a more complicated method for reweighting the edges in a graph.
Suppose each vertex v has some associated cost c(v), which might be positive, negative,
or zero. We can define a new weight function w′ as follows:

w′(u�v) = c(u) +w(u�v)− c(v)

2

9.3. Johnson’s Algorithm

2 2

4 4

3

s t

Figure 9.1. Increasing all the edge weights by 2 changes the shortest path s to t .

To give some intuition, imagine that when we leave vertex u, we have to pay an exit tax
of c(u), and when we enter v, we get c(v) as an entrance gift.

Now it’s not too hard to show that the shortest paths with the new weight function w′

are exactly the same as the shortest paths with the original weight function w. In fact,
for any path u v from one vertex u to another vertex v, we have

w′(u v) = c(u) +w(u v)− c(v).

We pay c(u) in exit fees, plus the original weight of of the path, minus the c(v) entrance
gift. At every intermediate vertex x on the path, we get c(x) as an entrance gift, but
then immediately pay it back as an exit tax!

9.3 Johnson’s Algorithm

Johnson’s all-pairs shortest path algorithm finds a cost c(v) for each vertex, so that when
the graph is reweighted, every edge has non-negative weight.

Suppose the graph has a vertex s that has a path to every other vertex. Johnson’s
algorithm computes the shortest paths from s to every other vertex, using Shimbel’s
algorithm (which doesn’t care if the edge weights are negative), and then sets c(v)←
dist(s, v), so the new weight of every edge is

w′(u�v) = dist(s, u) +w(u�v)− dist(s, v).

Why are all these new weights non-negative? Because otherwise, Shimbel’s algorithm
wouldn’t be finished! Recall that an edge u�v is tense if dist(s, u) +w(u�v)< dist(s, v),
and that single-source shortest path algorithms eliminate all tense edges. The only
exception is if the graph has a negative cycle, but then shortest paths aren’t defined, and
Johnson’s algorithm simply aborts.

But what if the graph doesn’t have a vertex s that can reach everything? No matter
where we start Shimbel’s algorithm, some of those vertex costs will be infinite. Johnson’s
algorithm avoids this problem by adding a new vertex s to the graph, with zero-weight
edges going from s to every other vertex, but no edges going back into s. This addition
doesn’t change the shortest paths between any other pair of vertices, because there are
no paths into s.

So here’s Johnson’s algorithm in all its glory.

3

9. ALL-PAIRS SHORTEST PATHS

JohnsonAPSP(V, E, w) :
create a new vertex s
for every vertex v

w(s�v)← 0
w(v�s)←∞

dist[s, ·]← Shimbel(V, E, w, s)
if Shimbel found a negative cycle

fail gracefully
for every edge (u, v) ∈ E

w′(u�v)← dist[s, u] +w(u�v)− dist[s, v]
for every vertex u

dist[u, ·]← Dijkstra(V, E, w′, u)
for every vertex v

dist[u, v]← dist[u, v]− dist[s, u] + dist[s, v]

The algorithm spends Θ(V) time adding the artificial start vertex s, Θ(V E) time
running Shimbel, O(E) time reweighting the graph, and thenΘ(V E+V 2 log V) running V
passes of Dijkstra’s algorithm. Thus, the overall running time is Θ(VE + V2 log V).

9.4 Dynamic Programming

There’s a completely different solution to the all-pairs shortest path problem that uses
dynamic programming instead of a single-source algorithm. For dense graphs where
E = Ω(V 2), the dynamic programming approach eventually leads to the same O(V 3)
running time as Johnson’s algorithm, but with a much simpler algorithm. In particular,
the new algorithm avoids Dijkstra’s algorithm, which gets its efficiency from Fibonacci
heaps, which are rather easy to screw up in the implementation. In the rest of this
chapter, I will assume that the input graph contains no negative cycles.

As usual for dynamic programming algorithms, we first need to come up with a
recursive formulation of the problem. Here is an “obvious" recursive definition for
dist(u, v):

dist(u, v) =

¨

0 if u= v

min
x�v

�

dist(u, x) +w(x�v)
�

otherwise

In other words, to find the shortest path from u to v, we consider all possible last
edges x�v and recursively compute the shortest path from u to x . Unfortunately, this
recurrence doesn’t work! To compute dist(u, v), we may need to compute dist(u, x)
for every other vertex x . But to compute dist(u, x), we may need to compute dist(u, v).
We’re stuck in an infinite loop!

To avoid this circular dependency, we need an additional parameter that decreases
at each recursion, eventually reaching zero at the base case. One possibility is to include
the number of edges in the shortest path as this third magic parameter, just as we did in
the dynamic programming formulation of Shimbel’s algorithm. Let dist(u, v, k) denote

4

9.4. Dynamic Programming

the length of the shortest path from u to v that uses at most k edges. Since we know that
the shortest path between any two vertices has at most V − 1 vertices, dist(u, v, V − 1) is
the actual shortest-path distance. As in the single-source setting, we have the following
recurrence:

dist(u, v, k) =

0 if u= v

∞ if k = 0 and u 6= v

min
x�v

�

dist(u, x , k− 1) +w(x�v)
�

otherwise

Turning this recurrence into a dynamic programming algorithm is straightforward. To
make the algorithm a little shorter, let’s assume that w(v�v) = 0 for every vertex v.
Assuming the graph is stored in an adjacency list, the resulting algorithm runs in Θ(V2E)
time.

DynamicProgrammingAPSP(V, E, w):
for all vertices u

for all vertices v
if u= v

dist[u, v, 0]← 0
else

dist[u, v, 0]←∞

for k← 1 to V − 1
for all vertices u

dist[u, u, k]← 0
for all vertices v 6= u

dist[u, v, k]←∞
for all edges x�v

if dist[u, v, k]> dist[u, x , k− 1] +w(x�v)
dist[u, v, k]← dist[u, x , k− 1] +w(x�v)

This algorithm was first sketched by Shimbel in 1955; in fact, this algorithm is
just running V different instances of Shimbel’s single-source algorithm, one for each
possible source vertex. Just as in the dynamic programming development of Shimbel’s
single-source algorithm, we don’t actually need the inner loop over vertices v, and we
only need a two-dimensional table. After the kth iteration of the main loop in the
following algorithm, dist[u, v] lies between the true shortest path distance from u to v
and the value dist[u, v, k] computed in the previous algorithm.

5

9. ALL-PAIRS SHORTEST PATHS

ShimbelAPSP(V, E, w):
for all vertices u

for all vertices v
if u= v

dist[u, v]← 0
else

dist[u, v]←∞

for k← 1 to V − 1
for all vertices u

for all edges x�v
if dist[u, v]> dist[u, x] +w(x�v)

dist[u, v]← dist[u, x] +w(x�v)

9.5 Divide and Conquer

But we can make a more significant improvement. The recurrence we just used broke
the shortest path into a slightly shorter path and a single edge, by considering all
predecessors. Instead, let’s break it into two shorter paths at the middle vertex of the
path. This idea gives us a different recurrence for dist(u, v, k). Once again, to simplify
things, let’s assume w(v�v) = 0.

dist(u, v, k) =

¨

w(u�v) if k = 1

min
x

�

dist(u, x , k/2) + dist(x , v, k/2)
�

otherwise

This recurrence only works when k is a power of two, since otherwise we might try to
find the shortest path with a fractional number of edges! But that’s not really a problem,
since dist(u, v, 2dlg V e) gives us the overall shortest distance from u to v. Notice that we
use the base case k = 1 instead of k = 0, since we can’t use half an edge.

Once again, a dynamic programming solution is straightforward. Even before we
write down the algorithm, we can tell the running time is Θ(V3 log V)—we consider V
possible values of u, v, and x , but only dlg V e possible values of k.

FastDynamicProgrammingAPSP(V, E, w):
for all vertices u

for all vertices v
dist[u, v, 0]← w(u�v)

for i← 1 to dlg V e 〈〈k = 2i〉〉
for all vertices u

for all vertices v
dist[u, v, i]←∞
for all vertices x

if dist[u, v, i]> dist[u, x , i − 1] + dist[x , v, i − 1]
dist[u, v, i]← dist[u, x , i − 1] + dist[x , v, i − 1]

6

9.6. “Funny” Matrix Multiplication

This algorithm is not the same as V invocations of any single-source algorithm; in
particular, the innermost loop does not simply relax tense edges. However, we can
remove the last dimension of the table, using dist[u, v] everywhere in place of dist[u, v, i],
just as in Shimbel’s single-source algorithm, thereby reducing the space from O(V 3) to
O(V 2).

FastShimbelAPSP(V, E, w):
for all vertices u

for all vertices v
dist[u, v]← w(u�v)

for i← 1 to dlg V e
for all vertices u

for all vertices v
for all vertices x

if dist[u, v]> dist[u, x] + dist[x , v]
dist[u, v]← dist[u, x] + dist[x , v]

This faster algorithm was discovered by Leyzorek et al. in 1957, in the same paper where
they describe Dijkstra’s algorithm.

9.6 “Funny” Matrix Multiplication

There is a very close connection (first observed by Shimbel, and later independently by
Bellman) between computing shortest paths in a directed graph and computing powers
of a square matrix. Compare the following algorithm for multiplying two n× n matrices
A and B with the inner loop of our first dynamic programming algorithm. (I’ve changed
the variable names in the second algorithm slightly to make the similarity clearer.)

MatrixMultiply(A, B):
for i← 1 to n

for j← 1 to n
C[i, j]← 0
for k← 1 to n

C[i, j]← C[i, j] + A[i, k] · B[k, j]

APSPInnerLoop:
for all vertices u

for all vertices v
D′[u, v]←∞
for all vertices x

D′[u, v]←min
�

D′[u, v], D[u, x] +w[x , v]
	

The only difference between these two algorithms is that we use addition instead of
multiplication and minimization instead of addition. For this reason, the shortest path
inner loop is often referred to as “funny” matrix multiplication.

7

9. ALL-PAIRS SHORTEST PATHS

DynamicProgrammingAPSP is the standard iterative algorithm for computing the
(V − 1)th “funny power” of the weight matrix w. The first set of for loops sets up the
“funny identity matrix”, with zeros on the main diagonal and infinity everywhere else.
Then each iteration of the second main for loop computes the next “funny power”.
FastDynamicProgrammingAPSP replaces this iterative method for computing powers
with repeated squaring, exactly like we saw at the end of Chapter 1. The fast algorithm is
simplified slightly by the fact that unless there are negative cycles, every “funny power”
after the V th is the same.

There are faster methods for multiplying matrices, similar to Karatsuba’s divide-
and-conquer algorithm for multiplying integers. (Google for “Strassen’s algorithm”.)
Unfortunately, these algorithms use subtraction, and there’s no “funny” equivalent of
subtraction. (What’s the inverse operation for min?) So at least for general graphs, there
seems to be no way to speed up the inner loop of our dynamic programming algorithms.

Fortunately, this isn’t true. There a beautiful randomized algorithm, published by
Noga Alon, Zvi Galil, Oded Margalit, and Moni Noar in 1992¹, that computes all-pairs
shortest paths in undirected graphs in O(M(V) log2 V) expected time, where M(V) is
the time to multiply two V × V integer matrices. A simplified version of this algorithm
for unweighted graphs was discovered by Raimund Seidel a few years later.²

9.7 (Kleene-Roy-)Floyd-Warshall

Our fast dynamic programming algorithm is still a factor of O(log V) slower than
Johnson’s algorithm. A different formulation that removes this logarithmic factor was
proposed in 1962 by Robert Floyd, slightly generalizing an algorithm of Stephen Warshall
published earlier in the same year. In fact, Warshall’s algorithm was independently
discovered by Bernard Roy in 1959, but the underlying technique was used even earlier
by Stephen Kleene³ in 1951. Warshall’s (and Roy’s and Kleene’s) insight was to use a
different third parameter in the dynamic programming recurrence.

Number the vertices arbitrarily from 1 to V . For every pair of vertices u and v and
every integer r, we define a path π(u, v, r) as follows:

π(u, v, r) := the shortest path from u to v where every intermediate vertex
(that is, every vertex except u and v) is numbered at most r.

If r = 0, we aren’t allowed to use any intermediate vertices, so π(u, v, 0) is just
the edge (if any) from u to v. If r > 0, then either π(u, v, r) goes through the vertex

1Noga Alon, Zvi Galil, Oded Margalit*, and Moni Naor. Witnesses for Boolean matrix multiplication
and for shortest paths. Proc. 33rd FOCS 417-426, 1992. See also Noga Alon, Zvi Galil, Oded Margalit*. On
the exponent of the all pairs shortest path problem. Journal of Computer and System Sciences 54(2):255–262,
1997.

2Raimund Seidel. On the all-pairs-shortest-path problem in unweighted undirected graphs. Journal of
Computer and System Sciences, 51(3):400-403, 1995. This is one of the few algorithms papers where (in the
conference version at least) the algorithm is completely described and analyzed in the abstract of the paper.

3Pronounced “clay knee”, not “clean” or “clean-ee” or “clay-nuh” or “dimaggio”.

8

9.7. (Kleene-Roy-)Floyd-Warshall

numbered r, or it doesn’t. If π(u, v, r) does contain vertex r, it splits into a subpath
from u to r and a subpath from r to v, where every intermediate vertex in these two
subpaths is numbered at most r − 1. Moreover, the subpaths are as short as possible
with this restriction, so they must be π(u, r, r − 1) and π(r, v, r − 1). On the other hand,
if π(u, v, r) does not go through vertex r, then every intermediate vertex in π(u, v, r)
is numbered at most r − 1; since π(u, v, r) must be the shortest such path, we have
π(u, v, r) = π(u, v, r − 1).

u v
intermediate nodes ≤ r

u v

r

intermediate nodes ≤ r-1

interm
ediate

nodes ≤
 r-1

intermediate

nodes ≤ r-1

— or —=

Figure 9.2. Recursive structure of the restricted shortest path π(u, v, r).

This recursive structure implies the following recurrence for the length of π(u, v, r),
which we will denote by dist(u, v, r):

dist(u, v, r) =

(

w(u�v) if r = 0

min
�

dist(u, v, r − 1), dist(u, r, r − 1) + dist(r, v, r − 1)
	

otherwise

We need to compute the shortest path distance from u to v with no restrictions, which is
just dist(u, v, V). Once again, we should immediately see that a dynamic programming
algorithm will implement this recurrence in Θ(V3) time.

FloydWarshall(V, E, w):
for all vertices u

for all vertices v
dist[u, v, 0]← w(u�v)

for r ← 1 to V
for all vertices u

for all vertices v
if dist[u, v, r − 1]< dist[u, r, r − 1] + dist[r, v, r − 1]

dist[u, v, r]← dist[u, v, r − 1]
else

dist[u, v, r]← dist[u, r, r − 1] + dist[r, v, r − 1]

Just like our earlier algorithms, we can simplify the algorithm by removing the third
dimension of the memoization table. Also, because the vertex numbering was chosen
arbitrarily, there’s no reason to refer to it explicitly in the pseudocode.

9

9. ALL-PAIRS SHORTEST PATHS

FloydWarshall2(V, E, w):
for all vertices u

for all vertices v
dist[u, v]← w(u�v)

for all vertices r
for all vertices u

for all vertices v
if dist[u, v]> dist[u, r] + dist[r, v]

dist[u, v]← dist[u, r] + dist[r, v]

Now compare this algorithm with FastShimbelAPSP. Instead of O(log V) passes through
all triples of vertices, FloydWarshall2 only requires a single pass, but only because it
uses a different nesting order for the three for-loops!

ª9.8 Converting DFAs to regular expressions

Floyd’s algorithm is a special case of a more general method for solving problems involving
paths between vertices in graphs. The earliest example (as far as I know) of this technique
is an 1951 algorithm of Stephen Kleene to convert a deterministic finite automaton (DFA)
into an equivalent regular expression. This is the most difficult component of the
proof that deterministic finite automata, nondeterministic finite automata, and regular
expressions all describe the same set of languages.

Definitions

Recall that a DFA formally consists of the following components:
• A finite set Σ, called the alphabet, and whose elements we call symbols.
• A finite set Q, whose elements are called states.
• An initial state s ∈Q.
• A subset A⊆Q of accepting states.
• A transition function δ : Q×Σ→Q.

The extended transition function δ∗ : Q×Σ∗→Q is recursively defined as follows:

δ∗(q, w) :=

¨

q if w= ε,
δ∗(δ(q, a), x) if w= ax for some a ∈ Σ and x ∈ Σ∗.

Finally, a DFA accepts a string w ∈ Σ∗ if and only if δ∗(s, w) ∈ A.
Equivalently, a DFA is a directed (multi-)graph with labeled edges whose vertices

are the states, such that each vertex (state) has exactly one outgoing edge (transition)
labeled with each symbol in Σ. There is a special “start” vertex s, and a subset A of the
vertices are marked as “accepting”. For any string w ∈ Σ∗, there is a unique walk starting
at s whose sequence of edge labels is w. The DFA accepts w if and only if this walk ends
at a state in A.

10

ª9.8. Converting DFAs to regular expressions

The Algorithm

Kleene described the following algorithm to convert DFAs into equivalent regular
expressions. Suppose we are given a DFA M with n states, where (without loss of
generality) each state is identified by an integer between 1 and n. Let L(i, j , r) denote
the set of all strings that describe walks in M that start at state i and end at state j, such
that every intermediate state has index at most r. Thus, the language accepted by M is
precisely

L(M) =
⋃

q∈A
L(s, q, n).

We prove that every language L(i, j, r) is regular by induction on r, as follows. There
are two cases to consider.

First, suppose r = 0. The language L(i, j, 0) contains the labels of walks from state i
to state j that do not pass through any intermediate states. Thus, every string in L(i, j, 0)
has length at most 1. Specifically, for any symbol a ∈ Σ, we have a ∈ L(i, j, 0) if and only
if δ(i, a) = j, and we have ε ∈ L(i, j, 0) if and only if i = j. Thus, L(i, j, 0) is always
finite, and therefore regular.

3a1 2
a

b

a,bb

An example DFA.
For example, the DFA shown above defines the following regular languages L(i, j, 0).

L(1,1, 0) = {ε,b} L(2,1, 0) = {b} L(3,1, 0) =∅
L(1,2, 0) = {a} L(2,2, 0) = {ε} L(3,2, 0) =∅
L(1,3, 0) =∅ L(2,3, 0) = {a} L(3,3, 0) = {ε,a,b}

Now suppose r > 0. Each string w ∈ L(i, j, r) describes a walk from state i to state j
where every intermediate state has index at most r. If this walk does not pass through
state r, then w ∈ L(i, j, r −1) by definition. Otherwise, we can split w into a sequence of
substrings w= w1 ·w2 · · ·w` at the points where the walk visits state r. These substrings
have the following properties:
• The prefix w1 describes a walk from state i to state r and thus belongs to L(i, r, r−1).
• The suffix w` describes a walk from state r to state j and thus belongs to L(r, j, r−1).
• For every other index k, the substring wk describes a walk from state r to state r

and thus belongs to L(r, r, r − 1).
We conclude that

L(i, j, r) = L(i, j, r − 1) ∪ L(i, r, r − 1) • L(r, r, r − 1)∗ • L(r, j, r − 1).

11

9. ALL-PAIRS SHORTEST PATHS

This recursive structure is shown in Figure 9.3; if this reminds you of the shortest-path
recursive structure in Figure 9.2, congratulations, you’re paying attention!

i j
intermediate states ≤ r

i j

r

intermediate states ≤ r-1

intermediate

states ≤
 r-1

intermediate

states ≤ r-1

— or —=

intermediate
states ≤ r-1

Figure 9.3. Recursive structure of the regular language L(i, j, r).

Putting these pieces together, we can recursively define a regular expression R(i, j, r)
that describes the language L(i, j, r), as follows:

R(i, j, r) :=

ε +
∑

δ(i,a)= j

a if r = 0 and i = j

∑

δ(i,a)= j

a if r = 0 and i 6= j

R(i, j, r − 1)

+ R(i, r, r − 1) • (R(r, r, r − 1))∗ • R(r, j, r − 1)
otherwise

Kleene’s algorithm evaluates this recurrence bottom-up using the natural dynamic
programming algorithm. We memoize the previous recurrence into a three-dimensional
array R[1 .. n, 1 .. n, 0 .. n], which we traverse by increasing r in the outer loop, and in
arbitrary order in the inner two loops.

Analysis

For purposes of analysis, let’s assume the alphabet Σ has constant size. Assuming each
alternation (+), concatenation (•), and Kleene closure (∗) operation requires constant
time, the entire algorithm runs in O(n3) time.

However, regular expressions over an alphabet Σ are normally represented either
as standard strings (arrays) over the larger alphabet Σ∪ {+,•,*,(,), 3}, or as regular
expression trees, whose internal nodes are +, •, and ∗ operators and whose leaves are
symbols and εs. In either representation, the regular expressions in Kleene’s algorithm
grow in size by roughly a factor of 4 in each iteration of the outer loop, at least in the
worst case. Thus, in the worst case, each regular expression R[i, j, r] has size O(4r), the
size of the final output expression is O(4nn), and entire algorithm runs in O(4nn2) time.

So we shouldn’t do this. After all, the running time is exponential, and exponential
time is bad. Right? Moreover, this exponential dependence is unavoidable; Hermann

12

ª9.8. Converting DFAs to regular expressions

Kleene(Σ, n,δ, F):
〈〈Base cases〉〉
for i← 1 to n

for j← 1 to n
if i = j then R[i, j, 0]← ε else R[i, j, 0]←∅
for all symbols a ∈ Σ

if δ[i, a] = j
R[i, j, 0]← R[i, j, 0] + a

〈〈Recursive cases〉〉
for r ← 1 to n

for i← 1 to n
for j← 1 to n

R[i, j, r]← R[i, j, r − 1] + R[i, r, r − 1] • R[r, r, r − 1]∗ • R[r, j, r − 1]

〈〈Assemble the final result〉〉
R←∅
for q← 0 to n− 1

if q ∈ F
R← R+ R[1, q, n− 1]

return R

Figure 9.4. Kleene’s algorithm

Gruber and Markus Holzer proved in 2008⁴ that there are n-state DFAs over a two-symbol
alphabet such that any equivalent regular expression has length 2Ω(n).

Well, maybe it’s not so bad. The output regular expression has exponential size
because it contains multiple copies of the same subexpressions; similarly, the regular
expression tree has exponential size because it contains multiples copies of several subtrees.
But it’s precisely this exponential behavior that we use dynamic programming to avoid!
In fact, it’s not hard to modify Kleene’s algorithm to compute a regular expression dag
of size O(n3), in O(n3) time, that (intuitively) contains each subexpression R[i, j, r]
only once. This regular expression dag has exactly the same relationship to the regular
expression tree as the dependency graph of Kleene’s algorithm has to the recursion tree
of its underlying recurrence.

4Hermann Gruber and Markus Holzer. Finite automata, digraph connectivity, and regular expression
size. Proc. 35th ICALP, 39–50, 2008.

13

9. ALL-PAIRS SHORTEST PATHS

Exercises

ÆÆÆ Need more!
1. All of the algorithms discussed in this chapter fail if the graph contains a negative

cycle. Johnson’s algorithm detects the negative cycle in the initialization phase (via
Shimbel’s algorithm) and aborts; the dynamic programming algorithms just return
incorrect results. However, all of these algorithms can be modified to return correct
shortest-path distances, even in the presence of negative cycles. Specifically, if there
is a path from vertex u to a negative cycle and a path from that negative cycle to
vertex v, the algorithm should report that dist[u, v] = −∞. If there is no directed
path from u to v, the algorithm should return dist[u, v] =∞. Otherwise, dist[u, v]
should equal the length of the shortest directed path from u to v.

(a) Describe how to modify Johnson’s algorithm to return the correct shortest-path
distances, even if the graph has negative cycles.

(b) Describe how to modify the Floyd-Warshall algorithm (FloydWarshall2) to
return the correct shortest-path distances, even if the graph has negative cycles.

2. All of the shortest-path algorithms described in this note can also be modified to
return an explicit description of some negative cycle, instead of simply reporting that
a negative cycle exists.

(a) Describe how to modify Johnson’s algorithm to return either the matrix of
shortest-path distances or a negative cycle.

(b) Describe how to modify the Floyd-Warshall algorithm (FloydWarshall2) to
return either the matrix of shortest-path distances or a negative cycle.

If the graph contains more than one negative cycle, your algorithms may choose one
arbitrarily.

3. Let G = (V, E) be a directed graph with weighted edges; edge weights could be
positive, negative, or zero. Suppose the vertices of G are partitioned into k disjoint
subsets V1, V2, . . . , Vk; that is, every vertex of G belongs to exactly one subset Vi . For
each i and j, let δ(i, j) denote the minimum shortest-path distance between vertices
in Vi and vertices in Vj:

δ(i, j) =min
�

dist(u, v)
�

� u ∈ Vi and v ∈ Vj

	

.

Describe an algorithm to compute δ(i, j) for all i and j. For full credit, your algorithm
should run in O(V E + kV log V) time.

4. Let G = (V, E) be a directed graph with weighted edges; edge weights could be
positive, negative, or zero.

14

Exercises

(a) How could we delete an arbitrary vertex v from this graph, without changing
the shortest-path distance between any other pair of vertices? Describe an
algorithm that constructs a directed graph G′ = (V ′, E′) with weighted edges,
where V ′ = V \ {v}, and the shortest-path distance between any two nodes in
G′ is equal to the shortest-path distance between the same two nodes in G, in
O(V 2) time.

(b) Now supposewe have already computed all shortest-path distances in G′. Describe
an algorithm to compute the shortest-path distances in the original graph G
from v to every other vertex, and from every other vertex to v, all in O(V 2) time.

(c) Combine parts (a) and (b) into another all-pairs shortest path algorithm that runs
in O(V 3) time. (The resulting algorithm is almost the same as Floyd-Warshall!)

5. In this problem we will discover how you, too, can be employed by Wall Street and
cause a major economic collapse! The arbitrage business is a money-making scheme
that takes advantage of differences in currency exchange. In particular, suppose that
1 US dollar buys 120 Japanese yen; 1 yen buys 0.01 euros; and 1 euro buys 1.2 US
dollars. Then, a trader starting with $1 can convert their money from dollars to yen,
then from yen to euros, and finally from euros back to dollars, ending with $1.44! The
cycle of currencies $→ ¥→€→ $ is called an arbitrage cycle. Of course, finding
and exploiting arbitrage cycles before the prices are corrected requires extremely
fast algorithms.

Suppose n different currencies are traded in your currency market. You are given
the matrix R[1 .. n, 1 .. n] of exchange rates between every pair of currencies; for
each i and j, one unit of currency i can be traded for R[i, j] units of currency j. (Do
not assume that R[i, j] · R[j, i] = 1.)

(a) Describe an algorithm that returns an array V [1 .. n], where V [i] is the maximum
amount of currency i that you can obtain by trading, starting with one unit of
currency 1, assuming there are no arbitrage cycles.

(b) Describe an algorithm to determine whether the given matrix of currency ex-
change rates creates an arbitrage cycle.

(c) Modify your algorithm from part (b) to actually return an arbitrage cycle, if it
exists.

6. Prove that the following recursive algorithm correctly computes all-pairs shortest-path
distances in O(n3) time. For simplicity, you may assume n is a power of 2. As usual,
the array D is passed by reference to the helper function RecAPSP. [Hint: This is a
jumbled version of Floyd-Warshall, with better cache behavior.⁵]

5Joon-Sang Park, Michael Penner, and Viktor K. Prasanna. Optimizing graph algorithms for improved
cache performance. IEEE Trans. Parallel and Distributed Systems 15(9):769–782, 2004.

15

9. ALL-PAIRS SHORTEST PATHS

RecursiveAPSP(V, E, w):
n← |V |
for i← 1 to n

for j← 1 to n
if i = j

D[i, j]← 0
if i� j ∈ E

D[i, j]← w(i� j)
else

D[i, j]←∞

RecAPSP(D, n, 1, 1, 1)
return D[1 .. n, 1 .. n]

RecAPSP(D, n, i, j, k):
if n= 1

D[i, j]←min
�

D[i, j], D[i, k] + D[j, k]
	

else
m← n/2
RecAPSP(D, n/2, i, j, k)
RecAPSP(D, n/2, i, j, k+m)
RecAPSP(D, n/2, i, j +m, k)
RecAPSP(D, n/2, i, j +m, k+m)
RecAPSP(D, n/2, i +m, j, k)
RecAPSP(D, n/2, i +m, j, k+m)
RecAPSP(D, n/2, i +m, j +m, k)
RecAPSP(D, n/2, i +m, j +m, k+m)

ª7. Let G = (V, E) be an undirected, unweighted, connected, n-vertex graph, represented
by the adjacency matrix A[1 .. n, 1 .. n]. In this problem, we will derive Seidel’s
sub-cubic algorithm to compute the n × n matrix D[1 .. n, 1 .. n] of shortest-path
distances in G using fast matrix multiplication. Assume that we have a subroutine
MatrixMultiply that multiplies two n×n matrices inΘ(nω) time, for some unknown
constant ω≥ 2.⁶

(a) Let G2 denote the graph with the same vertices as G, where two vertices are
connected by a edge if and only if they are connected by a path of length at most
2 in G. Describe an algorithm to compute the adjacency matrix of G2 using a
single call to MatrixMultiply and O(n2) additional time.

(b) Suppose we discover that G2 is a complete graph. Describe an algorithm to
compute the matrix D of shortest path distances in O(n2) additional time.

(c) Let D2 denote the (recursively computed) matrix of shortest-path distances in G2.
Prove that the shortest-path distance from node i to node j is either 2 · D2[i, j]
or 2 · D2[i, j]− 1.

(d) Suppose G2 is not a complete graph. Let X = D2 · A, and let deg(i) denote the
degree of vertex i in the original graph G. Prove that the shortest-path distance
from node i to node j is 2 · D2[i, j] if and only if X [i, j]≥ D2[i, j] · deg(i).

(e) Describe an algorithm to compute the matrix of shortest-path distances in G in
O(nω log n) time.

6The matrix multiplication algorithm you already know—ubiquitously known as Gaussian elimination,
even though the algorithm was already well known centuries before Gauss was born—requires Θ(n3)
arithmetic operations, but this is not the fastest algorithm known. The current record ω≈ 2.3728639 was
announced by François Le Gall in 2014. Determining the smallest possible value ofω is a long-standing open
problem; many people believe there is an undiscovered O(n2)-time algorithm for matrix multiplication.

© Copyright 2017 Jeff Erickson.This work is licensed under a Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/4.0/).Free distribution is strongly encouraged; commercial distribution is expressly forbidden.See http://jeffe.cs.illinois.edu/teaching/algorithms for the most recent revision.16

https://arxiv.org/abs/1401.7714
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://jeffe.cs.illinois.edu/teaching/algorithms

	All-Pairs Shortest Paths
	Lots of Single Sources
	Reweighting
	Johnson's Algorithm
	Dynamic Programming
	Divide and Conquer
	“Funny” Matrix Multiplication
	(Kleene-Roy-)Floyd-Warshall
	Converting DFAs to regular expressions

