1. Suppose you are given a directed graph $G = (V, E)$, two vertices s and t, a capacity function $c : E \rightarrow \mathbb{R}^+$, and a second function $f : E \rightarrow \mathbb{R}$. Describe and analyze an algorithm to determine whether f is a maximum (s,t)-flow in G. [Hint: Don’t make any “obvious” assumptions!]

2. Suppose you are given a flow network G with integer edge capacities and an integer maximum flow f^* in G. Describe algorithms for the following operations:

 (a) $\text{INCREMENT}(e)$: Increase the capacity of edge e by 1 and update the maximum flow.
 (b) $\text{DECREMENT}(e)$: Decrease the capacity of edge e by 1 and update the maximum flow.

 Both algorithms should modify f^* so that it is still a maximum flow, but more quickly than recomputing a maximum flow from scratch.

3. An (s,t)-series-parallel graph is a directed acyclic graph with two designated vertices s (the source) and t (the target or sink) and with one of the following structures:

 - **Base case**: A single directed edge from s to t.
 - **Series**: The union of an (s,u)-series-parallel graph and a (u,t)-series-parallel graph that share a common vertex u but no other vertices or edges.
 - **Parallel**: The union of two smaller (s,t)-series-parallel graphs with the same source s and target t, but with no other vertices or edges in common.

 Every (s,t)-series-parallel graph G can be represented by a decomposition tree, which is a binary tree with three types of nodes: leaves corresponding to single edges in G, series nodes (each labeled by some vertex), and parallel nodes (unlabeled).

 (a) Suppose you are given a directed graph G with two special vertices s and t. Describe and analyze an algorithm that either builds a decomposition tree for G or correctly reports that G is not (s,t)-series-parallel. [Hint: Build the tree from the bottom up.]

 (b) Describe and analyze an algorithm to compute a maximum (s,t)-flow in a given (s,t)-series-parallel flow network with arbitrary edge capacities. [Hint: In light of part (a), you can assume that you are actually given the decomposition tree.]