Dynamic Programming
Randomized Algs/DS
Flows, Cuts, LP
NP-hardness, Approx Algs

Q: Can you win? □ = TRUE □ = FALSE

Time: $O(4^d) = O(n)$

1. Prove you can't avoid worst-case: every leaf
2. Randomize! $O(c^d)$ exp. time for some $c < 4$.
 Postorder, but randomly choose first child at every node

$T(2d) \leq 3 \cdot T(2d-2)$

$\Rightarrow O(3^d)$ exp. time.
\[
\frac{1}{2} \cdot 1 + \frac{1}{2} \cdot 2 = \frac{3}{2}
\]

2 recursive calls

\[
E[\#\text{calls}] = \frac{1}{3} \cdot 2 + \frac{1}{3} \cdot 3 + \frac{1}{3} \cdot 3 = \frac{8}{3}
\]

\[
\Rightarrow T(d) \leq \frac{8}{3} \cdot T(d-1) = O(\left(\frac{8}{3}\right)^d)
\]
7 2 3 4 1 6 5
7 2 3 5 6 1 4 3
7 2 5 6 3 4 1

\[T(n) = 3 + T(n-1) \]
\[\Rightarrow 3n - 2 \]

burned
pancake
sorting
Gates + Papadimitriou
Input: $A[1..n, 1..4]$

Choose subset with max sum, but forbidding adjacent pairs

Max Sum(i, b) = maximum sum from rows i onward where row $i-1$ uses bit pattern b.

Max Sum(i, b) = $\max_{b'\text{ consistent with } b} (\sum_{j=1}^{i} b'[j] A[i, j] + \text{MaxSum}(i, 1))$

Initial call: MaxSum(1, 0000)

Data structure: $n \times 2^k$ array

$\mathcal{O}(1)$

$\mathcal{O}(n)$ time
Bus home from Siebel

List of bus routes:
- Stops and times
- Length N

Minimize time waiting for buses out in the rain

Build a graph:
- \(V = \{ \text{stop, time} \} \) for \(|V| = N \)
- \(E = \{ (\text{stop}, \text{time}) \rightarrow (\text{stop}, \text{time}) \} \) for all successive steps
- \(U = \{ (\text{stop}, \text{time}) \rightarrow (\text{stop}, \text{time}) \} \) for some buses

Shortest path from (Siebel, time) to (home, time)

Dijkstra: \(O(E \log V) = O(N \log N) \)

DAG: DFS/DP \(O(E) = O(N) \)

\(\text{longest}(v) = \max \text{ length } v \rightarrow t \)

- \(\sum D \) if \(v = t \)
- \(\infty \) if \(v \neq t \) and \(v \text{ sink} \)
- \(\max (llv \rightarrow w) + \text{longest}(w) \)
Route calls $3 \rightarrow 7$

$5 \rightarrow 4$ \vdots

To minimize congestion

$\max_e (\# \text{calls thru } e)$

Problem: Find a 2-approx algorithm

$A(x) \leq f(x) \leq 2 \cdot \text{OPT}(x)$

We know $A(x) \geq \text{OPT}(x)$

$\text{OPT}(x) \geq \sum_{\text{call } i} \frac{\text{length}(i)}{\text{call } i} \cdot \frac{1}{n}$

Guess algo: Route X-ockwise.

Either a_1 or c_2, whichever is better shortest

For each call, route to increase as little as possible.
Pack boxes into bins minimize \# bins

"Knapsack problem"

\[A(x) = f(x) \leq Z \cdot \text{OPT}(x) \]

\[\text{OPT}(x) = \left\lceil \frac{\sum W_i / W_{\text{max}}}{Z} \right\rceil \]

Sort by decreasing weight

Best Fit: For \(i = 1 \) to \(n \)
- put item \(i \) into emptiest nonempty bin or add bin if item \(i \) doesn't fit...

First Fit:
- \(j = 1 \)
- for \(i = 1 \) to \(n \)
 - if item \(i \) fits
 - put in \(j \)
 - else
 - \(j = j + 1 \)
 - put \(i \) into \(j \)

Claim: At most one bin is less than half full.

\[A(x) \leq 1 + \frac{1}{2} Z \cdot \frac{\sum W_i / W_{\text{max}}}{Z} \leq \frac{3}{2} \text{OPT}(x) \]
For all edges e:

IF $TSP\text{Length}(G) = TSP\text{Length}(G-e)$

$G = G - e$

return G
Sway Partition \(X \rightarrow A \cup B \cup C \)

\[\Sigma A = \Sigma B = \Sigma C \]

\[Y = X \cup \frac{\Sigma X}{2} \]

Proof:

1. **Reduction**
 - Proof
 - \(L = 3 + 3 \)

2. **Proof**
 - Suppose \(X \) can be partitioned
 - \(X = A \cup B \) where \(\Sigma A = \Sigma B \)
 - Then \(\Sigma A = \Sigma B = \Sigma X/2 \)
 - So \(Y \) can be 3-partitioned.

3. **(\Rightarrow) Suppose** \(Y \) can be 3-partitioned
 - \(Y = A \cup B \cup C \)
 - where \(\Sigma A = \Sigma B = \Sigma C = \Sigma Y/3 \)
 - So \(\Sigma A = \Sigma B = \Sigma C = \Sigma X/2 \)
 - \(\Rightarrow A \cup B = X \)
 - So \(X \) can be partitioned. \(\square \)
Box Depth \rightarrow Clique

Prove X is NP hard
Cycle Cover

Input: directed $G = (V,E)$
Output: T/F

Collection of cycles in G touching each vertex once

For every node v assign a node $\text{next}(v)$

Build bipartite graph H:
- $V(H) = V^+ U V^-$
- $E(H) = \{uv \mid u^+ v^- \in E\}$

Find perfect matching in H.

IF H has perfect matching
return T
else
return F

$O(V,E)$ time