Max Flow/min cut

- Augmenting path algo (Ford-Fulkerson)
 - Max Flow = Σ paths
 - Any Flow = Σ paths + Σ cycles
 $\# \leq |E|$
 - Integer cap => integer flow

- Which path?
 - Arbitrary - guarantees weak
 - Fat pipes - $O(E^2 \log E \log F)$
 - Short pipes - $O(E^2 V)$
 - Orlin - $O(EV)$

$\Omega(\text{EF})$
when all $c=1$
$F \leq V-1$

So what? Applications of flows + cuts

- Edge-disjoint paths problem
 - Given directed graph $G=(V,E)$
 - Vertices s, t
 - Find max # paths from s to t
 that contain each edge at most once.

Solution: Set $c(e)=1$
Run FF $O(VE)$
Compute Flow decomposition

Claim: \(\#\) vertex-disjoint paths in \(G\)
\[= \#\) edge-disjoint paths in \(H\)

Proof: Two things to prove.

1. Suppose there are \(k\) vertex-disjoint paths in \(G\), then there are \(\geq k\) edge-disjoint paths in \(H\).

2. Suppose \(k\) edge-disjoint paths in \(H\):

 \[S \rightarrow v_{in} \rightarrow v_{out} \rightarrow w_{in} \rightarrow w_{out} \rightarrow \ldots \rightarrow z_{out} \rightarrow T\]
 \[S \rightarrow v \rightarrow w \rightarrow \ldots \rightarrow z \rightarrow T\]
So \(k \) vertex disjoint paths in \(G \)

Vertex capacities \(c: V \rightarrow \mathbb{R}^+ \)

Require \(\sum \frac{F(u \rightarrow v)}{c(v)} \leq c(v) \)

Add \(s, t \) with \(c(e) < 1 \)
Compute integral max flow \(f(u \rightarrow v) = 1 \iff uv \in M \) \(O(VE) \)
Each PC member can review \(\leq 15 \) papers
Each paper needs \(\geq 3 \) reviews.

Assignment Problem

Is max flow = \#papers?