Nearest neighbor searching

Preprocess points \(P = \{ p_1, \ldots, p_n \} \)
Later, given point \(q \)
quickly find \(\min_{p \in P} \| q - p \| \)

Euclidean distance in \(\mathbb{R}^d \)
Fast alg/small space when \(d \leq 2 \)

Brute Force: \(O(dn) \) time

\(d=1: \) Binary search, \(O(\log n) \) time \(O(n) \) space

\(d=2: \) Voronoi diagram [1906]
Insert: $O(1)$ exp modif.
Query: $O\left(\frac{2}{n}\right)$ exp work for
nth pt
\Rightarrow $O(\log n)$ exp time

$V - E + F = 2$
$V \leq 2n - 4$ $E \leq 3n - 6$
Approx. nearest neighbor query:

Return any point \(p' \in P \) s.t.

\[d(p, q) \leq c \cdot \min \{ d(p, q), d(p', q) \} \]

with prob \(1 - \delta \).

Locality-sensitive hashing

Approx. near neighbor search

Given \(P \) to preprocess

Given point \(q \), distances \(r, R \)

If there is a point \(p \in P \) s.t. \(d(p, q) \leq r \)

return a point \(p' \in P \) s.t. \(d(p', q) \leq R \)

with prob \(1 - \delta \).
A family H of hash functions is \textit{locally sensitive} if

\begin{align*}
\text{If } d(p, q) < r & \implies \Pr[h(p) = h(q)] \geq \frac{1}{2} \\
\text{If } d(p, q) > r & \implies \Pr[h(p) = h(q)] \leq \frac{1}{2}
\end{align*}

"Points" are d-bit vectors

\[\text{dist}(p, q) = \#1's \text{ in } p \oplus q \quad \text{Hamming dist} \]

\[p = 0000111101 \quad \text{dist} = 3 \]
\[q = 0010011100 \]

\[h_i(p) = p_i = \text{ith bit in } p \quad H = \{ h_i | 1 \leq i \leq d \} \]

\[\Pr[h(p) = h(q)] = \frac{d - \text{dist}(p, q)}{d} = 1 - \frac{d(p, q)}{d} \]

\[\frac{1}{2} = 1 - \frac{3}{8} \quad \frac{1}{2} = 1 - \frac{3}{8} \]

Pick \(k \cdot l \) functions \(h_{ij} \in H \) independently

\[1 \leq i \leq k \quad 1 \leq j \leq l \]

For all j: \(h_j(p) = (h_{1j}(p), \ldots, h_{kj}(p)) \in \{0, 1\}^k \)

Define "collide" = For some j, $h_j(p) = h_j(q)$
\[\exists j \ \forall i \ h_{ij}(p) = h_{ij}(q) \]

\[P_{\text{collision}} = 1 - (1 - \Pr[h_{ij}(p) = h_{ij}(q)]^k)^l \]

\[= 1 - (1 - \left(1 - \frac{\text{dist}}{d}\right)^k)^l \]

For each \(j \):
- For each \(p \in P \)
 - Store \(p \) at \(T_j[h_{ij}(p)] \)

Query \(q \):
- For each \(j \):
 - \(S \leftarrow T_j[h_{ij}(q)] \)
 - Check every point in \(S \)
 - If close pt found, return it

Stop after checking 2l points.