
Algorithms Lecture 30: NP-Hard Problems [Sp’15]

[I]n his short and broken treatise he provides an eternal example—not of laws, or even
of method, for there is no method except to be very intelligent, but of intelligence itself
swiftly operating the analysis of sensation to the point of principle and definition.

— T. S. Eliot on Aristotle, “The Perfect Critic”, The Sacred Wood (1921)

The nice thing about standards is that you have so many to choose from;
furthermore, if you do not like any of them, you can just wait for next year’s model.

— Andrew S. Tannenbaum, Computer Networks (1981)
Also attributed to Grace Murray Hopper and others

If a problem has no solution, it may not be a problem, but a fact —
not to be solved, but to be coped with over time.

— Shimon Peres, as quoted by David Rumsfeld, Rumsfeld’s Rules (2001)

30 NP-Hard Problems

30.1 A Game You Can’t Win

A salesman in a red suit who looks suspiciously like Tom Waits presents you with a black steel
box with n binary switches on the front and a light bulb on the top. The salesman tells you that
the state of the light bulb is controlled by a complex boolean circuit—a collection of And, Or,
and Not gates connected by wires, with one input wire for each switch and a single output wire
for the light bulb. He then asks you the following question: Is there a way to set the switches so
that the light bulb turns on? If you can answer this question correctly, he will give you the box
and a million billion trillion dollars; if you answer incorrectly, or if you die without answering at
all, he will take your soul.

x
y xx

y x∨yx∧y ¬x

An And gate, an Or gate, and a Not gate.

x1

x2

x3

x4

x5

A boolean circuit. inputs enter from the left, and the output leaves to the right.

As far as you can tell, the Adversary hasn’t connected the switches to the light bulb at all, so
no matter how you set the switches, the light bulb will stay off. If you declare that it is possible
to turn on the light, the Adversary will open the box and reveal that there is no circuit at all.
But if you declare that it is not possible to turn on the light, before testing all 2n settings, the
Adversary will magically create a circuit inside the box that turns on the light if and only if the

© Copyright 2016 Jeff Erickson.
This work is licensed under a Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/4.0/).

Free distribution is strongly encouraged; commercial distribution is expressly forbidden.
See http://www.cs.uiuc.edu/~jeffe/teaching/algorithms/ for the most recent revision.

1

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cs.uiuc.edu/~jeffe/teaching/algorithms/

Algorithms Lecture 30: NP-Hard Problems [Sp’15]

switches are in one of the settings you haven’t tested, and then flip the switches to that setting,
turning on the light. (You can’t detect the Adversary’s cheating, because you can’t see inside the
box until the end.) The only way to provably answer the Adversary’s question correctly is to try
all 2n possible settings. You quickly realize that this will take far longer than you expect to live,
so you gracefully decline the Adversary’s offer.

The Adversary smiles and says, “Ah, yes, of course, you have no reason to trust me. But
perhaps I can set your mind at ease.” He hands you a large roll of parchment—which you hope
was made from sheep skin—with a circuit diagram drawn (or perhaps tattooed) on it. “Here are
the complete plans for the circuit inside the box. Feel free to poke around inside the box to make
sure the plans are correct. Or build your own circuit from these plans. Or write a computer
program to simulate the circuit. Whatever you like. If you discover that the plans don’t match
the actual circuit in the box, you win the trillion bucks.” A few spot checks convince you that the
plans have no obvious flaws; subtle cheating appears to be impossible.

But you should still decline the Adversary’s generous offer. The problem that the Adversary is
posing is called circuit satisfiability or CircuitSat: Given a boolean circuit, is there is a set
of inputs that makes the circuit output True, or conversely, whether the circuit always outputs
False. For any particular input setting, we can calculate the output of the circuit in polynomial
(actually, linear) time using depth-first-search. But nobody knows how to solve CircuitSat faster
than just trying all 2n possible inputs to the circuit, but this requires exponential time. On the
other hand, nobody has actually proved that this is the best we can do; maybe there’s a clever
algorithm that just hasn’t been discovered yet!

30.2 P versus NP

A minimal requirement for an algorithm to be considered “efficient” is that its running time is
polynomial: O(nc) for some constant c, where n is the size of the input.¹ Researchers recognized
early on that not all problems can be solved this quickly, but had a hard time figuring out exactly
which ones could and which ones couldn’t. There are several so-called NP-hard problems, which
most people believe cannot be solved in polynomial time, even though nobody can prove a
super-polynomial lower bound.

A decision problem is a problem whose output is a single boolean value: Yes or No. Let me
define three classes of decision problems:

• P is the set of decision problems that can be solved in polynomial time. Intuitively, P is the
set of problems that can be solved quickly.

• NP is the set of decision problems with the following property: If the answer is Yes, then
there is a proof of this fact that can be checked in polynomial time. Intuitively, NP is the
set of decision problems where we can verify a Yes answer quickly if we have the solution
in front of us.

• co-NP is essentially the opposite of NP. If the answer to a problem in co-NP is No, then
there is a proof of this fact that can be checked in polynomial time.

¹This notion of efficiency was independently formalized by Alan Cobham (The intrinsic computational difficulty of
functions. Logic, Methodology, and Philosophy of Science (Proc. Int. Congress), 24–30, 1965), Jack Edmonds (Paths,
trees, and flowers. Canadian Journal of Mathematics 17:449–467, 1965), and Michael Rabin (Mathematical theory of
automata. Proceedings of the 19th ACM Symposium in Applied Mathematics, 153–175, 1966), although similar notions
were considered more than a decade earlier by Kurt Gödel and John von Neumann.

2

Algorithms Lecture 30: NP-Hard Problems [Sp’15]

For example, the circuit satisfiability problem is in NP. If a given boolean circuit is satisfiable,
then any set of m input values that produces True output is a proof that the circuit is satisfiable;
we can check the proof by evaluating the circuit in polynomial time. It is widely believed that
circuit satisfiability is not in P or in co-NP, but nobody actually knows.

Every decision problem in P is also in NP. If a problem is in P, we can verify Yes answers in
polynomial time recomputing the answer from scratch! Similarly, every problem in P is also in
co-NP.

Perhaps the single most important unanswered question in theoretical computer science—if
not all of computer science—if not all of science—is whether the complexity classes P and NP are
actually different. Intuitively, it seems obvious to most people that P 6= NP; the homeworks and
exams in this class and others have (I hope) convinced you that problems can be incredibly hard
to solve, even when the solutions are obvious in retrospect. It’s completely obvious; of course
solving problems from scratch is harder than just checking that a solution is correct. We can
quite reasonably accept the statement “P 6= NP” as a law of nature.

But nobody knows how to prove P 6= NP. In fact, there has been little or no real progress
toward a proof for decades.² The Clay Mathematics Institute lists P versus NP as the first of its
seven Millennium Prize Problems, offering a $1,000,000 reward for its solution. And yes, in fact,
several people have lost their souls attempting to solve this problem.

A more subtle but still open question is whether the complexity classes NP and co-NP are
different. Even if we can verify every Yes answer quickly, there’s no reason to believe we can also
verify No answers quickly. For example, as far as we know, there is no short proof that a boolean
circuit is not satisfiable. It is generally believed that NP 6= co-NP, but again, nobody knows how
to prove it.

P

NPcoNP

What we think the world looks like.

30.3 NP-hard, NP-easy, and NP-complete

A problem Π is NP-hard if a polynomial-time algorithm for Π would imply a polynomial-time
algorithm for every problem in NP. In other words:

Π is NP-hard ⇐⇒ If Π can be solved in polynomial time, then P=NP

Intuitively, if we could solve one particular NP-hard problem quickly, then we could quickly solve
any problem whose solution is easy to understand, using the solution to that one special problem
as a subroutine. NP-hard problems are at least as hard as every problem in NP.

Finally, a problem is NP-complete if it is both NP-hard and an element of NP (or “NP-easy”).
Informally, NP-complete problems are the hardest problems in NP. A polynomial-time algorithm
for even one NP-complete problem would immediately imply a polynomial-time algorithm for
every NP-complete problem. Literally thousands of problems have been shown to be NP-complete,
so a polynomial-time algorithm for one (and therefore all) of them seems incredibly unlikely.

²Perhaps the most significant progress has taken the form of barrier results, which imply that entire avenues of
attack are doomed to fail. In a very real sense, these results actually prove that we have no idea how to prove P 6= NP!

3

Algorithms Lecture 30: NP-Hard Problems [Sp’15]

Calling a problem NP-hard is like saying “If I own a dog, then it can speak fluent English.’”
You probably don’t know whether or not I own a dog, but I bet you’re pretty sure that I don’t own
a talking dog. Nobody has a mathematical proof that dogs can’t speak English—the fact that no
one has ever heard a dog speak English is evidence, as are the hundreds of examinations of dogs
that lacked the proper mouth shape and brainpower, but mere evidence is not a mathematical
proof. Nevertheless, no sane person would believe me if I said I owned a dog that spoke fluent
English. So the statement “If I own a dog, then it can speak fluent English” has a natural corollary:
No one in their right mind should believe that I own a dog! Likewise, if a problem is NP-hard, no
one in their right mind should believe it can be solved in polynomial time.

P

NPcoNP

NP-hard

NP-complete

More of what we think the world looks like.

It is not immediately clear that any problems are NP-hard. The following remarkable theorem
was first published by Steve Cook in 1971 and independently by Leonid Levin in 1973.³ I won’t
even sketch the proof here, since I’ve been (deliberately) vague about the definitions; interested
readers find a proof in my lecture notes on nondeterministic Turing machines.

The Cook-Levin Theorem. Circuit satisfiability is NP-hard.

30.4 Formal Definitions (HC SVNT DRACONES)?

Formally, the complexity classes P, NP, and co-NP are defined in terms of languages and Turing
machines. A language is just a set of strings over some finite alphabet Σ; without loss of generality,
we can assume that Σ= {0,1}. P is the set of languages that can be decided in Polynomial time
by a deterministic single-tape Turing machine. Similarly, NP is the set of all languages that can
be decided in polynomial time by a nondeterministic Turing machine; NP is an abbreviation for
Nondeterministic Polynomial-time.

Polynomial time is a sufficient crude requirement that the precise form of Turing machine
(number of heads, number of tracks, and so one) is unimportant. In fact, careful application and
analysis of the techniques described in the Turing machine notes imply that any algorithm that
runs on a random-access machine⁴ in T (n) time can be simulated by a single-tape, single-track,
single-head Turing machine that runs in O(T (n)3) time. This simulation result allows us to

³Levin first reported his results at seminars in Moscow in 1971, while still a PhD student. News of Cook’s result
did not reach the Soviet Union until at least 1973, after Levin’s announcement of his results had been published; in
accordance with Stigler’s Law, this result is often called “Cook’s Theorem”. Levin was denied his PhD at Moscow
University for political reasons; he emigrated to the US in 1978 and earned a PhD at MIT a year later. Cook was denied
tenure at Berkeley in 1970, just one year before publishing his seminal paper; he (but not Levin) later won the Turing
award for his proof.

⁴Random-access machines are a model of computation that more faithfully models physical computers. A random-
access machine has unbounded random-access memory, modeled as an array M[0 ..∞] where each address M[i]
holds a single w-bit integer, for some fixed integer w, and can read to or write from any memory addresses in constant
time. RAM algorithms are formally written in assembly-like language, using instructions like ADD i, j , k (meaning
“M[i]← M[j] +M[k]”), INDIR i, j (meaning “M[i]← M[M[j]]”), and IFZGOTO i,` (meaning “if M[i] = 0, go to
line `”). In practice, RAM algorithms can be faithfully described using higher-level pseudocode, as long as we’re
careful about arithmetic precision.

4

Algorithms Lecture 30: NP-Hard Problems [Sp’15]

argue formally about computational complexity in terms of standard high-level programming
constructs like for-loops and recursion, instead of describing everything directly in terms of
Turing machines.

A problem Π is formally NP-hard if and only if, for every language Π′ ∈ NP, there is a
polynomial-time Turing reduction from Π′ to Π. A Turing reduction just means a reduction
that can be executed on a Turing machine; that is, a Turing machine M that can solve Π′ using
another Turing machine M ′ for Π as a black-box subroutine. Turing reductions are also called
oracle reductions; polynomial-time Turing reductions are also called Cook reductions.

Researchers in complexity theory prefer to define NP-hardness in terms of polynomial-time
many-one reductions, which are also called Karp reductions. A many-one reduction from one
language L′ ⊆ Σ∗ to another language L ⊆ Σ∗ is an function f : Σ∗→ Σ∗ such that x ∈ L′ if and
only if f (x) ∈ L. Then we can define a language L to be NP-hard if and only if, for any language
L′ ∈ NP, there is a many-one reduction from L′ to L that can be computed in polynomial time.

Every Karp reduction “is” a Cook reduction, but not vice versa. Specifically, any Karp reduction
from one decision problem Π to another decision Π′ is equivalent to transforming the input to Π
into the input for Π′, invoking an oracle (that is, a subroutine) for Π′, and then returning the
answer verbatim. However, as far as we know, not every Cook reduction can be simulated by a
Karp reduction.

Complexity theorists prefer Karp reductions primarily because NP is closed under Karp
reductions, but is not closed under Cook reductions (unless NP=co-NP, which is considered
unlikely). There are natural problems that are (1) NP-hard with respect to Cook reductions, but
(2) NP-hard with respect to Karp reductions only if P=NP. One trivial example is of such a problem
is UnSat: Given a boolean formula, is it always false? On the other hand, many-one reductions
apply only to decision problems (or more formally, to languages); formally, no optimization or
construction problem is Karp-NP-hard.

To make things even more confusing, both Cook and Karp originally defined NP-hardness in
terms of logarithmic-space reductions. Every logarithmic-space reduction is a polynomial-time
reduction, but (as far as we know) not vice versa. It is an open question whether relaxing the set
of allowed (Cook or Karp) reductions from logarithmic-space to polynomial-time changes the set
of NP-hard problems.

Fortunately, none of these subtleties raise their ugly heads in practice—in particular, every
algorithmic reduction described in these notes can be formalized as a logarithmic-space many-one
reduction—so you can wake up now.

30.5 Reductions and SAT

To prove that any problem other than Circuit satisfiability is NP-hard, we use a reduction argument.
Reducing problem A to another problem B means describing an algorithm to solve problem A
under the assumption that an algorithm for problem B already exists. You’re already used to
doing reductions, only you probably call it something else, like writing subroutines or utility
functions, or modular programming. To prove something is NP-hard, we describe a similar
transformation between problems, but not in the direction that most people expect.

You should tattoo the following rule of onto the back of your hand, right next to your mom’s
birthday and the actual rules of Monopoly.⁵

⁵If a player lands on an available property and declines (or is unable) to buy it, that property is immediately
auctioned off to the highest bidder; the player who originally declined the property may bid, and bids may be
arbitrarily higher or lower than the list price. Players in Jail can still buy and sell property, buy and sell houses and
hotels, and collect rent. The game has 32 houses and 12 hotels; once they’re gone, they’re gone. In particular, if all

5

Algorithms Lecture 30: NP-Hard Problems [Sp’15]

To prove that problem A is NP-hard, reduce a known NP-hard problem to A.

In other words, to prove that your problem is hard, you need to describe an algorithm to solve
a different problem, which you already know is hard, using a magical mystery algorithm for your
problem as a subroutine. The essential logic is a proof by contradiction. The reduction shows
implies that if your problem were easy, then the other problem would be easy, too. Equivalently,
since you know the other problem is hard, the reduction implies that your problem must also be
hard.

For example, consider the formula satisfiability problem, usually just called SAT. The input
to SAT is a boolean formula like

(a ∨ b ∨ c ∨ d̄)⇔ ((b ∧ c̄)∨ (ā⇒ d)∨ (c 6= a ∧ b)),

and the question is whether it is possible to assign boolean values to the variables a, b, c, . . . so
that the entire formula evaluates to True.

To prove that SAT is NP-hard, we need to give a reduction from a known NP-hard problem.
The only problem we know is NP-hard so far is CircuitSAT, so let’s start there.

Let K be an arbitrary boolean circuit. We can transform K into a boolean formula Φ by
creating new output variables for each gate, and then just writing down the list of gates separated
by Ands. For example, our example circuit would be transformed into a formula as follows:

x1

x2

x3

x4

x5

y1

y2

y3

y4

y5

y6

z

(y1 = x1 ∧ x4)∧ (y2 = x4)∧ (y3 = x3 ∧ y2)∧ (y4 = y1 ∨ x2)∧
(y5 = x2)∧ (y6 = x5)∧ (y7 = y3 ∨ y5)∧ (z = y4 ∧ y7 ∧ y6)∧ z

Now we claim that the original circuit K is satisfiable if and only if the resulting formula Φ is
satisfiable. We prove this claim in two steps:

• Given a set of inputs that satisfy the circuit K , we can obtain a satisfying assignment for
the formula Φ by computing the output of every gate in K .

• Given a satisfying assignment for the formula Φ, we can obtain a satisfying input the the
circuit by simply ignoring the internal gate variables yi and the output variable z.

The entire transformation from circuit to formula can be carried out in linear time. Moreover, the
size of the resulting formula is at most a constant factor larger than any reasonable representation
of the circuit.

Now suppose, for the sake of argument, there is a magical mystery algorithm that can
determine in polynomial time whether a given boolean formula is satisfiable. Then given any

houses are already on the board, you cannot downgrade a hotel to four houses; you must sell all three hotels in the
group. Players can sell/exchange undeveloped properties, but not buildings or cash. A player landing on Free Parking
does not win anything. A player landing on Go gets $200, no more. Railroads are not magic transporters. Finally, Jeff
always gets the car.

6

Algorithms Lecture 30: NP-Hard Problems [Sp’15]

boolean circuit K , we can decide whether K is satisfiable by first transforming K into a boolean
formula Φ as described above, and then asking our magical mystery SAT algorithm whether Φ is
satisfiable, as suggested by the following cartoon. Each box represents an algorithm. The red
box on the left is the transformation subroutine; the box on the right the magical SAT algorithm.
It must be magic, because it has a rainbow on it!⁶

C⌅⌃⇥ ⌅�SAT
SAT

K
Boolean
formula

transform
in O(n)

time

Φ
Boolean
circuit

Φ is
satisfiable

Φ is not
satisfiable

T⌃ ⇤

F�⇧⌥⇤

K is
satisfiable

K is not
satisfiable

T⌃ ⇤

F�⇧⌥⇤

If you prefer pseudocode to rainbows:

CircuitSAT(K):
transcribe K into a boolean formula Φ
return SAT(Φ) 〈〈Magic!!〉〉

Transcribing K into Φ requires only polynomial time (in fact, only linear time, but whatever), so
the entire CircuitSAT algorithm also runs in polynomial time.

TCircuitSAT(n)≤ O(n) + TSAT(O(n))

We conclude that any polynomial-time algorithm for SAT would give us a polynomial-time
algorithm for CircuitSAT, which in turn would imply P=NP. So SAT is NP-hard!

30.6 3SAT (from SAT)

A special case of SAT that is particularly useful in proving NP-hardness results is called 3SAT.
A boolean formula is in conjunctive normal form (CNF) if it is a conjunction (and) of several

clauses, each of which is the disjunction (or) of several literals, each of which is either a variable
or its negation. For example:

clause
︷ ︸︸ ︷

(a ∨ b ∨ c ∨ d) ∧ (b ∨ c̄ ∨ d̄)∧ (ā ∨ c ∨ d)∧ (a ∨ b̄)

A 3CNF formula is a CNF formula with exactly three literals per clause; the previous example is
not a 3CNF formula, since its first clause has four literals and its last clause has only two. 3SAT
is just SAT restricted to 3CNF formulas: Given a 3CNF formula, is there an assignment to the
variables that makes the formula evaluate to True?

We could prove that 3SAT is NP-hard by a reduction from the more general SAT problem, but
it’s easier just to start over from scratch, by reducing directly from CircuitSAT.

Let K be an arbitrary boolean circuit. We transform K into a 3CNF formula in several stages.

1. Make sure every and and or gate in K has exactly two inputs. If any gate has k > 2 inputs,
replace it with a binary tree of k− 1 two-input gates. Call the resulting circuit K ′.

⁶Katherine Z. Erickson. Personal communication, 2011.

7

Algorithms Lecture 30: NP-Hard Problems [Sp’15]

C⇧⌥⇤⌦⇧ SAT
�SAT

K
3CNF

Boolean
formula

Φ
Boolean
circuit

Φ is
satisfiable

Φ is not
satisfiable

T⌥⌦⌅

F⇥⌃�⌅

K is
satisfiable

K is not
satisfiable

T⌥⌦⌅

F⇥⌃�⌅

transform
in O(n)

time

Polynomial-time reduction from CircuitSAT to 3SAT

2. Transcribe K ′ into a boolean formula Φ1 with one clause per gate, exactly as in our previous
reduction to SAT.

3. Replace each clause in Φ1 with a CNF formula. There are only three types of clauses in Φ1,
one for each type of gate in K ′:

a = b ∧ c 7−→ (a ∨ b̄ ∨ c̄)∧ (ā ∨ b)∧ (ā ∨ c)

a = b ∨ c 7−→ (ā ∨ b ∨ c)∧ (a ∨ b̄)∧ (a ∨ c̄)

a = b̄ 7−→ (a ∨ b)∧ (ā ∨ b̄)

Call the resulting CNF formula Φ2.

4. Replace each clause in Φ2 with a 3CNF formula. Every clause in Φ2 has at most three literals.
We can keep the three-literal clauses as-is. We expand each two-literal clause into two
three-literal clauses by introducing a new variable. Finally, we expand any one-literal
clause into four three-literal clauses by introducing two new variables.

a ∨ b 7−→ (a ∨ b ∨ x)∧ (a ∨ b ∨ x̄)

a 7−→ (a ∨ x ∨ y)∧ (a ∨ x̄ ∨ y)∧ (a ∨ x ∨ ȳ)∧ (a ∨ x̄ ∨ ȳ)

Call the final 3CNF formula Φ3.

For example, if we start with the same example circuit we used earlier, we obtain the following
3CNF formula Φ3.

(y1 ∨ x1 ∨ x4)∧ (y1 ∨ x1 ∨ z1)∧ (y1 ∨ x1 ∨ z1)∧ (y1 ∨ x4 ∨ z2)∧ (y1 ∨ x4 ∨ z2)

∧ (y2 ∨ x4 ∨ z3)∧ (y2 ∨ x4 ∨ z3)∧ (y2 ∨ x4 ∨ z4)∧ (y2 ∨ x4 ∨ z4)

∧ (y3 ∨ x3 ∨ y2)∧ (y3 ∨ x3 ∨ z5)∧ (y3 ∨ x3 ∨ z5)∧ (y3 ∨ y2 ∨ z6)∧ (y3 ∨ y2 ∨ z6)

∧ (y4 ∨ y1 ∨ x2)∧ (y4 ∨ x2 ∨ z7)∧ (y4 ∨ x2 ∨ z7)∧ (y4 ∨ y1 ∨ z8)∧ (y4 ∨ y1 ∨ z8)

∧ (y5 ∨ x2 ∨ z9)∧ (y5 ∨ x2 ∨ z9)∧ (y5 ∨ x2 ∨ z10)∧ (y5 ∨ x2 ∨ z10)

∧ (y6 ∨ x5 ∨ z11)∧ (y6 ∨ x5 ∨ z11)∧ (y6 ∨ x5 ∨ z12)∧ (y6 ∨ x5 ∨ z12)

∧ (y7 ∨ y3 ∨ y5)∧ (y7 ∨ y3 ∨ z13)∧ (y7 ∨ y3 ∨ z13)∧ (y7 ∨ y5 ∨ z14)∧ (y7 ∨ y5 ∨ z14)

∧ (y8 ∨ y4 ∨ y7)∧ (y8 ∨ y4 ∨ z15)∧ (y8 ∨ y4 ∨ z15)∧ (y8 ∨ y7 ∨ z16)∧ (y8 ∨ y7 ∨ z16)

∧ (y9 ∨ y8 ∨ y6)∧ (y9 ∨ y8 ∨ z17)∧ (y9 ∨ y8 ∨ z17)∧ (y9 ∨ y6 ∨ z18)∧ (y9 ∨ y6 ∨ z18)

∧ (y9 ∨ z19 ∨ z20)∧ (y9 ∨ z19 ∨ z20)∧ (y9 ∨ z19 ∨ z20)∧ (y9 ∨ z19 ∨ z20)

Although this formula may look a lot more ugly and complicated than the original circuit at first
glance, it’s actually only a constant factor larger—every binary gate in the original circuit has

8

Algorithms Lecture 30: NP-Hard Problems [Sp’15]

been transformed into at most five clauses. Even if the formula size were a large polynomial
function (like n573) of the circuit size, we would still have a valid reduction.

This process transforms the circuit into an equivalent 3CNF formula; the output formula is
satisfiable if and only if the input circuit is satisfiable. As with the more general SAT problem,
the output formula Φ3 is only a constant factor larger than any reasonable description of the
original circuit K , and the reduction can be carried out in polynomial time. Thus, if 3SAT can be
solved in polynomial time, then CircuitSAT can be solved in polynomial time, which implies
that P= NP. We conclude 3SAT is NP-hard.

30.7 Maximum Independent Set (from 3SAT)

For the next few problems we consider, the input is a simple, unweighted graph, and the problem
asks for the size of the largest or smallest subgraph satisfying some structural property.

Let G be an arbitrary graph. An independent set in G is a subset of the vertices of G with no
edges between them. The maximum independent set problem, or simply MaxIndSet, asks for
the size of the largest independent set in a given graph. I will prove that MaxIndSet is NP-hard
using a reduction from 3SAT, as suggested by the following figure.

�SAT
M⇥↵I⌃⇤S⌅

G
�CNF

Boolean
formula

Φ
graph

Φ is
satisfiable

Φ is not
satisfiable

T⌥⌦⌅

F⇥⇧�⌅

G has an
independent
set of size k

T⌥⌦⌅

F⇥⇧�⌅

transform
in O(n)

time

G has no
independent
set of size k

=?

k
number of clauses in Φ

size of largest
independent

set in G

Polynomial-time reduction from 3SAT to MaxIndSet

Given an arbitrary 3CNF formula Φ, we construct a graph G as follows. Let k denote the
number of clauses in Φ. The graph G contains exactly 3k vertices, one for each literal in Φ. Two
vertices in G are connected by an edge if and only if either (1) they correspond to literals in
the same clause, or (2) they correspond to a variable and its inverse. For example, the formula
(a ∨ b ∨ c)∧ (b ∨ c̄ ∨ d̄)∧ (ā ∨ c ∨ d)∧ (a ∨ b̄ ∨ d̄) is transformed into the following graph.

‾ ‾

a
b

c

c
d

a

b

d

‾b

d

a‾

c‾

A graph derived from a satisfiable 3CNF formula, and an independent set of size 4.
Black edges join literals from the same clause; red (heavier) edges join contradictory literals.

Any independent set in G contains at most one vertex from each clause triangle, because any
two vertices in each triangle are connected. Thus, the largest independent set in G has size at

9

Algorithms Lecture 30: NP-Hard Problems [Sp’15]

most k. I claim that G contains an independent set of size exactly k if and only if the original
formula Φ is satisfiable. As usual for “if and only if” statements, the proof consists of two parts.

• Suppose Φ is satisfiable. Fix an arbitrary satisfying assignment. By definition, each clause
in Φ contains at least one True literal. Thus, we can choose a subset S over k vertices in G
that contains exactly one vertex per clause triangle, such that the corresponding literals
are all True. Because each triangle contains at most one vertex in S, no two vertices in S
are connected by a triangle edge. Because every literal in S is True, no two vertices in S
are connected by a negation edge. We conclude that S is an independent set of size k in G.

• Suppose G contains an independent set S of size k; each vertex in S lies in a different
clause triangle. Suppose we assign the value True to each literal in S; since contradictory
literals are connected by edges, this assignment is consistent. There may be variables x
such that neither x not x̄ corresponds to a vertex in S; we can set these variables to any
value we like. Because S contains one vertex in each clause triangle, each clause in Φ
contains (at least) one True literal. We conclude that the resulting variable assignment
satisfies Φ.

Transforming the 3CNF formula Φ into the graph G takes polynomial time, even if we do
everything by brute force. Thus, if we could solve MaxIndSet in polynomial time, then we could
also solve 3SAT in polynomial time, by transforming the input formula Φ into a graph G and
comparing the size of the largest independent set in G with the number of clauses in Φ. But that
would imply P=NP, which is ridiculous! We conclude that MaxIndSet is NP-hard.

30.8 Clique and Vertex Cover (from Independent Set)

A clique is another name for a complete graph, that is, a graph where every pair of vertices is
connected by an edge. The MaxClique problem asks for the number of nodes in its largest
complete subgraph in a given graph. A vertex cover of a graph is a set of vertices that touches
every edge in the graph. The MinVertexCover problem is to find the size of the smallest vertex
cover in a given graph.

A graph whose largest clique has size 4 and whose smallest vertex cover also has size 4.

We can prove thatMaxClique is NP-hard using the following easy reduction fromMaxIndSet.
Any graph G has an edge-complement G with the same vertices, but with exactly the opposite set
of edges—(u, v) is an edge in G if and only if it is not an edge in G. A set of vertices is independent
in G if and only if the same vertices define a clique in G. Thus, the largest independent in G has
the same vertices as the largest clique in the complement of G.

The proof that MinVertexCover is NP-hard is even simpler, because it relies on the following
easy observation: If I is an independent set in a graph G = (V, E), then its complement V \ I
is a vertex cover. Thus, the largest independent set in any graph is just the complement of the
smallest vertex cover of the same graph! Thus, if the smallest vertex cover in an n-vertex graph
has size k, then the largest independent set has size n− k.

10

Algorithms Lecture 30: NP-Hard Problems [Sp’15]

M�↵I⌃⇥⇤⌥⇤⌃⇥⇤⌃ S⇤
M�↵C⇧⌅�⌦⇤

G
graph

complement
in O(V2)

time

G
graph size of largest

clique in G

k
size of largest
independent

set in G

k‾

‾
‾

M�↵I⇧⇥⇤⌥⇤⇧⇥⇤⇧ S⇤

G
–graph

M⌅⇧V⇤� ⇤↵
C⌃⌦⇤�

size of largest
independent

set in G

n–k
size of smallest

vertex cover in G

k

n
number of vertices in G

Easy reductions from MaxIndependentSet to MaxClique and MinVertexCover

30.9 Graph Coloring (from 3SAT)

A k-coloring of a graph G = (V, E) is a function C : V → {1,2, . . . , k} that assigns one of k “colors”
to each vertex, so that every edge has two different colors at its endpoints. The graph coloring
problem is to find the smallest possible number of colors in a legal coloring. To show that this
problem is NP-hard, it’s enough to consider the special case 3Color: Given a graph, does it have
a 3-coloring?

To prove that 3Color is NP-hard, we use a reduction from 3SAT. Given a 3CNF formula Φ,
we construct a graph GΦ that is 3-colorable if and only if the original formula Φ is satisfiable.

�SAT
�C⇧⌅⇧⌃

G
3CNF

Boolean
formula

Φ
graph

G is
�-colorable

G is not
�-colorable

T⌃�⇤

F⇥⌅⌥⇤

Φ is
satisfiable

Φ is not
satisfiable

T⌃�⇤

F⇥⌅⌥⇤

transform
in O(n)

time

To describe the reduction, we follow a standard strategy of decomposing the output graph GΦ
into gadgets, which are subgraphs that correspond to various components of the input formula Φ.
Decomposing reductions into separate gadgets is not only helpful for understanding existing
reductions and proving them correct, but for designing new NP-hardness reductions. Our
formula-to-graph reduction uses three types of gadgets:

• There is a single truth gadget: a triangle with three vertices T , F , and X , which intuitively
stand for True, False, and Other. Since these vertices are all connected, they must have
different colors in any 3-coloring. For the sake of convenience, we will name those colors
True, False, and Other. Thus, when we say that a node is colored True, all we mean is
that it must be colored the same as the node T .

• For each variable a, the graph contains a variable gadget, which is also a triangle joining
two new nodes labeled a and a to node X in the truth gadget. Node a must be colored
either True or False, and so node a must be colored either False or True, respectively.

11

Algorithms Lecture 30: NP-Hard Problems [Sp’15]

X

T F

X

a a

The truth gadget and a variable gadget for a.

• Finally, for each clause in Φ, the graph contains a clause gadget. Each clause gadget
joins three literal nodes (from the corresponding variable gadgets) to node T (from the
truth gadget) using five new unlabeled nodes and ten edges; see the figure below. A
straightforward case analysis implies that if all three literal nodes in the clause gadget
are colored False, then some edge in the gadget must be monochromatic. Since the
variable gadgets force each literal node to be colored either True or False, in any valid
3-coloring, at least one of the three literal nodes is colored True. On the other hand, for
any coloring of the literal nodes where at least one literal node is colored True, there is a
valid 3-coloring of the clause gadget.

a

b

c

T

A clause gadget for (a ∨ b ∨ c̄).

The final graph GΦ contains exactly one node T , exactly one node F , and exactly two nodes a
and ā for each variable. For example, the formula (a∨ b∨ c)∧ (b∨ c̄∨ d̄)∧ (ā∨ c∨d)∧ (a∨ b̄∨ d̄)
that I used to illustrate the MaxClique reduction would be transformed into the graph shown
below. The 3-coloring is one of several that correspond to the satisfying assignment a = c = True,
b = d = False.

X

T F

a a b b c c d d

A 3-colorable graph derived from the satisfiable 3CNF formula
(a ∨ b ∨ c)∧ (b ∨ c̄ ∨ d̄)∧ (ā ∨ c ∨ d)∧ (a ∨ b̄ ∨ d̄)

12

Algorithms Lecture 30: NP-Hard Problems [Sp’15]

Now the proof of correctness is just brute force case analysis. If the graph is 3-colorable, then
we can extract a satisfying assignment from any 3-coloring—at least one of the three literal nodes
in every clause gadget is colored True. Conversely, if the formula is satisfiable, then we can color
the graph according to any satisfying assignment.

Because 3Color is a special case of the more general graph coloring problem—What is the
minimum number of colors?—the more general optimization problem is also NP-hard.

30.10 Hamiltonian Cycle (from Vertex Cover)

A Hamiltonian cycle in a graph is a cycle that visits every vertex exactly once. This is very
different from an Eulerian cycle, which is actually a closed walk that traverses every edge exactly
once. Eulerian cycles are easy to find and construct in linear time using a variant of depth-first
search.

We prove that finding a Hamiltonian cycle in a directed graph is NP-hard using a reduction
from the vertex cover problem. Given an undirected graph G and an integer k, we need to
transform it into another graph H, such that H has a Hamiltonian cycle if and only if G has a
vertex cover of size k.

V⌅ ↵⌅�C��⌅
G

graph
D⇧ ⌅⇥↵⌅⇤
H�⌥C✏⇥⌃⌅

integer
k

H has a
Ham. cycle

H has no
Ham. cycle

T �⌅

F�⌃⌦⌅

G has a
vertex cover

of size k

T �⌅

F�⌃⌦⌅

H
graph

transform
in O(V+E)

time
G has no

vertex cover
of size k

As in our previous proof, the output graph H is composed of several gadgets.

• For each undirected edge uv in G, the directed graph H contains an edge gadget consisting
of four vertices (u, v, in), (u, v,out), (v, u, in), (v, u,out) and six directed edges

(u, v, in)�(u, v,out) (u, v, in)�(v, u, in) (v, u, in)�(u, v, in)

(v, u, in)�(v, u,out) (u, v,out)�(v, u,out) (v, u,out)�(u, v,out)

as shown on the next page. Each “in” vertex has an additional incoming edge, and each
“out” vertex has an additional outgoing edge. A Hamiltonian cycle must pass through
an edge gadget in one of three ways—either straight through on both sides, or with a
detour from one side to the other and back. Eventually, these options will correspond to
both u and v, only u, or only v belonging to some vertex cover.

u v
(u,v,in)

(u,v,out)

(v,u,in)

(v,u,out)

An edge gadget for uv and its only possible intersections with a Hamiltonian cycle.

13

Algorithms Lecture 30: NP-Hard Problems [Sp’15]

• For each vertex u in G, all the edge gadgets for incident edges uv are connected in H into
a single directed path, which we call a vertex chain. Specifically, suppose vertex u has
d neighbors v1, v2, . . . , vd . Then H has d − 1 additional edges (u, vi ,out)�(u, vi+1, in) for
each i.

• Finally, H also contains k cover vertices, simply numbered 1 through k. Each cover vertex
has a directed edge to the first vertex in each vertex chain, and a directed edge from the
last vertex in each vertex chain.

An example of our complete transformation is shown below.

u v

w x

u v

w x

The original graph G and the transformed graph H, where k = 2.

As usual, we prove the reduction correct in two stages. First, suppose C = {u1, u2, . . . , uk} is
a vertex cover of G. Then H contains a Hamiltonian cycle, constructed as follows. For each index
i from 1 to k, we traverse a path from cover vertex i, through the vertex chair for ui, to cover
vertex i + 1 (or cover vertex 1 if i = k). As we traverse the vertex chain for each vertex ui, we
determine how to proceed when we reach any node (ui , v, in) as follows:

• If v ∈ C , simply follow the edge (ui , v, in)�(ui , v,out).

• If v 6∈ C , detour through the path (ui , v, in)�(v, ui , in)�(v, ui ,out)�(ui , v,out).

Thus, for each edge uv of G, the Hamiltonian cycle visits (u, v, in) and (u, v,out) as part of u’s
vertex chain if u ∈ C and as part of v’s vertex chain otherwise. An example of this construction
appears on the next page.

On the other hand, suppose H contains a Hamiltonian cycle C . This cycle must contain an
edge from each cover vertex to the start of some vertex chain. Our case analysis of edge gadgets
inductively implies that after C enters the vertex chain for some vertex u, it must traverse the
entire vertex chain. Specifically, at each vertex (u, v, in), the cycle must contain either the single
edge (u, v, in)�(u, v,out) or the detour path (u, v, in)�(v, u, in)�(v, u,out)�(u, v,out), followed
by an edge to the next edge gadget in u’s vertex chain, or to a cover vertex if this is the last such
edge gadget. In particular, if C contains the detour edge (u, v, in)�(v, u, in), it does not contain
edges between any cover vertex and v’s vertex chain. It follows that C traverses exactly k vertex
chains. Moreover, these vertex chains describe a vertex cover of the original graph G, because C
visits the vertex (u, v, in) for every edge uv in G.

14

Algorithms Lecture 30: NP-Hard Problems [Sp’15]

u v

w x

u v

w x

A vertex cover {u, x} in G and the corresponding Hamiltonian cycle in H.

We conclude that G has a vertex cover of size k if and only if H contains a Hamiltonian
cycle. The transformation from G to H takes at most O(n2) time; it follows that the directed
Hamiltonian cycle problem is NP-hard.

A closely related problem to Hamiltonian cycles is the famous traveling salesman problem—
Given a weighted graph G, find the shortest cycle that visits every vertex. Finding the shortest
cycle is obviously harder than determining if a cycle exists at all, so the traveling salesman
problem is also NP-hard.

Finally, we can prove that finding Hamiltonian cycles in undirected graphs is NP-hard using a
simple reduction from the same problem in directed graphs. I’ll leave the details of this reduction
as an entertaining exercise.

30.11 Hamiltonian Cycle Again (from 3SAT)

Alternatively, we can prove that the Hamiltonian cycle problem is NP-hard by reducing directly
from 3SAT. Given a 3CNF formula Φ with n variables x1, x2, . . . , xn and k clauses c1, c2, . . . , ck,
we construct a directed graph HΦ that contains a Hamiltonian cycle if and only if Φ is satisfiable,
as follows.

For each variable x i, we construct a variable gadget consisting of a doubly-linked list of 2k
vertices (i, 0), (i, 1), . . . , (i, 2k), connected by edges (i, j − 1)�(i, j) and (i, j)�(i, j − 1) for each
index j. We connect successive variable gadgets by adding edges

(i, 0)�(i + 1, 0) (i, 2k)�(i + 1,0) (i, 0)�(i + 1, 2k) (i, 2k)�(i + 1, 2k)

for each index i; we also connect the first and last variable gadgets with the edges

(n, 0)�(1,0) (n, 2k)�(1,0) (n, 0)�(1,2k) (n, 2k)�(1, 2k).

The resulting graph GΦ has exactly 2n Hamiltonian cycles, one for each assignment of boolean
values to the n variables of Φ. Specifically, for each i, we traverse the ith variable gadget from
left to right if x i = True and right to left if x i = False.

Now we extend GΦ to a larger graph HΦ by adding a clause vertex [j] for each clause c j,
connected to the variable gadgets by six edges. Specifically, for each positive literal x i in c j , we
add the edges (i, 2 j − 1)�[j]�(i, 2 j), and for each negative literal x̄ i in c j, we add the edges

15

Algorithms Lecture 30: NP-Hard Problems [Sp’15]

a

b

c

d

a

b

c

d
Left: Variable gadgets for any formula with four variables a, b, c, d and four clauses.

Right: The Hamiltonian cycle corresponding to the assignment a = b = d = True, c = False

(i, 2 j)�[j]�(i, 2 j−1). The connections to the clause vertices guarantee that a Hamiltonian cycle
in GΦ can be extended to a Hamiltonian cycle in HΦ if and only if the corresponding variable
assignment satisfies Φ. Exhaustive case analysis now implies that HΦ has a Hamiltonian cycle if
and only if Φ is satisfiable.

a

b

c

d
(a _ b _ c)^ (b _ c̄ _ d̄)^ (ā _ c _ d)^ (a _ b̄ _ d̄)

a

b

c

d
(a _ b _ c)^ (b _ c̄ _ d̄)^ (ā _ c _ d)^ (a _ b̄ _ d̄)

Left: Clause gadgets for a particular formula with four variables and four clauses.
Right: A Hamiltonian cycle corresponding to the satisfying assignment a = b = d = True, c = False.

Transforming the formula Φ into the graph HΦ takes O(kn) time, which is at most quadratic
in the total length of the formula; we conclude that the directed Hamiltonian cycle problem is
NP-hard.

30.12 Subset Sum (from Vertex Cover)

The next problem that we prove NP-hard is the SubsetSum problem considered in the very first
lecture on recursion: Given a set X of positive integers and an integer t, determine whether X
has a subset whose elements sum to t.

To prove this problem is NP-hard, we once again reduce from VertexCover. Given a graph G
and an integer k, we compute a set X of integer and an integer t, such that X has a subset that
sums to t if and only if G has an vertex cover of size k. Our transformation uses just two ‘gadgets’,

16

Algorithms Lecture 30: NP-Hard Problems [Sp’15]

which are integers representing vertices and edges in G.
Number the edges of G arbitrarily from 0 to m−1. Our set X contains the integer bi := 4i for

each edge i, and the integer
av := 4m +

∑

i∈∆(v)
4i

for each vertex v, where ∆(v) is the set of edges that have v has an endpoint. Alternately, we
can think of each integer in X as an (m+ 1)-digit number written in base 4. The mth digit is 1
if the integer represents a vertex, and 0 otherwise; and for each i < m, the ith digit is 1 if the
integer represents edge i or one of its endpoints, and 0 otherwise. Finally, we set the target sum

t := k · 4m +
m−1
∑

i=0

2 · 4i .

Now let’s prove that the reduction is correct.

• First, suppose there is a vertex cover of size k in the original graph G. Consider the subset
XC ⊆ X that includes av for every vertex v in the vertex cover, and bi for every edge i that
has exactly one vertex in the cover. The sum of these integers, written in base 4, has a 2 in
each of the first m digits; in the most significant digit, we are summing exactly k 1’s. Thus,
the sum of the elements of XC is exactly t.

• On the other hand, suppose there is a subset X ′ ⊆ X that sums to t. Specifically, we must
have

∑

v∈V ′
av +

∑

i∈E′
bi = t

for some subsets V ′ ⊆ V and E′ ⊆ E. Again, if we sum these base-4 numbers, there are no
carries in the first m digits, because for each i there are only three numbers in X whose ith
digit is 1. Each edge number bi contributes only one 1 to the ith digit of the sum, but the
ith digit of t is 2. Thus, for each edge in G, at least one of its endpoints must be in V ′. In
other words, V is a vertex cover. On the other hand, only vertex numbers are larger than
4m, and bt/4mc= k, so V ′ has at most k elements. (In fact, it’s not hard to see that V ′ has
exactly k elements.)

For example, given the four-vertex graph used on the previous page to illustrate the reduction
to Hamiltonian cycle, our set X might contain the following base-4 integers:

au := 1110004 = 1344 buv := 0100004 = 256
av := 1101104 = 1300 buw := 0010004 = 64
aw := 1011014 = 1105 bvw := 0001004 = 16
ax := 1000114 = 1029 bvx := 0000104 = 4

bwx := 0000014 = 1

If we are looking for a vertex cover of size 2, our target sum would be t := 2222224 = 2730.
Indeed, the vertex cover {v, w} corresponds to the subset {av , aw, buv , buw, bvx , bwx}, whose sum
is 1300+ 1105+ 256+ 64+ 4+ 1= 2730.

The reduction can clearly be performed in polynomial time. Since VertexCover is NP-hard,
it follows that SubsetSum is NP-hard.

There is one subtle point that needs to be emphasized here. Way back at the beginning of the
semester, we developed a dynamic programming algorithm to solve SubsetSum in time O(nt).

17

Algorithms Lecture 30: NP-Hard Problems [Sp’15]

Isn’t this a polynomial-time algorithm? idn’t we just prove that P=NP? Hey, where’s our million
dollars? Alas, life is not so simple. True, the running time is polynomial in n and t, but in order
to qualify as a true polynomial-time algorithm, the running time must be a polynomial function of
the size of the input. The values of the elements of X and the target sum t could be exponentially
larger than the number of input bits. Indeed, the reduction we just described produces a value of
t that is exponentially larger than the size of our original input graph, which would force our
dynamic programming algorithm to run in exponential time.

Algorithms like this are said to run in pseudo-polynomial time, and any NP-hard problem
with such an algorithm is called weakly NP-hard. Equivalently, a weakly NP-hard problem is
one that can be solved in polynomial time when all input numbers are represented in unary (as a
sum of 1s), but becomes NP-hard when all input numbers are represented in binary. If a problem
is NP-hard even when all the input numbers are represented in unary, we say that the problem is
strongly NP-hard.

30.13 Choosing the Right Problem

ÆÆÆ • If the problem asks how to assign bits to objects, or to partition objects into two different
subsets, try reducing from some version of Sat or Partition.

• If the problem asks how to assign labels to objects from a small fixed set, or to partition
objects into a constant number of subsets, try reducing from 3Color.

• If the problem asks to arrange a set of objects in a particular order, try reducing from
HamiltonianCycle or HamiltonianPath or TravelingSalesman.

• If the problem asks to find a small subset satisfying some constraints, try reducing from
MinVertexCover.

• If the problem asks to find a large subset satisfying some constraints, try reducing from
MaxIndependentSet or MaxClique.

• If the problem asks to partition objects into a large number of small subsets, try reducing
from 3Partition.

• If the number 3 appears naturally in the problem, try 3Sat or 3Color or 3Partition.
(No, this is not a joke.)

• If all else fails, try 3Sat or even CircuitSat.

30.14 A Frivolous Real-World Example

Draughts is a family of board games that have been played for thousands of years. Most
Americans are familiar with the version called checkers or English draughts, but the most common
variant worldwide, known as international draughts or Polish draughts, originated in the
Netherlands in the 16th century. For a complete set of rules, the reader should consult Wikipedia;
here a few important differences from the Anglo-American game:

• Flying kings: As in checkers, a piece that ends a move in the row closest to the opponent
becomes a king and gains the ability to move backward. Unlike in checkers, however, a
king in international draughts can move any distance along a diagonal line in a single
turn, as long as the intermediate squares are empty or contain exactly one opposing piece
(which is captured).

• Forced maximum capture: In each turn, the moving player must capture as many
opposing pieces as possible. This is distinct from the forced-capture rule in checkers, which
requires only that each player must capture if possible, and that a capturing move ends
only when the moving piece cannot capture further. In other words, checkers requires

18

http://en.wikipedia.org/wiki/International_draughts

Algorithms Lecture 30: NP-Hard Problems [Sp’15]

capturing a maximal set of opposing pieces on each turn; whereas, international draughts
requires a maximum capture.

• Capture subtleties: As in checkers, captured pieces are removed from the board only at
the end of the turn. Any piece can be captured at most once. Thus, when an opposing
piece is jumped, that piece remains on the board but cannot be jumped again until the end
of the turn.

For example, in the first position shown on the next page, each circle represents a piece, and
doubled circles represent kings. Black must make the first indicated move, capturing five white
pieces, because it is not possible to capture more than five pieces, and there is no other move that
captures five. Black cannot extend his capture further northeast, because the captured White
pieces are still on the board.

Two forced(!) moves in international draughts; doubled circles are kings.

The actual game, which is played on a 10 × 10 board with 20 pieces of each color, is
computationally trivial; we can precompute the optimal move for both players in every possible
board configuration and hard-code the results into a lookup table of constant size. Sure, it’s a big
constant, but it’s still just a constant!

But consider the natural generalization of international draughts to an n× n board. In this
setting, finding a legal move is actually NP-hard! The following reduction from the Hamiltonian
cycle problem in directed graphs was discovered by Bob Hearn in 2010.⁷ In most two-player
games, finding the best move is NP-hard (or worse); this is the only example I know of a game
where just following the rules is an intractable problem!

Given a graph G with n vertices, we construct a board configuration for international draughts,
such that White can capture a certain number of black pieces in a single move if and only if G
has a Hamiltonian cycle. We treat G as a directed graph, with two arcs u�v and v�u in place
of each undirected edge uv. Number the vertices arbitrarily from 1 to n. The final draughts
configuration has several gadgets.

• The vertices of G are represented by rabbit-shaped vertex gadgets, which are evenly spaced
along a horizontal line. Each arc i� j is represented by a path of two diagonal line segments
from the “right ear” of vertex gadget i to the “left ear” of vertex gadget j. The path for arc
i� j is located above the vertex gadgets if i < j, and below the vertex gadgets if i > j.

• The bulk of each vertex gadget is a diamond-shaped region called a vault. The walls of the
vault are composed of two solid layers of black pieces, which cannot be captured; these
pieces are drawn as gray circles in the figures. There are N capturable black pieces inside
each vault, for some large integer N to be determined later. A white king can enter the
vault through the “right ear”, capture every internal piece, and then exit through the “left

⁷Posted on Theoretical Computer Science Stack Exchange: http://cstheory.stackexchange.com/a/1999/111.

19

http://cstheory.stackexchange.com/a/1999/111

Algorithms Lecture 30: NP-Hard Problems [Sp’15]

1 2 3 4
42

1

3

A high level view of the reduction from Hamiltonian cycle to international draughts.

ear”. Both ears are hallways, again with walls two pieces thick, with gaps where the arc
paths end to allow the white king to enter and leave. The lengths of the “ears” can be
adjusted easily to align with the other gadgets.

1

2

4

4

2

1

3 3

EntranceEx
it

Left: A vertex gadget. Right: A white king emptying the vault.
Gray circles are black pieces that cannot be captured.

• For each arc i� j, we have a corner gadget, which allows a white king leaving vertex gadget
i to be redirected to vertex gadget j.

A corner gadget.

• Finally, wherever two arc paths cross, we have a crossing gadget; these gadgets allow the
white king to traverse either arc path, but forbid switching from one arc path to the other.

A single white king starts at the bottom corner of one of the vaults. In any legal move,
this king must alternate between traversing entire arc paths and clearing vaults. The king can
traverse the various gadgets backward, entering each vault through the exit and vice versa. But
the reversal of a Hamiltonian cycle in G is another Hamiltonian cycle in G, so walking backward
is fine.

20

Algorithms Lecture 30: NP-Hard Problems [Sp’15]

A crossing gadget.

If there is a Hamiltonian cycle in G, the white king can capture at least nN black pieces by
visiting each of the other vaults and returning to the starting vault. On the other hand, if there
is no Hamiltonian cycle in G, the white king can can capture at most half of the pieces in the
starting vault, and thus can capture at most (n− 1/2)N +O(n3) enemy pieces altogether. The
O(n3) term accounts for the corner and crossing gadgets; each edge passes through one corner
gadget and at most n2/2 crossing gadgets.

To complete the reduction, we set N = n4. Summing up, we obtain an O(n5)×O(n5) board
configuration, with O(n5) black pieces and one white king. We can clearly construct this board
configuration in polynomial time. The figure at the top of this page shows a complete example of
the construction.

It is still open whether the following related question is NP-hard: Given an n × n board
configuration for international draughts, can (and therefore must) White capture all the black
pieces in a single turn?

30.15 Other Useful NP-hard Problems

Literally thousands of different problems have been proved to be NP-hard. I want to close this
note by listing a few NP-hard problems that are useful in deriving reductions. I won’t describe
the NP-hardness proofs for these problems in detail, but you can find most of them in Garey and
Johnson’s classic Scary Black Book of NP-Completeness.⁸

• PlanarCircuitSAT: Given a boolean circuit that can be embedded in the plane so that no
two wires cross, is there an input that makes the circuit output True? This problem can be
proved NP-hard by reduction from the general circuit satisfiability problem, by replacing
each crossing with a small series of gates.

• NotAllEqual3SAT: Given a 3CNF formula, is there an assignment of values to the variables
so that every clause contains at least one True literal and at least one False literal? This
problem can be proved NP-hard by reduction from the usual 3SAT.

• Planar3SAT: Given a 3CNF boolean formula, consider a bipartite graph whose vertices are
the clauses and variables, where an edge indicates that a variable (or its negation) appears
in a clause. If this graph is planar, the 3CNF formula is also called planar. The Planar3SAT
problem asks, given a planar 3CNF formula, whether it has a satisfying assignment. This
problem can be proved NP-hard by reduction from PlanarCircuitSAT.⁹

• Exact3DimensionalMatching or X3M: Given a set S and a collection of three-element
subsets of S, called triples, is there a sub-collection of disjoint triples that exactly cover S?
This problem can be proved NP-hard by a reduction from 3SAT.

⁸Michael Garey and David Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness.
W. H. Freeman and Co., 1979.

⁹Surprisingly, PlanarNotAllEqual3SAT is solvable in polynomial time!

21

Algorithms Lecture 30: NP-Hard Problems [Sp’15]

1 32 4

The final draughts configuration for the example graph. (The green arrows are not actually part of the configuration.)

• Partition: Given a set S of n integers, are there subsets A and B such that A∪ B = S,
A∩ B =∅, and

∑

a∈A

a =
∑

b∈B

b?

This problem can be proved NP-hard by a simple reduction from SubsetSum. Like
SubsetSum, the Partition problem is only weakly NP-hard.

• 3Partition: Given a set S of 3n integers, can it be partitioned into n disjoint three-element
subsets, such that every subset has exactly the same sum? Despite the similar names, this
problem is very different from Partition; sorry, I didn’t make up the names. This problem
can be proved NP-hard by reduction from X3M. Unlike Partition, the 3Partition problem
is strongly NP-hard, that is, it remains NP-hard even if the input numbers are less than
some polynomial in n.

• SetCover: Given a collection of sets S= {S1, S2, . . . , Sm}, find the smallest sub-collection
of Si ’s that contains all the elements of

⋃

i Si. This problem is a generalization of both
VertexCover and X3M.

• HittingSet: Given a collection of sets S = {S1, S2, . . . , Sm}, find the minimum number

22

Algorithms Lecture 30: NP-Hard Problems [Sp’15]

of elements of
⋃

i Si that hit every set in S. This problem is also a generalization of
VertexCover.

• HamiltonianPath: Given an graph G, is there a path in G that visits every vertex exactly
once? This problem can be proved NP-hard either by modifying the reductions from 3Sat
or VertexCover to HamiltonianCycle, or by a direct reduction from HamiltonianCycle.

• LongestPath: Given a non-negatively weighted graph G and two vertices u and v, what is
the longest simple path from u to v in the graph? A path is simple if it visits each vertex at
most once. This problem is a generalization of the HamiltonianPath problem. Of course,
the corresponding shortest path problem is in P.

• SteinerTree: Given a weighted, undirected graph G with some of the vertices marked,
what is the minimum-weight subtree of G that contains every marked vertex? If every
vertex is marked, the minimum Steiner tree is just the minimum spanning tree; if exactly
two vertices are marked, the minimum Steiner tree is just the shortest path between them.
This problem can be proved NP-hard by reduction from VertexCover.

In addition to these dry but useful problems, most interesting puzzles and solitaire games
have been shown to be NP-hard, or to have NP-hard generalizations. (Arguably, if a game or
puzzle isn’t at least NP-hard, it isn’t interesting!) Some familiar examples include:

• Minesweeper (by reduction from CircuitSAT)¹⁰

• Tetris (by reduction from 3Partition)¹¹

• Sudoku (by a complex reduction from 3SAT)¹²

• Klondike, aka “Solitaire” (by reduction from 3SAT)¹³

• Pac-Man (by reduction from HamiltonianCycle)¹⁴

• Super Mario Brothers (by reduction from 3SAT)¹⁵

• Candy Crush Saga (by reduction from a variant of 3SAT)¹⁶

• Threes/2048 (by reduction from 3SAT)¹⁷

As of April 2016, nobody has published a proof that a generalization of Cookie Clicker is
NP-hard, but I’m sure it’s only a matter of time.

¹⁰Richard Kaye. Minesweeper is NP-complete. Mathematical Intelligencer 22(2):9–15, 2000. http://www.mat.bham.
ac.uk/R.W.Kaye/minesw/minesw.pdf

¹¹Ron Breukelaar*, Erik D. Demaine, Susan Hohenberger*, Hendrik J. Hoogeboom, Walter A. Kosters, and David
Liben-Nowell*. Tetris is hard, even to approximate. International Journal of Computational Geometry and Applications
14:41–68, 2004.

¹²Takayuki Yato and Takahiro Seta. Complexity and completeness of finding another solution and its application to
puzzles. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences E86-A(5):1052–1060,
2003. http://www-imai.is.s.u-tokyo.ac.jp/~yato/data2/MasterThesis.pdf.

¹³Luc Longpré and Pierre McKenzie. The complexity of Solitaire. Proceedings of the 32nd International Mathematical
Foundations of Computer Science, 182–193, 2007.

¹⁴Giovanni Viglietta. Gaming is a hard job, but someone has to do it! Theory of Computing Systems, 54(4):595–621,
2014. http://giovanniviglietta.com/papers/gaming2.pdf.

¹⁵Greg Aloupis, Erik D. Demaine, Alan Guo, and Giovanni Viglietta. Classic Nintendo games Are (computationally)
hard. Theoretical Computer Science 586:135–160, 2015. http://arxiv.org/abs/1203.1895.

¹⁶Luciano Gualà, Stefano Leucci, Emanuele Natale. Bejeweled, Candy Crush and other match-three games are
(NP-)hard. Preprint, March 2014. http://arxiv.org/abs/1403.5830.

¹⁷Further evidence for the “rule of three”. Stefan Langerman and Yushi Uno. Threes!, Fives, 1024!, and 2048 are
Hard. To appear in Proc. 8th International Conference on Fun with Algorithms, 2016.

23

http://www.mat.bham.ac.uk/R.W.Kaye/minesw/minesw.pdf
http://www.mat.bham.ac.uk/R.W.Kaye/minesw/minesw.pdf
http://www-imai.is.s.u-tokyo.ac.jp/~yato/data2/MasterThesis.pdf
http://giovanniviglietta.com/papers/gaming2.pdf
http://arxiv.org/abs/1203.1895
http://arxiv.org/abs/1403.5830

Algorithms Lecture 30: NP-Hard Problems [Sp’15]

30.16 On Beyond Zebra?

P and NP are only the first two steps in an enormous hierarchy of complexity classes. To close
these notes, let me describe a few more classes of interest.

Polynomial Space. PSPACE is the set of decision problems that can be solved using polynomial
space. Every problem in NP (and therefore in P) is also in PSPACE. It is generally believed that
NP 6= PSPACE, but nobody can even prove that P 6= PSPACE. A problem Π is PSPACE-hard if, for
any problem Π′ that can be solved using polynomial space, there is a polynomial-time many-one
reduction from Π′ to Π. If any PSPACE-hard problem is in NP, then PSPACE=NP; similarly, if any
PSPACE-hard problem is in P, then PSPACE=P.

The canonical PSPACE-hard problem is the quantified boolean formula problem, or QBF:
Given a boolean formula Φ that may include any number of universal or existential quantifiers,
but no free variables, is Φ equivalent to True? For example, the following expression is a valid
input to QBF:

∃a : ∀b : ∃c : (∀d : a ∨ b ∨ c ∨ d̄)⇔ ((b ∧ c̄)∨ (∃e : (ā⇒ e)∨ (c 6= a ∧ e))).

SAT is provably equivalent the special case of QBF where the input formula contains only
existential quantifiers. QBF remains PSPACE-hard even when the input formula must have all its
quantifiers at the beginning, the quantifiers strictly alternate between ∃ and ∀, and the quantified
proposition is in conjunctive normal form, with exactly three literals in each clause, for example:

∃a : ∀b : ∃c : ∀d :
�

(a ∨ b ∨ c)∧ (b ∨ c̄ ∨ d̄)∧ (ā ∨ c ∨ d)∧ (a ∨ b̄ ∨ d̄)
�

This restricted version of QBF can also be phrased as a two-player strategy question. Suppose
two players, Alice and Bob, are given a 3CNF predicate with free variables x1, x2, . . . , xn. The
players alternately assign values to the variables in order by index—Alice assigns a value to x1,
Bob assigns a value to x2, and so on. Alice eventually assigns values to every variable with
an odd index, and Bob eventually assigns values to every variable with an even index. Alice
wants to make the expression True, and Bob wants to make it False. Assuming Alice and Bob
play perfectly, who wins this game? Not surprisingly, most two-player games¹⁸ like tic-tac-toe,
reversi, checkers, go, chess, and mancala—or more accurately, appropriate generalizations of
these constant-size games to arbitrary board sizes—are PSPACE-hard.

Another canonical PSPACE-hard problem is NFA totality: Given a non-deterministic finite-state
automaton M over some alphabet Σ, does M accept every string in Σ∗? The closely related
problems NFA equivalence (Do two given NFAs accept the same language?) and NFA minimization
(Find the smallest NFA that accepts the same language as a given NFA) are also PSPACE-hard, as
are the corresponding questions about regular expressions. (The corresponding questions about
deterministic finite-state automata are all solvable in polynomial time.)

Exponential time. The next significantly larger complexity class, EXP (also called EXPTIME),
is the set of decision problems that can be solved in exponential time, that is, using at most 2nc

steps for some constant c > 0. Every problem in PSPACE (and therefore in NP (and therefore in
P)) is also in EXP. It is generally believed that PSPACE (EXP, but nobody can even prove that
NP 6= EXP. A problem Π is EXP-hard if, for any problem Π′ that can be solved in exponential

¹⁸For a good (but now slightly dated) overview of known results on the computational complexity of games and
puzzles, see Erik D. Demaine and Robert Hearn’s survey “Playing Games with Algorithms: Algorithmic Combinatorial
Game Theory” at http://arxiv.org/abs/cs.CC/0106019.

24

http://arxiv.org/abs/cs.CC/0106019

Algorithms Lecture 30: NP-Hard Problems [Sp’15]

time, there is a polynomial-time many-one reduction from Π′ to Π. If any EXP-hard problem is in
PSPACE, then EXP=PSPACE; similarly, if any EXP-hard probelm is in NP, then EXP=NP. We do
know that P 6= EXP; in particular, no EXP-hard problem is in P.

Natural generalizations of many interesting 2-player games—like checkers, chess, mancala,
and go—are actually EXP-hard. The boundary between PSPACE-hard games and EXP-hard games
is rather subtle. For example, there are three ways to draw in chess (the standard 8× 8 game):
stalemate (the player to move is not in check but has no legal moves), repeating the same board
position three times, or moving fifty times without capturing a piece. The n× n generalization of
chess is either in PSPACE or EXP-hard depending on how we generalize these rules. If we declare
a draw after (say) n3 capture-free moves, then every game must end after a polynomial number
of moves, so we can simulate all possible games from any given position using only polynomial
space. On the other hand, if we ignore the capture-free move rule entirely, the resulting game
can last an exponential number of moves, so there no obvious way to detect a repeating position
using only polynomial space; indeed, this version of n× n chess is EXP-hard.

Excelsior! Naturally, even exponential time is not the end of the story. NEXP is the class of
decision problems that can be solve in nondeterministic exponential time; equivalently, a decision
problem is in NEXP if and only if, for every Yes instance, there is a proof of this fact that can be
checked in exponential time. EXPSPACE is the set of decision problems that can be solved using
exponential space. Even these larger complexity classes have hard problems; for example, if we
add the intersection operator ∩ to the syntax of regular expressions, deciding whether two such
expressions describe the same language is EXPSPACE-hard. Beyond EXPSPACE are complexity
classes with doubly-exponential resource bounds (EEXP, NEEXP, and EEXPSPACE), then triply
exponential resource bounds (EEEXP, NEEEXP, and EEEXPSPACE), and so on ad infinitum.

All these complexity classes can be ordered by inclusion as follows:

P ⊆ NP ⊆ PSPACE ⊆ EXP ⊆ NEXP ⊆ EXPSPACE ⊆ EEXP ⊆ NEEXP ⊆ EEXPSPACE ⊆ EEEXP ⊆ · · · ,

Most complexity theorists strongly believe that every inclusion in this sequence is strict; that
is, no two of these complexity classes are equal. However, the strongest result that has been
proved is that every class in this sequence is strictly contained in the class three steps later in the
sequence. For example, we have proofs that P 6= EXP and PSPACE 6= EXPSPACE, but not whether
P 6= PSPACE or NP 6= EXP.

The limit of this series of increasingly exponential complexity classes is the class ELEMENTARY
of decision problems that can be solved using time or space bounded by a function the form
2 ↑k n for some constant integer k, where

2 ↑k n :=

¨

n if k = 0,

22↑k−1n otherwise.

For example, 2 ↑1 n= 2n and 2 ↑2 n= 22n
. It may be tempting to conjecture that every natural

decidable problem can be solved in elementary time, but in fact this conjecture is incorrect.
Consider the extended regular expressions defined by recursively combining (possibly empty)
strings over some finite alphabet by concatenation (x y), union (x + y), Kleene closure (x∗),
and negation (x). For example, the extended regular expression (0+ 1)∗00(0+ 1)∗ represents
the set of strings in {0,1}∗ that do not contain two 0s in a row. It is possible to determine
algorithmically whether two extended regular expressions describe identical languages, by
recursively converting each expression into an equivalent NFA, converting each NFA into a DFA,

25

Algorithms Lecture 30: NP-Hard Problems [Sp’15]

and then minimizing the DFA. However, the running time of this algorithm has the non-elementary
bound 2 ↑Θ(n) 2, intuitively because each layer of recursive negation can increase the number of
states exponentially. In fact, this problem provably cannot be solved in only elementary time,
even if we forbid Kleene closure!¹⁹

Exercises

1. (a) Describe and analyze and algorithm to solve Partition in time O(nM), where n is
the size of the input set and M is the sum of the absolute values of its elements.

(b) Why doesn’t this algorithm imply that P=NP?

2. Consider the following problem, called BoxDepth: Given a set of n axis-aligned rectangles
in the plane, how big is the largest subset of these rectangles that contain a common point?

(a) Describe a polynomial-time reduction from BoxDepth to MaxClique.

(b) Describe and analyze a polynomial-time algorithm for BoxDepth. [Hint: O(n3) time
should be easy, but O(n log n) time is possible.]

(c) Why don’t these two results imply that P=NP?

3. A boolean formula is in disjunctive normal form (or DNF) if it consists of a disjunction (Or)
or several terms, each of which is the conjunction (And) of one or more literals. For
example, the formula

(x ∧ y ∧ z)∨ (y ∧ z)∨ (x ∧ y ∧ z)

is in disjunctive normal form. DNF-SAT asks, given a boolean formula in disjunctive normal
form, whether that formula is satisfiable.

(a) Describe a polynomial-time algorithm to solve DNF-SAT.

(b) What is the error in the following argument that P=NP?

Suppose we are given a boolean formula in conjunctive normal form with at most three
literals per clause, and we want to know if it is satisfiable. We can use the distributive
law to construct an equivalent formula in disjunctive normal form. For example,

(x ∨ y ∨ z)∧ (x ∨ y) ⇐⇒ (x ∧ y)∨ (y ∧ x)∨ (z ∧ x)∨ (z ∧ y)

Now we can use the algorithm from part (a) to determine, in polynomial time, whether
the resulting DNF formula is satisfiable. We have just solved 3SAT in polynomial time.
Since 3SAT is NP-hard, we must conclude that P=NP!

4. (a) Describe a polynomial-time reduction from Partition to SubsetSum.

(b) Describe a polynomial-time reduction from SubsetSum to Partition.

5. (a) Describe a polynomial-time reduction from UndirectedHamiltonianCycle to
DirectedHamiltonianCycle.

¹⁹Larry J. Stockmeyer. The Complexity of Decision Problems in Automata Theory and Logic. Ph.D. thesis, MIT, 1974.

26

Algorithms Lecture 30: NP-Hard Problems [Sp’15]

(b) Describe a polynomial-time reduction fromDirectedHamiltonianCycle toUndirected-
HamiltonianCycle.

6. (a) Describe a polynomial-time reduction from HamiltonianPath to HamiltonianCycle.

(b) Describe a polynomial-time reduction from HamiltonianCycle to HamiltonianPath.
[Hint: A polynomial-time reduction may call the black-box subroutine more than once.]

7. (a) Prove that PlanarCircuitSat is NP-hard. [Hint: Construct a gadget for crossing
wires.]

(b) Prove that NotAllEqual3SAT is NP-hard.

(c) Prove that the following variant of 3SAT is NP-hard: Given a boolean formula Φ
in conjunctive normal form where each clause contains at most 3 literals and each
variable appears in at most 3 clauses, does Φ have a satisfying assignment?

8. (a) Using the gadget on the right below, prove that deciding whether a given planar
graph is 3-colorable is NP-hard. [Hint: Show that the gadget can be 3-colored, and
then replace any crossings in a planar embedding with the gadget appropriately.]

(b) Using part (a) and the middle gadget below, prove that deciding whether a planar
graph with maximum degree 4 is 3-colorable is NP-hard. [Hint: Replace any vertex
with degree greater than 4 with a collection of gadgets connected so that no degree is
greater than four.]

(a) Gadget for planar 3-colorability. (b) Gadget for degree-4 planar 3-colorability.

9. Prove that the following problems are NP-hard.

(a) Given an undirected graph G, does G contain a simple path that visits all but 17
vertices?

(b) Given an undirected graph G, does G have a spanning tree in which every node has
degree at most 23?

(c) Given an undirected graph G, does G have a spanning tree with at most 42 leaves?

(d) Given an undirected graph G = (V, E), what is the size of the largest subset of vertices
S ⊆ V such that at most 473 edges in E have both endpoints in S?

(e) Given an undirected graph G, is it possible to color the vertices of G with three
different colors, so that at most 31337 edges have both endpoints the same color?

10. Prove that the following variants of the minimum-spanning tree problem are NP-hard.

27

Algorithms Lecture 30: NP-Hard Problems [Sp’15]

(a) Given a graph G, compute the maximum-diameter spanning tree of G. (The diameter
of a spanning tree T is the length of the longest path in T .)

(b) Given a graph G with weighted edges, compute the minimum-weight depth-first
spanning tree of G.

(c) Given a graph G with weighted edges and a subset S of vertices of G, compute the
minimum-weight spanning tree all of whose leaves are in S.

(d) Given a graph G with weighted edges and an integer `, compute the minimum-weight
spanning tree with at most ` leaves.

(e) Given a graph G with weighted edges and an integer∆, compute the minimum-weight
spanning tree where every node has degree at most ∆.

11. There’s something special about the number 3.

(a) Describe and analyze a polynomial-time algorithm for 2Partition. Given a set S of
2n positive integers, your algorithm will determine in polynomial time whether the
elements of S can be split into n disjoint pairs whose sums are all equal.

(b) Describe and analyze a polynomial-time algorithm for 2Color. Given an undirected
graph G, your algorithm will determine in polynomial time whether G has a proper
coloring that uses only two colors.

(c) Describe and analyze a polynomial-time algorithm for 2SAT. Given a boolean formula Φ
in conjunctive normal form, with exactly two literals per clause, your algorithm will
determine in polynomial time whether Φ has a satisfying assignment.

12. There’s nothing special about the number 3.

(a) The problem 12Partition is defined as follows: Given a set S of 12n positive integers,
determine whether the elements of S can be split into n subsets of 12 elements each
whose sums are all equal. Prove that 12Partition is NP-hard. [Hint: Reduce from
3Partition. It may be easier to consider multisets first.]

(b) The problem 12Color is defined as follows: Given an undirected graph G, determine
whether we can color each vertex with one of twelve colors, so that every edge touches
two different colors. Prove that 12Color is NP-hard. [Hint: Reduce from 3Color.]

(c) The problem 12SAT is defined as follows: Given a boolean formula Φ in conjunctive
normal form, with exactly twelve literals per clause, determine whether Φ has a
satisfying assignment. Prove that 12Sat is NP-hard. [Hint: Reduce from 3SAT.]

?13. Describe a direct polynomial-time reduction from 4Color to 3Color. (This is a lot harder
than the opposite direction.)

14. This exercise asks you to prove that a certain reduction from VertexCover to SteinerTree
is correct. Suppose we want to find the smallest vertex cover in a given undirected graph
G = (V, E). We construct a new graph H = (V ′, E′) as follows:

• V ′ = V ∪ E ∪ {z}
• E′ = {ve | v ∈ V is an endpoint of e ∈W} ∪ {vz | v ∈ V}.

28

Algorithms Lecture 30: NP-Hard Problems [Sp’15]

Equivalently, we construct H by subdividing each edge in G with a new vertex, and then
connecting all the original vertices of G to a new apex vertex z.

Prove that G has a vertex cover of size k if and only if there is a subtree of H with
k+ |E|+ 1 vertices that contains every vertex in E ∪ {z}.

15. Let G = (V, E) be a graph. A dominating set in G is a subset S of the vertices such that
every vertex in G is either in S or adjacent to a vertex in S. The DominatingSet problem
asks, given a graph G and an integer k as input, whether G contains a dominating set of
size k. Prove that this problem is NP-hard.

A dominating set of size 3 in the Peterson graph.

16. A subset S of vertices in an undirected graph G is called triangle-free if, for every triple of
vertices u, v, w ∈ S, at least one of the three edges uv, uw, vw is absent from G. Prove that
finding the size of the largest triangle-free subset of vertices in a given undirected graph is
NP-hard.

A triangle-free subset of 7 vertices.
This is not the largest triangle-free subset in this graph.

17. Pebbling is a solitaire game played on an undirected graph G, where each vertex has zero
or more pebbles. A single pebbling move consists of removing two pebbles from a vertex v
and adding one pebble to an arbitrary neighbor of v. (Obviously, the vertex v must have
at least two pebbles before the move.) The PebbleDestruction problem asks, given a
graph G = (V, E) and a pebble count p(v) for each vertex v, whether is there a sequence
of pebbling moves that removes all but one pebble. Prove that PebbleDestruction is
NP-hard.

18. Recall that a 5-coloring of a graph G is a function that assigns each vertex of G an ‘color’
from the set {0,1, 2,3, 4}, such that for any edge uv, vertices u and v are assigned different
’colors’. A 5-coloring is careful if the colors assigned to adjacent vertices are not only
distinct, but differ by more than 1 (mod 5). Prove that deciding whether a given graph
has a careful 5-coloring is NP-hard. [Hint: Reduce from the standard 5Color problem.]

29

Algorithms Lecture 30: NP-Hard Problems [Sp’15]

3
4

0 4
2

23 0

1

A careful 5-coloring.

19. The RectangleTiling problem is defined as follows: Given one large rectangle and several
smaller rectangles, determine whether the smaller rectangles can be placed inside the
large rectangle with no gaps or overlaps. Prove that RectangleTiling is NP-hard.

7

1
53

6
2

4
7

1
53

6
2

4

A positive instance of the RectangleTiling problem.

20. Let G be an undirected graph with weighted edges. A heavy Hamiltonian cycle is a cycle C
that passes through each vertex of G exactly once, such that the total weight of the edges
in C is at least half of the total weight of all edges in G. Prove that deciding whether a
graph has a heavy Hamiltonian cycle is NP-hard.

4

8

2

7

5

3

1

12
8

6

5

9

5

A heavy Hamiltonian cycle. The cycle has total weight 34; the graph has total weight 67.

21. (a) A tonian path in a graph G is a path that goes through at least half of the vertices
of G. Show that determining whether a graph has a tonian path is NP-hard.

(b) A tonian cycle in a graph G is a cycle that goes through at least half of the vertices
of G. Show that determining whether a graph has a tonian cycle is NP-hard. [Hint:
Use part (a).]

22. For each problem below, either describe a polynomial-time algorithm or prove that the
problem is NP-hard.

(a) A double-Eulerian tour in an undirected graph G is a closed walk that traverses every
edge in G exactly twice. Given a graph G, does G have a double-Eulerian tour?

(b) A double-Hamiltonian tour in an undirected graph G is a closed walk that visits every
vertex in G exactly twice. Given a graph G, does G have a double-Hamiltonian tour?

30

Algorithms Lecture 30: NP-Hard Problems [Sp’15]

(c) A double-Hamiltonian circuit in an undirected graph G is a closed walk that visits
every vertex in G exactly twice and traverses each edge in G at most once. Given a
graph G, does G have a double-Hamiltonian circuit?

(d) A triple-Eulerian tour in an undirected graph G is a closed walk that traverses every
edge in G exactly three times. Given a graph G, does G have a triple-Eulerian tour?

(e) A triple-Hamiltonian tour in an undirected graph G is a closed walk that visits every
vertex in G exactly three times. Given a graph G, does G have a triple-Hamiltonian
tour?

23. Consider the following solitaire game. The puzzle consists of an n×m grid of squares,
where each square may be empty, occupied by a red stone, or occupied by a blue stone.
The goal of the puzzle is to remove some of the given stones so that the remaining stones
satisfy two conditions: (1) every row contains at least one stone, and (2) no column
contains stones of both colors. For some initial configurations of stones, reaching this goal
is impossible.

A solvable puzzle and one of its many solutions. An unsolvable puzzle.

Prove that it is NP-hard to determine, given an initial configuration of red and blue
stones, whether the puzzle can be solved.

24. A boolean formula in exclusive-or conjunctive normal form (XCNF) is a conjunction (And)
of several clauses, each of which is the exclusive-or of several literals; that is, a clause is
true if and only if it contains an odd number of true literals. The XCNF-SAT problem asks
whether a given XCNF formula is satisfiable. Either describe a polynomial-time algorithm
for XCNF-SAT or prove that it is NP-hard.

25. You’re in charge of choreographing a musical for your local community theater, and it’s
time to figure out the final pose of the big show-stopping number at the end. (“Streetcar!”’)
You’ve decided that each of the n cast members in the show will be positioned in a big
line when the song finishes, all with their arms extended and showing off their best spirit
fingers.

The director has declared that during the final flourish, each cast member must either
point both their arms up or point both their arms down; it’s your job to figure out who
points up and who points down. Moreover, in a fit of unchecked power, the director has
also given you a list of arrangements that will upset his delicate artistic temperament.
Each forbidden arrangement is a subset of the cast members paired with arm positions; for
example: “Marge may not point her arms up while Ned, Apu, and Smithers point their
arms down.”

Prove that finding an acceptable arrangement of arm positions is NP-hard.

31

Algorithms Lecture 30: NP-Hard Problems [Sp’15]

26. Jeff tries to make his students happy. At the beginning of class, he passes out a questionnaire
that lists a number of possible course policies in areas where he is flexible. Every student
is asked to respond to each possible course policy with one of “strongly favor”, “mostly
neutral”, or “strongly oppose”. Each student may respond with “strongly favor” or “strongly
oppose” to at most five questions. Because Jeff’s students are very understanding, each
student is happy if (but only if) he or she prevails in just one of his or her strong policy
preferences. Either describe a polynomial-time algorithm for setting course policy to
maximize the number of happy students, or show that the problem is NP-hard.

27. The next time you are at a party, one of the guests will suggest everyone play a round
of Three-Way Mumbledypeg, a game of skill and dexterity that requires three teams and
a knife. The official Rules of Three-Way Mumbledypeg (fixed during the Holy Roman
Three-Way Mumbledypeg Council in 1625) require that (1) each team must have at least
one person, (2) any two people on the same team must know each other, and (3) everyone
watching the game must be on one of the three teams. Of course, it will be a really fun
party; nobody will want to leave. There will be several pairs of people at the party who
don’t know each other. The host of the party, having heard thrilling tales of your prowess
in all things algorithmic, will hand you a list of which pairs of party-goers know each other
and ask you to choose the teams, while he sharpens the knife.

Either describe and analyze a polynomial time algorithm to determine whether the
party-goers can be split into three legal Three-Way Mumbledypeg teams, or prove that the
problem is NP-hard.

28. The party you are attending is going great, but now it’s time to line up for The Algorithm
March (アルゴリズムこうしん)! This dance was originally developed by the Japanese
comedy duo Itsumo Kokokara (いつもここから) for the children’s television show Pythago-
raSwitch (ピタゴラスイッチ). The Algorithm March is performed by a line of people;
each person in line starts a specific sequence of movements one measure later than the
person directly in front of them. Thus, the march is the dance equivalent of a musical
round or canon, like “Row Row Row Your Boat”.

Proper etiquette dictates that each marcher must know the person directly in front
of them in line, lest a minor mistake during lead to horrible embarrassment between
strangers. Suppose you are given a complete list of which people at your party know each
other. Prove that it is NP-hard to determine the largest number of party-goers that can
participate in the Algorithm March. You may assume without loss of generality that there
are no ninjas at your party.

29. (a) Suppose you are given a magic black box that can determine in polynomial time,
given an arbitrary weighted graph G, the length of the shortest Hamiltonian cycle
in G. Describe and analyze a polynomial-time algorithm that computes, given an
arbitrary weighted graph G, the shortest Hamiltonian cycle in G, using this magic
black box as a subroutine.

(b) Suppose you are given a magic black box that can determine in polynomial time,
given an arbitrary graph G, the number of vertices in the largest complete subgraph
of G. Describe and analyze a polynomial-time algorithm that computes, given an

32

Algorithms Lecture 30: NP-Hard Problems [Sp’15]

arbitrary graph G, a complete subgraph of G of maximum size, using this magic black
box as a subroutine.

(c) Suppose you are given a magic black box that can determine in polynomial time,
given an arbitrary graph G, whether G is 3-colorable. Describe and analyze a
polynomial-time algorithm that either computes a proper 3-coloring of a given graph
or correctly reports that no such coloring exists, using the magic black box as a
subroutine. [Hint: The input to the magic black box is a graph. Just a graph. Vertices
and edges. Nothing else.]

(d) Suppose you are given a magic black box that can determine in polynomial time,
given an arbitrary boolean formula Φ, whether Φ is satisfiable. Describe and analyze a
polynomial-time algorithm that either computes a satisfying assignment for a given
boolean formula or correctly reports that no such assignment exists, using the magic
black box as a subroutine.

(e) Suppose you are given a magic black box that can determine in polynomial time,
given an arbitrary set X of positive integers, whether X can be partitioned into two sets
A and B such that

∑

A=
∑

B. Describe and analyze a polynomial-time algorithm
that either computes an equal partition of a given set of positive integers or correctly
reports that no such partition exists, using the magic black box as a subroutine.

[General solutions give you a 50% tip.]

— Randall Munroe, xkcd (http://xkcd.com/287/)
Reproduced under a Creative Commons Attribution-NonCommercial 2.5 License

© Copyright 2016 Jeff Erickson.
This work is licensed under a Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/4.0/).

Free distribution is strongly encouraged; commercial distribution is expressly forbidden.
See http://www.cs.uiuc.edu/~jeffe/teaching/algorithms/ for the most recent revision.

33

http://xkcd.com/287/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cs.uiuc.edu/~jeffe/teaching/algorithms/

	NP-Hard Problems
	A Game You Can’t Win
	P versus NP
	NP-hard, NP-easy, and NP-complete
	Formal Definitions (HC SVNT DRACONES)
	Reductions and SAT
	3SAT (from SAT)
	Maximum Independent Set (from 3SAT)
	Clique and Vertex Cover (from Independent Set)
	Graph Coloring (from 3SAT)
	Hamiltonian Cycle (from Vertex Cover)
	Hamiltonian Cycle Again (from 3SAT)
	Subset Sum (from Vertex Cover)
	Choosing the Right Problem
	A Frivolous Real-World Example
	Other Useful NP-hard Problems
	On Beyond Zebra

