Unless a problem specifically states otherwise, you may assume a function \(\text{RANDOM} \) that takes a positive integer \(k \) as input and returns an integer chosen uniformly and independently at random from \(\{1, 2, \ldots, k\} \) in \(O(1) \) time. For example, to flip a fair coin, you could call \(\text{RANDOM}(2) \).

1. Suppose we want to write an efficient function \(\text{RANDOMPERMUTATION}(n) \) that returns a permutation of the set \(\{1, 2, \ldots, n\} \) chosen uniformly at random.

 (a) Prove that the following algorithm is not correct. [Hint: There is a one-line proof!]

   ```
   \text{RANDOMPERMUTATION}(n):
   \begin{align*}
   &\text{for } i \leftarrow 1 \text{ to } n \\
   &\quad \pi[i] \leftarrow i \\
   &\text{for } i \leftarrow 1 \text{ to } n \\
   &\quad \text{swap } \pi[i] \leftarrow \pi[\text{RANDOM}(n)]
   \end{align*}
   ```

 (b) Consider the following implementation of \(\text{RANDOMPERMUTATION} \).

   ```
   \text{RANDOMPERMUTATION}(n):
   \begin{align*}
   &\text{for } i \leftarrow 1 \text{ to } n \\
   &\quad \pi[i] \leftarrow \text{NULL} \\
   &\text{for } i \leftarrow 1 \text{ to } n \\
   &\quad j \leftarrow \text{RANDOM}(n) \\
   &\quad \text{while } (\pi[j] \neq \text{NULL}) \\
   &\quad \quad j \leftarrow \text{RANDOM}(n) \\
   &\quad \quad \pi[j] \leftarrow i \\
   &\text{return } \pi
   \end{align*}
   ```

 Prove that this algorithm is correct and analyze its expected running time.

 (c) Describe and analyze an implementation of \(\text{RANDOMPERMUTATION} \) that runs in expected worst-case time \(O(n) \).

2. A majority tree is a complete ternary tree in which every leaf is labeled either 0 or 1. The value of a leaf is its label; the value of any internal node is the majority of the values of its three children. For example, if the tree has depth 2 and its leaves are labeled 1, 0, 0, 0, 1, 0, 1, 1, 1, the root has value 0.

\[
\begin{array}{c}
0 \\
0 \ 0 \ 1 \ 1 \ 0 \ 1 \ 1 \ 0 \ 0
\end{array}
\]

A majority tree with depth 2.
It is easy to compute value of the root of a majority tree of depth \(n \) in \(O(3^n) \) time, given the sequence of \(3^n \) leaf labels as input, using a simple post-order traversal of the tree. Prove that this simple algorithm is optimal, and then describe a better algorithm. More formally:

(a) Prove that any deterministic algorithm that computes the value of the root of a majority tree must examine every leaf. [Hint: Consider the special case \(n = 1 \). Recurse.]

(b) Describe and analyze a randomized algorithm that computes the value of the root in worst-case expected time \(O(c^n) \) for some explicit constant \(c < 3 \). [Hint: Consider the special case \(n = 1 \). Recurse.]

3. A **meldable priority queue** stores a set of keys from some totally-ordered universe (such as the integers) and supports the following operations:

- **MAKEQUEQ**: Return a new priority queue containing the empty set.
- **FINDMIN(Q)**: Return the smallest element of \(Q \) (if any).
- **DELETEMIN(Q)**: Remove the smallest element in \(Q \) (if any).
- **INSERT(Q, x)**: Insert element \(x \) into \(Q \), if it is not already there.
- **DECREASEKEY(Q, x, y)**: Replace an element \(x \in Q \) with a smaller key \(y \). (If \(y > x \), the operation fails.) The input is a pointer directly to the node in \(Q \) containing \(x \).
- **DELETE(Q, x)**: Delete the element \(x \in Q \). The input is a pointer directly to the node in \(Q \) containing \(x \).
- **MELD(Q_1, Q_2)**: Return a new priority queue containing all the elements of \(Q_1 \) and \(Q_2 \); this operation destroys \(Q_1 \) and \(Q_2 \).

A simple way to implement such a data structure is to use a heap-ordered binary tree, where each node stores a key, along with pointers to its parent and two children. **MELD** can be implemented using the following randomized algorithm:

\[
\text{MELD}(Q_1, Q_2): \\
\text{if } Q_1 \text{ is empty return } Q_2 \\
\text{if } Q_2 \text{ is empty return } Q_1 \\
\text{if } \text{key}(Q_1) > \text{key}(Q_2) \\
\quad \text{swap } Q_1 \leftrightarrow Q_2 \\
\quad \text{with probability } 1/2 \\
\quad \text{left}(Q_1) \leftarrow \text{MELD}(\text{left}(Q_1), Q_2) \\
\text{else} \\
\text{right}(Q_1) \leftarrow \text{MELD}(\text{right}(Q_1), Q_2) \\
\text{return } Q_1
\]

(a) Prove that for any heap-ordered binary trees \(Q_1 \) and \(Q_2 \) (not just those constructed by the operations listed above), the expected running time of **MELD**\((Q_1, Q_2)\) is \(O(\log n) \), where \(n = |Q_1| + |Q_2| \). [Hint: What is the expected length of a random root-to-leaf path in an \(n \)-node binary tree, where each left/right choice is made with equal probability?]

(b) Prove that **MELD**\((Q_1, Q_2)\) runs in \(O(\log n) \) time with high probability.

(c) Show that each of the other meldable priority queue operations can be implemented with at most one call to **MELD** and \(O(1) \) additional time. (It follows that each operation takes only \(O(\log n) \) time with high probability.)