This homework will not be graded.
However, material covered by this homework may appear on the final exam.

1. The **linear arrangement** problem asks, given an n-vertex directed graph as input, for an ordering v_1, v_2, \ldots, v_n of the vertices that maximizes the number of forward edges: directed edges $v_i \rightarrow v_j$ such that $i < j$. Describe and analyze an efficient 2-approximation algorithm for this problem. (Solving this problem exactly is NP-hard.)

2. Let $G = (V, E)$ be an undirected graph, each of whose vertices is colored either red, green, or blue. An edge in G is boring if its endpoints have the same color, and interesting if its endpoints have different colors. The most interesting 3-coloring is the 3-coloring with the maximum number of interesting edges, or equivalently, with the fewest boring edges. Computing the most interesting 3-coloring is NP-hard, because the standard 3-coloring problem is a special case.

 (a) Let $\text{wow}(G)$ denote the number of interesting edges in the most interesting 3-coloring of G. Suppose we independently assign each vertex in G a random color from the set \{red, green, blue\}. Prove that the expected number of interesting edges is at least $\frac{2}{3} \text{wow}(G)$.

 (b) Prove that with high probability, the expected number of interesting edges is at least $\frac{1}{2} \text{wow}(G)$. [Hint: Use Chebyshev's inequality. But wait...How do we know that we can use Chebyshev's inequality?]

 (c) Let $\text{zzz}(G)$ denote the number of boring edges in the most interesting 3-coloring of a graph G. Prove that it is NP-hard to approximate $\text{zzz}(G)$ within a factor of $10^{10^{100}}$.

3. Suppose we want to schedule a give set of n jobs on on a machine containing a row of p identical processors. Our input consists of two arrays $\text{duration}[1..n]$ and $\text{width}[1..n]$. A valid schedule consists of two arrays $\text{start}[1..n]$ and $\text{first}[1..n]$ that satisfy the following constraints:

 - $\text{start}[j] \geq 0$ for all j.
 - The jth job runs on processors $\text{first}[j]$ through $\text{first}[j] + \text{width}[j] - 1$, starting at time $\text{start}[j]$ and ending at time $\text{start}[j] + \text{duration}[j]$.
 - No processor can run more than one job simultaneously.

 The *makespan* of a schedule is the largest finishing time: $\max_j (\text{start}[j] + \text{duration}[j])$. Our goal is to compute a valid schedule with the smallest possible makespan.

 (a) Prove that this scheduling problem is NP-hard.
(b) Describe a polynomial-time algorithm that computes a 3-approximation of the minimum makespan of the given set of jobs. That is, if the minimum makespan is M, your algorithm should compute a schedule with makespan at most $3M$. You may assume that p is a power of 2. [Hint: Assume that p is a power of 2.]

(c) Describe an algorithm that computes a 3-approximation of the minimum makespan of the given set of jobs in $O(n \log n)$ time. Again, you may assume that p is a power of 2.