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7.1. Weighted Scheduling.
We have n jobs J1, J2, . . . , Jn which we need to schedule on a machine. Each job Ji has a
processing time ti and a weight wi. A schedule for the machine is an ordering of the jobs.
Given a schedule, let Ci denote the finishing time of job Ji. For example, if job Jj is the first
job in the schedule, its finishing time Cj is equal to tj; if job Jj follows job Ji in the schedule,
its finishing time Cj is equal to Ci + tj. The weighted completion time of the schedule is∑n

i=1wiCi.
(A) For the case when wi = 1 for all i, show that choosing the shortest job first is optimal.
(B) Give an efficient algorithm that finds a schedule with minimum weighted completion

time given arbitrary weights.

7.2. Minimum Spanning Tree.
Consider the following graph:

(A) Draw the edges in the Minimum Spanning Tree for the following graph.
(B) Given G and MST T , suppose you decrease the weight of an edge e not in T . Give an

algorithm to recompute the MST in O(n) time.

7.3. Bor̊uvka’s algorithm.
Bor̊uvka’s algorithm computes the MST of a graph G = (V,E), by repeatedly picking for
every vertex in the graph the cheapest edge adjacent to it. Let F ⊆ E be the set of edges
picked by this process. The Bor̊uvka’s algorithm then collapse every connected component
of (V, F ) into a single vertex. It continues this process iteratively till remaining with a single
vertex. The set of edges picked formed the required MST.
Formally, the collapsing of the graph is done as follows: An edge in the original graph that
connects two vertices in the same connected component disappears in the new graph. And
edge of the original graph that connects two different connected components, now connects
the two respective connected components. Naturally, if there are several edges connecting
the same pair of connected components, we remember only the cheapest one.
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(A) Show how to compute the collapsed graph in linear time (i.e., O(|V |+ |E|)), for any set
of edges F ⊆ E.

(B) Show that Bor̊uvka’s algorithm decreases the number of vertices by two at each iteration.
(C) Conclude that Bor̊uvka’s algorithm takes O((n+m) log n) time in the worst case. Why

is the running time not O(n log n+m)?

7.4. MST Understanding
Let G be an undirected graph with m edges and n vertices with weights on the edges.
(A) You are given a minimum spanning tree T of G. The weight of one edge e of the graph

had changed (the edge might be an edge of T ). Describe an O(n +m) time algorithm
that computes the MST of G with the updated weights.

(B) You are given a minimum spanning tree T of G. For social reasons that are still not well
understood, Vogon children just broke into your house and stole k edges of T . Describe
an algorithm to compute an MST for the graph G without these k edges. The running
time of your algorithm should be O(k log k +m).

(C) You are given a minimum spanning tree T of G. The weight of k edges of G (that are
not in T ) had been suddenly decreased. Describe an O((n + k) log n) time algorithm
that computes the MST of the new graph.

(D) You are given a graph G and a minimum spanning tree T . The max-price of a path
π is the price of the most expensive edge on π. Describe an algorithm, as efficient as
possible, for computing the minimum max-price path between two given vertices x and
y of G. (For full credit, your algorithm should work in O(n) time.)
Prove the correctness of your algorithm.

(And no, you can not use hashing in the solution for this question.)

7.5. Stock Picking.
You have a group of investor friends who are looking at n consecutive days of a given stock
at some point in the past. The days are numbered i = 1, 2, . . . , n. For each day i, they have
a price p(i) per share for the stock on that day.
For certain (possibly large) values of k, they want to study what they call k-shot strategies.
A k-shot strategy is a collection of m pairs of days (b1, s1), . . . , (bm, sm), where 0 ≤ m ≤ k
and

1 ≤ b1 < s1 < b2 < s2 · · · < bm < sm ≤ n.

We view these as a set of up to k nonoverlapping intervals, during each of which the investors
buy 1,000 shares of the stock (on day bi) and then sell it (on day si). The return of a given
k-shot strategy is simply the profit obtained from the m buy-sell transactions, namely,

1000 ·
m∑
i=1

(p(si)− p(bi)).

(A) Design an efficient algorithm that determines, given the sequence of prices, the k-shot
strategy with the maximum possible return. Since k may be relatively large, your
running time should be polynomial in both n and k.
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(B) Now, modify your algorithm to only use O(n) space.

7.6. Set cover and the greedy algorithm.
Given a set U , and a family of subsets F , the set cover problem asks for the minimum
number of sets in F that fully cover U . For example, here is an instance of set cover, with
the ground set being

U = {1, 2, 3, 4} .

and the family of sets being

F =
{
A = {1} , B = {1, 3} , C = {2, 4} , D = {2} , E = {3} , F = {4}

}
.

Valid covers of U might be A,D,E, F as A∪D ∪E ∪F = U , and it is in this case of size 4.
In this specific case, the best set cover is B,C as it is made of two sets of F .
The greedy algorithm for set cover always picks the set covering the largest number of
elements not covered yet into the set cover. Show an example, where this greedy algorithm
fails. Show an example where for a set of size n, the greedy algorithm outputs a set of size
Θ(log n), by the optimal cover is made out of two sets!
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