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26.0.1 Weighted vertex cover

26.0.2 Weighted vertex cover
26.0.2.1 Weighted vertex cover

Weighted Vertex Cover problem G = (V,E).
Each vertex v € V: cost c,.
Compute a vertex cover of minimum cost.

)
) NP-Hard

) ...unweighted Vertex Cover problem.

) ... write as an integer program (IP):

) WeV:z, =1 <= v in the vertex cover.

) Yvu € E: covered. = z,V z, true. = z,+ 1z, > 1.
)

minimize total cost: min)_ _\, z,Cy.

vev

26.0.3 Weighted vertex cover
26.0.3.1 State as IP — Relax — LP

min E Cy Ty,

veV
such that z, € {0,1} YW eV
r,+x, > 1 Yvu € E.

(26.1)



(A) ... NP-Hard. min ) e,

(B) relax the integer program. vev

(C) allow z, get values € [0, 1]. 5.t 0= Wev,

(D) z, € {0,1} replaced by 0 < z, < 1. ry <1 Wev,
The resulting LP is r,+x,>1 VvuekE.

26.0.3.2 Weighted vertex cover — rounding the LP

) Optimal solution to this LP: z, value of var X,, Vv € V.
) optimal value of LP solution is & = ) ., c,v.

) optimal integer solution: x, Vv € V and o'.

) Any valid solution to IP is valid solution for LP!
) a<al

Integral solution not better than LP.

)
) Fractional solution is better than the optimal cost.

) Q: How to turn fractional solution into a (valid!) integer solution?
)

consider vertex v and fractional value 7.
If 2, = 1 then include in solution!

)
)
) If 2, = 0 then do nOt not include in solution.

) if z, =0.9 = LP considers v as being 0.9 useful.

) The LP puts its money where its belief is...

) ... value is a function of this “belief” generated by the LP.

) Big idea: Trust LP values as guidance to usefulness of vertices.

26.0.3.4 II: How to round?

min Z - (A) Pick all vertices > threshold of usefulness
vev o according to LP.

st 0<a, WeV ®) s={v|a=1/2}.
z, <1 YW eV (C) Claim: S a valid vertex cover, and cost
Ty + 2y > 1 Yvu € E is low.

(A) Indeed, edge cover as: Vvu € E have 7, + 7, > 1.
(B) &y, 7y € (0,1)

— &, >1/20r 5, > 1/2.

= ve SorueS (or both).

—> S covers all the edges of G.



26.0.3.5 Cost of solution
Cost of S:

cS:ZcV:ZLcV§Z2ﬁ,-c\,§22f\,cv:2a§2al,

ves ves veS vev

since T, > 1/2 asv e S.
I

«' is cost of the optimal solution =
Theorem 26.0.1. The Weighted Vertex Cover problem can be 2-approximated by solving

a single LP. Assuming computing the LP takes polynomaial time, the resulting approximation
algorithm takes polynomaial time.

26.0.4 The lessons we can take away
26.0.4.1 Or not - boring, boring, boring.

(A) Weighted vertex cover is simple, but resulting approximation algorithm is non-trivial.

(B) Not aware of any other 2-approximation algorithm does not use LP. (For the weighted
case!)

(C) Solving a relaxation of an optimization problem into a LP provides us with insight.

(D) But... have to be creative in the rounding.

26.0.5 Revisiting Set Cover
26.0.5.1 Revisiting Set Cover

(A) Purpose: See new technique for an approximation algorithm.
(B) Not better than greedy algorithm already seen O(logn) approximation.

Problem: Set Cover

Instance: (S,F)

S - a set of n elements

F - a family of subsets of S, s.t. [Jycr X = 5.
Question: The set X' C F such that X’ contains as few sets as possible,
and X covers S.

26.0.5.2 Set Cover — IP & LP

min a = E Ty,

UeF
s.t. ry € {0,1} YU € 7,
Z Ty > 1 Vs e S.

UeF,seU



Next, we relax this IP into the following LP.

min o= E Ty,

Ues
0<zy <1 YU € 3}
Z Ty > 1 Vs e S.

UeF,sclU

26.0.5.3 Set Cover — IP & LP

A) LP solution: YU € ¥F, zy, and a.

B) Opt IP solution: YU € F, z{;, and o',

C) Use LP solution to guide in rounding process.
) If Zy is close to 1 then pick U to cover.

E) If zy close to 0 do not.

F) Idea: Pick U € F: randomly choose U with probability .
) Resulting family of sets G.
) Zg: indicator variable. 1if S € G.

I) Costof§Gis > gy Zs, and the expected cost is E[cost of §] = E[> gy Zs| = D s E[Zs] =

Yser Pr[S €8] =Y gpts=a<al.
(J) In expectation, G is not too expensive.
(K) Bigus problumos: § might fail to cover some element s € S.

26.0.5.4 Set Cover — Rounding continued
(A) Solution: Repeat rounding stage m = 10[lgn] = O(logn) times.
(B) n=15].

(C) G;: random cover computed in ith iteration.

(D) H = U;G;. Return H as the required cover.

26.0.5.5 The set H covers S

(A) For an element s € S, we have that
Yo a >, (26.2)
UeF,seU
(B) probability s not covered by G, (ith iteration set).
Pr [s not covered by 91}

=Pr[no U €7, s.it. s € U picked into ;]
= HUE&SEU Pr[U was not picked into 94

= [I a-zn< [ ew(-v)

UeT,seU UeF,scU
—~ 1
= exp(— ZUE&",seU *TU> <exp(—1) <3, <

N | #—

W



26.0.6 The set J{ covers S
26.0.6.1 Probability of a single item to be covered

A) Pr|s not covered by G;| < 1/2.

Covering with sets in Gy, ..., Gm.

)

) Number of iterations of rounding m = O(logn).
)

) probability s is not covered in all m iterations

(
(B
(C
(D
P, =Pr -s not covered by Gy, ... ,H’m}

r:(s¢3q)m(s¢3f2)m...m(s¢3fm)}
r:sgéf}'l} Pr s¢?2}~--Pr[s¢3"m]
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A
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26.0.7 The set H covers S

26.0.7.1 Probability of all items to be covered
(A) n=15],

(B) Probability of s € S, not to be in §; U...UTF,, is

1
Ps<ﬁ.

(C) probability one of n elements of S is not covered by H is

 Prls¢GiU...UF, =) P <n(l/n')=1/n.

seS seS

XXX
26.0.7.2 Reminder: LP for Set Cover

min o= E Ty,

ves
0<zy <1 YU € 7,
Z ry > 1 Vs e S.
UeF,seU
(A) Solve the LP.
(B) zy: Value of z, in the optimal LP solution.
(C) Fractional solution: & =", T0.
(D) Integral solution (what we want): of > a.

5



26.0.7.3 Cost of solution

(A) (S,9): Given instance of Set Cover.
(B) For U € F, zy: LP value for set U in optimal solution.
(C) For G;: Indicator variable Z, =1 <= U € G;.
(D) Expected number of sets in the ith sample:
BlIS:|) = B[S yer Z0] = Yyes BlZ0) = Yyes 70

=a<al.
(E) = Each iteration expected cost of cover < cost of optimal solution (i.e., af). XXX
(F) Expected size of the solution is

E[[H]] = E[JU:S:[] <

Z|9 |] < ma' =0(a'logn).

26.0.7.4 The result
Theorem 26.0.2. By solving an LP one can get an O(logn)-approzimation to Set Cover
by a randomized algorithm. The algorithm succeeds with high probability.

26.0.8 Minimizing congestion
26.0.8.1 Minimizing congestion by example

T2 T2
e —
T ™
l [ ) l ﬁ
L ] [ ) e —
[ ] [ ]
. o
e
o

) G: graph. n vertices.

) m;, 0; paths with the same endpoints v;,u; € V(G), for i = 1,...,¢.
) Rule I: Send one unit of flow from v; to u;.
)
)

A

(
(B
(C
(D) Rule II: Choose whether to use m; or o;.

(E) Target: No edge in G is being used too much.

Definition 26.0.3. Given a set X of paths in a graph G, the congestion of X is the
maximum number of paths in X that use the same edge.



26.0.8.3 Minimizing congestion

(A) IP = LP:

min w

s.t. x; >0 1=1,...,1,
.ngl izl,...,t,
Zmi—l—Z(l—xi)Sw Ve € E.
ecT; eco;

) Z;: value of x; in the optimal LP solution.

) w: value of w in LP solution.

) Optimal congestion must be bigger than w.

) X;: random variable one with probability z;, and zero otherwise.
) If X; =1 then use 7 to route from v; to u;.

) Otherwise use o;.

26.0.8.4 Minimizing congestion

(A) Congestion of e’is Yo = > . Xi+ >, (1 = Xj).
(B) And in expectation

ae:E[Ye} B

DX+ (- XZ-)]

ecT; eco;

=Y BX|+ Y E[0- X))

ecm; eco;

=Y &m+)y (1-&) <w

ecT; eco;
(C) w: Fractional congestion (from LP solution).

26.0.8.5 Minimizing congestion - continued

(A) Ye= Zeem Xi+ Zeéoi(l - Xl)
(B) Ye is just a sum of independent 0/1 random variables!
(C) Chernoff inequality tells us sum can not be too far from expectation!

26.0.8.6 Minimizing congestion - continued

(A) By Chernoff inequality:

2 9
Pr(Y. > (14 0)ae] < exp(—a‘f ) < exp(—%).



400
(B) Let § =/ —Int. We have that

w
62w 1
Pr [Ye > (1+ 5)049_} < exp(—T) < 7100°
(C) Ift > n'/% = V edges in graph congestion < (1 + §)w.
(D) ¢: Number of pairs, n: Number of vertices in G.

26.0.8.7 Minimizing congestion - continued

4
(A) Got: For § = \/ﬂ Int. We have
w

2/\
1
Pr [Ye > (1+ (5)0@} < exp(—éTw) < 0

(B) Play with the numbers. If ¢ = n, and w > y/n. Then, the solution has congestion larger
than the optimal solution by a factor of

V201
1+(5—1+\/—1nt<1 ?/f”,

which is of course extremely close to 1, if n is sufficiently large.

26.0.8.8 Minimizing congestion: result

Theorem 26.0.4. (A) G: Graph n vertices.

(B) (s1,t1),..., (S, t): pairs o vertices

(C) m;,0;: two different paths connecting s; to t;

(D) w: Fractional congestion at least n'/?,

(E) opt: Congestion of optimal solution.

(F) = In polynomial time (LP solving time) choose paths
(A) congestion ¥ edges: < (1 + d)opt

(B) § =/ Znt.

26.0.8.9 When the congestion is low

(A) Assume w is a constant.
(B) Can get a better bound by using the Chernoff inequality in its more general form.
(C) set 6 =clnt/Inlnt, where ¢ is a constant. For y = a., we have that

~ exp (u(5 —(1+0)In(1 + 6)))

= "Int !
=exp| —pucn _tO()




where ¢ is a constant that depends on ¢ and grows if ¢ grows.

26.0.8.10 When the congestion is low

(A) Just proved that...

(B) if the optimal congestion is O(1), then...

(C) algorithm outputs a solution with congestion O(logt/loglogt), and this holds with high
probability.

26.0.9 Reminder about Chernoff inequality

26.0.9.1 The Chernoff Bound — General Case
26.0.9.2 Chernoff inequality

Problem 26.0.5. Let X4,... X, be n independent Bernoulli trials, where
Pr[Xizl] = Di, Pr[XZ-:()] =1-—p;,
y="X,  and u:E[Y].
We are interested in bounding the probability that Y > (1 4+ 0)u.

26.0.9.3 Chernoff inequality
Theorem 26.0.6 (Chernoff inequality). For any § > 0,

o9 1
Pr[Y > (1 +5)u} < (m) .
Or in a more simplified form, for any § < 2e — 1,
Pr [Y > (1+ 5)/4 < exp(—pd®/4),
and
Pr [Y > (1+ 5)/4 < 97HI+9)
ford > 2e—1.

26.0.9.4 More Chernoff...

Theorem 26.0.7. Under the same assumptions as the theorem above, we have

Pr[Y <(1- 5)/4 < exp (—,%2).
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