NP Completeness and Cook-Levin Theorem

Lecture 23
April 21, 2015
23.1: NP
Polynomial vs. polynomial time verifiable...

1. **P**: set of decision problems that have polynomial time algorithms.
2. **NP**: set of decision problems that have polynomial time non-deterministic algorithms.

Question: What is an algorithm? Depends on the model of computation!

What is our model of computation?

Formally speaking our model of computation is Turing Machines.
Polynomial vs. polynomial time verifiable...

- **P**: set of decision problems that have polynomial time algorithms.

- **NP**: set of decision problems that have polynomial time non-deterministic algorithms.

Question: What is an algorithm? Depends on the model of computation!

What is our model of computation?

Formally speaking our model of computation is Turing Machines.
1. Polynomial vs. polynomial time verifiable...
 1. **P**: set of decision problems that have polynomial time algorithms.
 2. **NP**: set of decision problems that have polynomial time non-deterministic algorithms.

2. **Question**: What is an algorithm? Depends on the model of computation!

3. What is our model of computation?

4. Formally speaking our model of computation is Turing Machines.
Polynomial vs. polynomial time verifiable...

1. **P**: set of decision problems that have polynomial time algorithms.
2. **NP**: set of decision problems that have polynomial time non-deterministic algorithms.

Question: What is an algorithm? Depends on the model of computation!

What is our model of computation?

Formally speaking our model of computation is Turing Machines.
Polynomial vs. polynomial time verifiable...

1. **P**: set of decision problems that have polynomial time algorithms.
2. **NP**: set of decision problems that have polynomial time non-deterministic algorithms.

Question: What is an algorithm? Depends on the model of computation!

What is our model of computation?

Formally speaking our model of computation is Turing Machines.
P and NP and Turing Machines

1. **Polynomial vs. polynomial time verifiable...**
 - **P**: set of decision problems that have polynomial time algorithms.
 - **NP**: set of decision problems that have polynomial time non-deterministic algorithms.

2. **Question**: What is an algorithm? Depends on the model of computation!

3. **What is our model of computation?**

4. Formally speaking our model of computation is Turing Machines.
Polynomial vs. polynomial time verifiable...

1. **P**: set of decision problems that have polynomial time algorithms.
2. **NP**: set of decision problems that have polynomial time non-deterministic algorithms.

Question: What is an algorithm? Depends on the model of computation!

What is our model of computation?

Formally speaking our model of computation is Turing Machines.
23.1.1: Turing machines
Turing Machines: Recap

1. Infinite tape.
2. Finite state control.
3. Input at beginning of tape.
4. Special tape letter “blank” \(\square\).
5. Head can move only one cell to left or right.
Turing Machines: Recap

1. Infinite tape.
2. Finite state control.
3. Input at beginning of tape.
4. Special tape letter “blank” □.
5. Head can move only one cell to left or right.
Turing Machines: Recap

1. Infinite tape.
2. Finite state control.
3. Input at beginning of tape.
4. Special tape letter “blank” \square.
5. Head can move only one cell to left or right.
Turing Machines: Recap

1. Infinite tape.
2. Finite state control.
3. Input at beginning of tape.
4. Special tape letter “blank” ⊥.
5. Head can move only one cell to left or right.
Turing Machines: Recap

1. Infinite tape.
2. Finite state control.
3. Input at beginning of tape.
4. Special tape letter “blank” ⊙.
5. Head can move only one cell to left or right.
Turing Machines: Formally

1. A **TM** $M = (Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}})$:
 1. Q is set of states in finite control
 2. q_0 start state, q_{accept} is accept state, q_{reject} is reject state
 3. Σ is input alphabet, Γ is tape alphabet (includes \sqcup)
 4. $\delta : Q \times \Gamma \rightarrow \{L, R\} \times \Gamma \times Q$ is transition function
 1. $\delta(q, a) = (q', b, L)$ means that M in state q and head seeing a on tape will move to state q' while replacing a on tape with b and head moves left.

2. $L(M)$: language accepted by M is set of all input strings s on which M accepts; that is:
 1. **TM** is started in state q_0.
 2. Initially, the tape head is located at the first cell.
 3. The tape contain s on the tape followed by blanks.
 4. The **TM** halts in the state q_{accept}.
Turing Machines: Formally

1. A Turing Machine $M = (Q, \Sigma, \Gamma, \delta, q_0, q_{accept}, q_{reject})$:
 - Q is set of states in finite control
 - q_0 start state, q_{accept} is accept state, q_{reject} is reject state
 - Σ is input alphabet, Γ is tape alphabet (includes \square)
 - $\delta : Q \times \Gamma \rightarrow \{L, R\} \times \Gamma \times Q$ is transition function
 - $\delta(q, a) = (q', b, L)$ means that M in state q and head seeing a on tape will move to state q' while replacing a on tape with b and head moves left.

2. $L(M)$: language accepted by M is set of all input strings s on which M accepts; that is:
 - TM is started in state q_0.
 - Initially, the tape head is located at the first cell.
 - The tape contains s on the tape followed by blanks.
 - The TM halts in the state q_{accept}.
A Turing Machine $M = (Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}})$:

1. Q is set of states in finite control
2. q_0 start state, q_{accept} is accept state, q_{reject} is reject state
3. Σ is input alphabet, Γ is tape alphabet (includes \square)
4. $\delta : Q \times \Gamma \rightarrow \{L, R\} \times \Gamma \times Q$ is transition function
 - $\delta(q, a) = (q', b, L)$ means that M in state q and head seeing a on tape will move to state q' while replacing a on tape with b and head moves left.

$L(M)$: language accepted by M is set of all input strings s on which M accepts; that is:

1. TM is started in state q_0.
2. Initially, the tape head is located at the first cell.
3. The tape contain s on the tape followed by blanks.
4. The TM halts in the state q_{accept}.
A Turing Machine \(M = (Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}}) \):

1. \(Q \) is set of states in finite control
2. \(q_0 \) start state, \(q_{\text{accept}} \) is accept state, \(q_{\text{reject}} \) is reject state
3. \(\Sigma \) is input alphabet, \(\Gamma \) is tape alphabet (includes \(\sqcup \))
4. \(\delta : Q \times \Gamma \rightarrow \{L, R\} \times \Gamma \times Q \) is transition function
 - \(\delta(q, a) = (q', b, L) \) means that \(M \) in state \(q \) and head seeing \(a \) on tape will move to state \(q' \) while replacing \(a \) on tape with \(b \) and head moves left.

2. \(L(M) \): language accepted by \(M \) is set of all input strings \(s \) on which \(M \) accepts; that is:
 1. TM is started in state \(q_0 \).
 2. Initially, the tape head is located at the first cell.
 3. The tape contain \(s \) on the tape followed by blanks.
 4. The TM halts in the state \(q_{\text{accept}} \).
A Turing Machine $M = (Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}})$:

1. Q is the set of states in the finite control
2. q_0 is the start state, q_{accept} is the accept state, q_{reject} is the reject state
3. Σ is the input alphabet, Γ is the tape alphabet (includes \square)
4. $\delta : Q \times \Gamma \rightarrow \{L, R\} \times \Gamma \times Q$ is the transition function

$\delta(q, a) = (q', b, L)$ means that M in state q and head seeing a on the tape will move to state q' while replacing a on the tape with b and head moves left.

$L(M)$: language accepted by M is the set of all input strings s on which M accepts; that is:

1. M is started in state q_0.
2. Initially, the tape head is located at the first cell.
3. The tape contains s on the tape followed by blanks.
4. The M halts in the state q_{accept}.
A Turing Machine $M = (Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}})$:

1. Q is set of states in finite control
2. q_0 start state, q_{accept} is accept state, q_{reject} is reject state
3. Σ is input alphabet, Γ is tape alphabet (includes \sqcup)
4. $\delta : Q \times \Gamma \rightarrow \{L, R\} \times \Gamma \times Q$ is transition function
5. $\delta(q, a) = (q', b, L)$ means that M in state q and head seeing a on tape will move to state q' while replacing a on tape with b and head moves left.

$L(M)$: language accepted by M is set of all input strings s on which M accepts; that is:

1. TM is started in state q_0.
2. Initially, the tape head is located at the first cell.
3. The tape contain s on the tape followed by blanks.
4. The TM halts in the state q_{accept}.
A Turing Machine $M = (Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}})$:

1. Q is set of states in finite control
2. q_0 start state, q_{accept} is accept state, q_{reject} is reject state
3. Σ is input alphabet, Γ is tape alphabet (includes \square)
4. $\delta : Q \times \Gamma \rightarrow \{L, R\} \times \Gamma \times Q$ is transition function

- $\delta(q, a) = (q', b, L)$ means that M in state q and head seeing a on tape will move to state q' while replacing a on tape with b and head moves left.

$L(M)$: language accepted by M is set of all input strings s on which M accepts; that is:

1. TM is started in state q_0.
2. Initially, the tape head is located at the first cell.
3. The tape contain s on the tape followed by blanks.
4. The TM halts in the state q_{accept}.
1 Polynomial time Turing machine.

Definition

M is a polynomial time TM if there is some polynomial $p(\cdot)$ such that on all inputs w, M halts in $p(|w|)$ steps.

2 Polynomial time language.

Definition

L is a language in \mathbf{P} iff there is a polynomial time TM M such that $L = L(M)$.
1. Polynomial time Turing machine.

Definition

A polynomial time Turing machine M is a polynomial time TM if there is some polynomial $p(\cdot)$ such that on all inputs w, M halts in $p(|w|)$ steps.

2. Polynomial time language.

Definition

A language L is a language in \mathbb{P} iff there is a polynomial time Turing machine M such that $L = L(M)$.
1. Polynomial time Turing machine.

Definition

\(M \) is a polynomial time \(\text{TM} \) if there is some polynomial \(p(\cdot) \) such that on all inputs \(w \), \(M \) halts in \(p(|w|) \) steps.

2. Polynomial time language.

Definition

\(L \) is a language in \(P \) iff there is a polynomial time \(\text{TM} \) \(M \) such that \(L = L(M) \).
NP via TMs

1. NP language...

Definition

L is an NP language iff there is a non-deterministic polynomial time TM M such that $L = L(M)$.

2. Non-deterministic TM: each step has a choice of moves

 1. $\delta : Q \times \Gamma \rightarrow \mathcal{P}(Q \times \Gamma \times \{L, R\})$.

 1. Example: $\delta(q, a) = \{(q_1, b, L), (q_2, c, R), (q_3, a, R)\}$ means that M can non-deterministically choose one of the three possible moves from (q, a).

 2. $L(M)$: set of all strings s on which there exists some sequence of valid choices at each step that lead from q_0 to q_{accept}.
NP via TMs

1. **NP language...**

Definition

L is an **NP** language iff there is a *non-deterministic* polynomial time TM M such that $L = L(M)$.

2. **Non-deterministic TM**: each step has a choice of moves

 \[\delta : Q \times \Gamma \rightarrow \mathcal{P}(Q \times \Gamma \times \{L, R\}) \].

 1. Example: $\delta(q, a) = \{(q_1, b, L), (q_2, c, R), (q_3, a, R)\}$ means that M can non-deterministically choose one of the three possible moves from (q, a).

 2. $L(M)$: set of all strings s on which there exists some sequence of valid choices at each step that lead from q_0 to q_{accept}.
NP via TMs

1. **NP language...**

Definition

L is an **NP** language iff there is a *non-deterministic* polynomial time TM M such that $L = L(M)$.

2. **Non-deterministic TM**: each step has a choice of moves

 1. $\delta : Q \times \Gamma \rightarrow \mathcal{P}(Q \times \Gamma \times \{L, R\})$.

 Example: $\delta(q, a) = \{(q_1, b, L), (q_2, c, R), (q_3, a, R)\}$ means that M can non-deterministically choose one of the three possible moves from (q, a).

 2. $L(M)$: set of all strings s on which there exists some sequence of valid choices at each step that lead from q_0 to q_{accept}.
NP via TMs

1. NP language...

Definition

L is an NP language iff there is a non-deterministic polynomial time TM M such that $L = L(M)$.

2. Non-deterministic TM: each step has a choice of moves
 1. $\delta : Q \times \Gamma \rightarrow \mathcal{P}(Q \times \Gamma \times \{L, R\})$.
 Example: $\delta(q, a) = \{(q_1, b, L), (q_2, c, R), (q_3, a, R)\}$ means that M can non-deterministically choose one of the three possible moves from (q, a).

2. $L(M)$: set of all strings s on which there exists some sequence of valid choices at each step that lead from q_0 to q_{accept}.
NP via TMs

1. **NP language...**

Definition

L is an **NP** language iff there is a *non-deterministic* polynomial time **TM** M such that $L = L(M)$.

2. **Non-deterministic TM**: each step has a choice of moves

 $\delta : Q \times \Gamma \to \mathcal{P}(Q \times \Gamma \times \{L, R\})$.

 Example: $\delta(q, a) = \{(q_1, b, L), (q_2, c, R), (q_3, a, R)\}$ means that M can non-deterministically choose one of the three possible moves from (q, a).

 $L(M)$: set of all strings s on which there exists some sequence of valid choices at each step that lead from q_0 to q_{accept}
Two definition of \mathbf{NP}:
1. L is in \mathbf{NP} iff L has a polynomial time certifier $C(\cdot, \cdot)$.
2. L is in \mathbf{NP} iff L is decided by a non-deterministic polynomial time $\mathbf{TM} M$.

Equivalence...

Claim

Two definitions are equivalent.

Why?

Informal proof idea: the certificate t for C corresponds to non-deterministic choices of M and vice-versa.

In other words L is in \mathbf{NP} iff L is accepted by a \mathbf{NTM} which first guesses a proof t of length poly in input $|s|$ and then acts as a deterministic \mathbf{TM}.
Two definition of \textbf{NP}:

1. \(L\) is in \textbf{NP} iff \(L\) has a polynomial time certifier \(C(\cdot, \cdot)\).
2. \(L\) is in \textbf{NP} iff \(L\) is decided by a non-deterministic polynomial time \textbf{TM} \(M\).

Equivalence...

Claim

Two definitions are equivalent.

Why?

Informal proof idea: the certificate \(t\) for \(C\) corresponds to non-deterministic choices of \(M\) and vice-versa.

In other words \(L\) is in \textbf{NP} iff \(L\) is accepted by a \textbf{NTM} which first guesses a proof \(t\) of length poly in input \(|s|\) and then acts as a deterministic \textbf{TM}.
Non-deterministic \textbf{TM}s vs certifiers

1. Two definition of \textit{NP}:
 1. \(L\) is in \textit{NP} iff \(L\) has a polynomial time certifier \(C(\cdot, \cdot)\).
 2. \(L\) is in \textit{NP} iff \(L\) is decided by a non-deterministic polynomial time \textit{TM} \(M\).

2. Equivalence...

Claim

\textit{Two definitions are equivalent.}

3. Why?

4. Informal proof idea: the certificate \(t\) for \(C\) corresponds to non-deterministic choices of \(M\) and vice-versa.

5. In other words \(L\) is in \textit{NP} iff \(L\) is accepted by a \textit{NTM} which first guesses a proof \(t\) of length poly in input \(|s|\) and then acts as a deterministic \textit{TM}.
Non-deterministic TMs vs certifiers

1. Two definitions of NP:
 1. L is in NP iff L has a polynomial time certifier $C(\cdot, \cdot)$.
 2. L is in NP iff L is decided by a non-deterministic polynomial time TM M.

2. Equivalence...

Claim

Two definitions are equivalent.

3. Why?

4. Informal proof idea: the certificate t for C corresponds to non-deterministic choices of M and vice-versa.

5. In other words L is in NP iff L is accepted by a NTM which first guesses a proof t of length poly in input $|s|$ and then acts as a deterministic TM.
Two definition of \(\textbf{NP} \):

1. \(L \) is in \(\textbf{NP} \) iff \(L \) has a polynomial time certifier \(C(\cdot, \cdot) \).
2. \(L \) is in \(\textbf{NP} \) iff \(L \) is decided by a non-deterministic polynomial time \(\text{TM} \ M \).

Equivalence...

Claim

\textit{Two definitions are equivalent.}

Why?

Informal proof idea: the certificate \(t \) for \(C \) corresponds to non-deterministic choices of \(M \) and vice-versa.

In other words \(L \) is in \(\textbf{NP} \) iff \(L \) is accepted by a \(\text{NTM} \) which first guesses a proof \(t \) of length poly in input \(|s|\) and then acts as a deterministic \(\text{TM} \).
Non-deterministic **TM**s vs certifiers

1. Two definition of **NP**:
 1. L is in **NP** iff L has a polynomial time certifier $C(\cdot, \cdot)$.
 2. L is in **NP** iff L is decided by a non-deterministic polynomial time **TM** M.

2. Equivalence...

Claim

Two definitions are equivalent.

3. **Why?**

4. Informal proof idea: the certificate t for C corresponds to non-deterministic choices of M and vice-versa.

5. In other words L is in **NP** iff L is accepted by a **NTM** which first guesses a proof t of length poly in input $|s|$ and then acts as a *deterministic* **TM**.
Two definitions of NP:

1. \(L \) is in \(\text{NP} \) iff \(L \) has a polynomial time certifier \(C(\cdot, \cdot) \).
2. \(L \) is in \(\text{NP} \) iff \(L \) is decided by a non-deterministic polynomial time TM \(M \).

Equivalence...

Claim

Two definitions are equivalent.

Why?

Informal proof idea: the certificate \(t \) for \(C \) corresponds to non-deterministic choices of \(M \) and vice-versa.

In other words, \(L \) is in \(\text{NP} \) iff \(L \) is accepted by a NTM which first guesses a proof \(t \) of length poly in input \(|s| \) and then acts as a deterministic TM.
Non-deterministic TMs vs certifiers

1. Two definition of NP:
 1. \(L \) is in NP iff \(L \) has a polynomial time certifier \(C(\cdot, \cdot) \).
 2. \(L \) is in NP iff \(L \) is decided by a non-deterministic polynomial time TM \(M \).

2. Equivalence...

Claim

Two definitions are equivalent.

3. Why?

4. Informal proof idea: the certificate \(t \) for \(C \) corresponds to non-deterministic choices of \(M \) and vice-versa.

5. In other words \(L \) is in NP iff \(L \) is accepted by a NTM which first guesses a proof \(t \) of length poly in input \(|s| \) and then acts as a deterministic TM.
A non-deterministic machine has choices at each step and accepts a string if there exists a set of choices which lead to a final state.

Equivalently the choices can be thought of as guessing a solution and then verifying that solution. In this view all the choices are made a priori and hence the verification can be deterministic. The “guess” is the “proof” and the “verifier” is the “certifier”.

Note: Symmetry inherent in the definition of non-determinism. Strings in the language can be easily verified. No easy way to verify that a string is not in the language.
A non-deterministic machine has choices at each step and accepts a string if there exists a set of choices which lead to a final state.

Equivalently the choices can be thought of as guessing a solution and then verifying that solution. In this view all the choices are made a priori and hence the verification can be deterministic. The “guess” is the “proof” and the “verifier” is the “certifier”.

Note: Symmetry inherent in the definition of non-determinism. Strings in the language can be easily verified. No easy way to verify that a string is not in the language.
A non-deterministic machine has choices at each step and accepts a string if there exists a set of choices which lead to a final state.

Equivalently the choices can be thought of as guessing a solution and then verifying that solution. In this view all the choices are made a priori and hence the verification can be deterministic. The “guess” is the “proof” and the “verifier” is the “certifier”.

Note: Symmetry inherent in the definition of non-determinism. Strings in the language can be easily verified. No easy way to verify that a string is not in the language.
Why do we use TMs some times and RAM Model other times?

TMs are very simple: no complicated instruction set, no jumps/pointers, no explicit loops etc.

1. Simplicity is useful in proofs.
2. The “right” formal bare-bones model when dealing with subtleties.

RAM model is a closer approximation to the running time/space usage of realistic computers for reasonable problem sizes.

1. Not appropriate for certain kinds of formal proofs when algorithms can take super-polynomial time and space.
Why do we use TMs some times and RAM Model other times?

TMs are very simple: no complicated instruction set, no jumps/pointers, no explicit loops etc.

1. Simplicity is useful in proofs.
2. The “right” formal bare-bones model when dealing with subtleties.

RAM model is a closer approximation to the running time/space usage of realistic computers for reasonable problem sizes

1. Not appropriate for certain kinds of formal proofs when algorithms can take super-polynomial time and space
Algorithms: **TM**s vs **RAM** Model

1. Why do we use **TM**s some times and **RAM** Model other times?

2. **TM**s are very simple: no complicated instruction set, no jumps/pointers, no explicit loops etc.
 - Simplicity is useful in proofs.
 - The “right” formal bare-bones model when dealing with subtleties.

3. **RAM** model is a closer approximation to the running time/space usage of realistic computers for reasonable problem sizes
 - Not appropriate for certain kinds of formal proofs when algorithms can take super-polynomial time and space
Algorithms: **TM**s vs **RAM** Model

1. Why do we use **TM**s some times and **RAM** Model other times?
2. **TM**s are very simple: no complicated instruction set, no jumps/pointers, no explicit loops etc.
 1. Simplicity is useful in proofs.
 2. The “right” formal bare-bones model when dealing with subtleties.
3. **RAM** model is a closer approximation to the running time/space usage of realistic computers for reasonable problem sizes
 1. Not appropriate for certain kinds of formal proofs when algorithms can take super-polynomial time and space
23.2: Cook-Levin Theorem
23.2.1: Completeness
“Hardest” Problems

Question

1. What is the hardest problem in NP? How do we define it?

2. Towards a definition
 1. Hardest problem must be in NP.
 2. Hardest problem must be at least as “difficult” as every other problem in NP.
Question

What is the hardest problem in \(\text{NP} \)? How do we define it?

Towards a definition

1. Hardest problem must be in \(\text{NP} \).
2. Hardest problem must be at least as “difficult” as every other problem in \(\text{NP} \).
“Hardest” Problems

1. **Question**
 - What is the hardest problem in **NP**? How do we define it?

2. **Towards a definition**
 - 1. Hardest problem must be in **NP**.
 - 2. Hardest problem must be at least as “difficult” as every other problem in **NP**.
“Hardest” Problems

Question

1. What is the hardest problem in \(\textbf{NP} \)? How do we define it?

Towards a definition

1. Hardest problem must be in \(\textbf{NP} \).
2. Hardest problem must be at least as “difficult” as every other problem in \(\textbf{NP} \).
“Hardest” Problems

Question

1. What is the hardest problem in NP? How do we define it?

2. Towards a definition
 1. Hardest problem must be in NP.
 2. Hardest problem must be at least as “difficult” as every other problem in NP.
A problem X is said to be NP-Complete if

1. $X \in \text{NP}$, and

2. (Hardness) For any $Y \in \text{NP}$, $Y \leq_P X$.
Solving **NP-Complete** Problems

Proposition

Suppose X is **NP-Complete**. Then X can be solved in polynomial time if and only if $P = NP$.

Proof.

\Rightarrow Suppose X can be solved in polynomial time

1. Let $Y \in NP$. We know $Y \leq_P X$.
2. We showed that if $Y \leq_P X$ and X can be solved in polynomial time, then Y can be solved in polynomial time.
3. Thus, every problem $Y \in NP$ is such that $Y \in P$; $NP \subseteq P$.
4. Since $P \subseteq NP$, we have $P = NP$.

\Leftarrow Since $P = NP$, and $X \in NP$, we have a polynomial time algorithm for X.

Sariel (UIUC)
OLD CS473
16
Spring 2015
16 / 44
Proposition

Suppose X is NP-Complete. Then X can be solved in polynomial time if and only if $P = NP$.

Proof.

\Rightarrow Suppose X can be solved in polynomial time

1. Let $Y \in NP$. We know $Y \leq_P X$.
2. We showed that if $Y \leq_P X$ and X can be solved in polynomial time, then Y can be solved in polynomial time.
3. Thus, every problem $Y \in NP$ is such that $Y \in P$; $NP \subseteq P$.
4. Since $P \subseteq NP$, we have $P = NP$.

\Leftarrow Since $P = NP$, and $X \in NP$, we have a polynomial time algorithm for X.

Solving NP-Complete Problems
Proposition

Suppose X is NP-Complete. Then X can be solved in polynomial time if and only if $P = NP$.

Proof.

\Rightarrow Suppose X can be solved in polynomial time

1. Let $Y \in NP$. We know $Y \leq_p X$.
2. We showed that if $Y \leq_p X$ and X can be solved in polynomial time, then Y can be solved in polynomial time.
3. Thus, every problem $Y \in NP$ is such that $Y \in P$; $NP \subseteq P$.
4. Since $P \subseteq NP$, we have $P = NP$.

\Leftarrow Since $P = NP$, and $X \in NP$, we have a polynomial time algorithm for X.

Proposition

Suppose X is NP-Complete. Then X can be solved in polynomial time if and only if $P = NP$.

Proof.

\Rightarrow Suppose X can be solved in polynomial time

1. Let $Y \in NP$. We know $Y \leq_P X$.
2. We showed that if $Y \leq_P X$ and X can be solved in polynomial time, then Y can be solved in polynomial time.
3. Thus, every problem $Y \in NP$ is such that $Y \in P$; $NP \subseteq P$.
4. Since $P \subseteq NP$, we have $P = NP$.

\Leftarrow Since $P = NP$, and $X \in NP$, we have a polynomial time algorithm for X.
Proposition

Suppose X is NP-Complete. Then X can be solved in polynomial time if and only if $P = NP$.

Proof.

\Rightarrow Suppose X can be solved in polynomial time

1. Let $Y \in NP$. We know $Y \leq_P X$.
2. We showed that if $Y \leq_P X$ and X can be solved in polynomial time, then Y can be solved in polynomial time.
3. Thus, every problem $Y \in NP$ is such that $Y \in P$; $NP \subseteq P$.
4. Since $P \subseteq NP$, we have $P = NP$.

\Leftarrow Since $P = NP$, and $X \in NP$, we have a polynomial time algorithm for X.

Solving NP-Complete Problems
Proposition

Suppose X is NP-Complete. Then X can be solved in polynomial time if and only if $P = NP$.

Proof.

\Rightarrow Suppose X can be solved in polynomial time

1. Let $Y \in NP$. We know $Y \leq_p X$.
2. We showed that if $Y \leq_p X$ and X can be solved in polynomial time, then Y can be solved in polynomial time.
3. Thus, every problem $Y \in NP$ is such that $Y \in P; NP \subseteq P$.
4. Since $P \subseteq NP$, we have $P = NP$.

\Leftarrow Since $P = NP$, and $X \in NP$, we have a polynomial time algorithm for X.
NP-Hard Problems

1. NP-Hard problems:

Definition
A problem X is said to be NP-Hard if

1. (Hardness) For any $Y \in \text{NP}$, we have that $Y \leq^P X$.

2. An NP-Hard problem need not be in NP!

3. Example: Halting problem is NP-Hard (why?) but not NP-Complete.
NP-Hard problems:

Definition

A problem X is said to be **NP-Hard** if

1. (Hardness) For any $Y \in \text{NP}$, we have that $Y \leq_P X$.

2. An **NP-Hard** problem need not be in NP!

3. Example: Halting problem is **NP-Hard** (why?) but not **NP-Complete**.
NP-Hard Problems

1. **NP-Hard** problems:

 Definition

 A problem X is said to be **NP-Hard** if

 1. (Hardness) For any $Y \in \text{NP}$, we have that $Y \leq_P X$.

2. An **NP-Hard** problem need not be in NP!

3. Example: Halting problem is **NP-Hard** (why?) but not **NP-Complete**.
NP-Hard Problems

1. **NP-Hard** problems:

Definition

A problem X is said to be **NP-Hard** if

1. (Hardness) For any $Y \in \text{NP}$, we have that $Y \leq_P X$.

2. An **NP-Hard** problem need not be in **NP**!

3. **Example**: Halting problem is **NP-Hard** (why?) but not **NP-Complete**.
Consequences of proving **NP-Completeness**

1. If X is NP-Complete
 1. Since we believe $P \neq NP$,
 2. and solving X implies $P = NP$.

2. $\implies X$ is unlikely to be efficiently solvable.

3. \implies At the very least, many smart people before you have failed to find an efficient algorithm for X.

4. (This is proof by mob opinion — take with a grain of salt.)
Consequences of proving **NP-Completeness**

1. If X is **NP-Complete**

 1. Since we believe $P \neq NP$, and solving X implies $P = NP$.

 2. X is unlikely to be efficiently solvable.

 3. At the very least, many smart people before you have failed to find an efficient algorithm for X.

 4. (This is proof by mob opinion — take with a grain of salt.)
Consequences of proving **NP-Completeness**

1. If X is **NP-Complete**
 1. Since we believe $P \neq NP$,
 2. and solving X implies $P = NP$.

2. X is unlikely to be efficiently solvable.

3. At the very least, many smart people before you have failed to find an efficient algorithm for X.

4. (This is proof by mob opinion — take with a grain of salt.)
Consequences of proving \textbf{NP-Completeness}

1. If X is \textbf{NP-Complete}
 1. Since we believe $P \neq NP$,
 2. and solving X implies $P = NP$.

2. $\implies X$ is unlikely to be efficiently solvable.

3. \implies At the very least, many smart people before you have failed to find an efficient algorithm for X.

4. (This is proof by mob opinion — take with a grain of salt.)
Consequences of proving **NP-Completeness**

1. If X is **NP-Complete**
 1. Since we believe $P \neq NP$,
 2. and solving X implies $P = NP$.

2. \iff X is unlikely to be efficiently solvable.

3. \iff At the very least, many smart people before you have failed to find an efficient algorithm for X.

4. (This is proof by mob opinion — take with a grain of salt.)
Consequences of proving \textbf{NP-Completeness}

1. If X is \textbf{NP-Complete}

 1. Since we believe $P \neq NP$, and solving X implies $P = NP$.

2. $\implies X$ is unlikely to be efficiently solvable.

3. \implies At the very least, many smart people before you have failed to find an efficient algorithm for X.

4. (This is proof by mob opinion — take with a grain of salt.)
Consequences of proving \textbf{NP-Completeness}

1. If X is NP-Complete

 1. Since we believe $P \neq NP$,
 2. and solving X implies $P = NP$.

2. $\implies X$ is unlikely to be efficiently solvable.

3. \implies At the very least, many smart people before you have failed to find an efficient algorithm for X.

4. (This is proof by mob opinion — take with a grain of salt.)
23.2.2: Preliminaries
Question
Are there any problems that are **NP-Complete**?

Answer
Yes! Many, many problems are **NP-Complete**.
Circuits

Definition

A circuit is a directed \textit{acyclic} graph with

1. **Input** vertices (without incoming edges) labelled with 0, 1 or a distinct variable.
2. Every other vertex is labelled \lor, \land or \neg.
3. Single node **output** vertex with no outgoing edges.

Diagram:

- **Output:** \land
- Inputs: 1, ?, ?, 0, ?
23.2.3: Cook-Levin Theorem
Cook-Levin Theorem

Definition (Circuit Satisfaction (CSAT).)
Given a circuit as input, is there an assignment to the input variables that causes the output to get value 1?

Theorem (Cook-Levin)
CSAT is NP-Complete.

Need to show
1. CSAT is in NP.
2. every NP problem X reduces to CSAT.
CSAT: Circuit Satisfaction

Claim

CSAT is in **NP**.

1. **Certificate**: Assignment to input variables.
2. **Certifier**: Evaluate the value of each gate in a topological sort of **DAG** and check the output gate value.
Claim

CSAT is in **NP**.

1. **Certificate**: Assignment to input variables.
2. **Certifier**: Evaluate the value of each gate in a topological sort of **DAG** and check the output gate value.
CSAT is NP-hard: Idea

1. Need to show that every **NP** problem X reduces to **CSAT**.
2. What does it mean that $X \in NP$?
3. $X \in NP$ implies that there are polynomials $p()$ and $q()$ and certifier/verifier program C such that for every string s the following is true:
 1. If s is a YES instance ($s \in X$) then there is a *proof* t of length $p(|s|)$ such that $C(s, t)$ says YES.
 2. If s is a NO instance ($s \notin X$) then for every string t of length at $p(|s|)$, $C(s, t)$ says NO.
 3. $C(s, t)$ runs in time $q(|s| + |t|)$ time (hence polynomial time).
CSAT is NP-hard: Idea

1. Need to show that every NP problem X reduces to CSAT.

2. What does it mean that $X \in \text{NP}$?

3. $X \in \text{NP}$ implies that there are polynomials $p()$ and $q()$ and
certifier/verifier program C such that for every string s the
following is true:

 1. If s is a YES instance ($s \in X$) then there is a proof t of length
 $p(|s|)$ such that $C(s, t)$ says YES.
 2. If s is a NO instance ($s \not\in X$) then for every string t of length
 at $p(|s|)$, $C(s, t)$ says NO.
 3. $C(s, t)$ runs in time $q(|s| + |t|)$ time (hence polynomial time).
CSAT is NP-hard: Idea

1. Need to show that every NP problem X reduces to CSAT.

2. What does it mean that $X \in \text{NP}$?

3. $X \in \text{NP}$ implies that there are polynomials $p()$ and $q()$ and certifier/verifier program C such that for every string s the following is true:
 1. If s is a YES instance ($s \in X$) then there is a proof t of length $p(|s|)$ such that $C(s, t)$ says YES.
 2. If s is a NO instance ($s \not\in X$) then for every string t of length at least $p(|s|)$, $C(s, t)$ says NO.
 3. $C(s, t)$ runs in time $q(|s| + |t|)$ time (hence polynomial time).
CSAT is NP-hard: Idea

1. Need to show that every NP problem X reduces to CSAT.
2. What does it mean that $X \in \text{NP}$?
3. $X \in \text{NP}$ implies that there are polynomials $p()$ and $q()$ and certifier/verifier program C such that for every string s the following is true:
 - If s is a YES instance ($s \in X$) then there is a proof t of length $p(|s|)$ such that $C(s, t)$ says YES.
 - If s is a NO instance ($s \not\in X$) then for every string t of length at $p(|s|)$, $C(s, t)$ says NO.
 - $C(s, t)$ runs in time $q(|s| + |t|)$ time (hence polynomial time).
CSAT is \textbf{NP}-hard: Idea

1. Need to show that every \textbf{NP} problem X reduces to CSAT.
2. What does it mean that $X \in \textbf{NP}$?
3. $X \in \textbf{NP}$ implies that there are polynomials $p()$ and $q()$ and certifier/verifier program C such that for every string s the following is true:
 1. If s is a YES instance ($s \in X$) then there is a proof t of length $p(|s|)$ such that $C(s, t)$ says YES.
 2. If s is a NO instance ($s \not\in X$) then for every string t of length at $p(|s|)$, $C(s, t)$ says NO.
 3. $C(s, t)$ runs in time $q(|s| + |t|)$ time (hence polynomial time).
CSAT is NP-hard: Idea

1. Need to show that every NP problem X reduces to CSAT.
2. What does it mean that $X \in \text{NP}$?
3. $X \in \text{NP}$ implies that there are polynomials $p()$ and $q()$ and certifier/verifier program C such that for every string s the following is true:
 1. If s is a YES instance ($s \in X$) then there is a proof t of length $p(|s|)$ such that $C(s, t)$ says YES.
 2. If s is a NO instance ($s \not\in X$) then for every string t of length at $p(|s|)$, $C(s, t)$ says NO.
 3. $C(s, t)$ runs in time $q(|s| + |t|)$ time (hence polynomial time).
CSAT is **NP**-hard: Idea

1. Need to show that _every_ **NP** problem X reduces to **CSAT**.
2. What does it mean that $X \in \text{NP}$?
3. $X \in \text{NP}$ implies that there are polynomials $p()$ and $q()$ and certifier/verifier program C such that for every string s the following is true:
 1. If s is a YES instance ($s \in X$) then there is a _proof_ t of length $p(|s|)$ such that $C(s, t)$ says YES.
 2. If s is a NO instance ($s \not\in X$) then for every string t of length at $p(|s|)$, $C(s, t)$ says NO.
 3. $C(s, t)$ runs in time $q(|s| + |t|)$ time (hence polynomial time).
Reducing X to CSAT

1. X is in NP means we have access to $p(), q(), C(\cdot, \cdot)$.
2. What is $C(\cdot, \cdot)$? It is a program or equivalently a Turing Machine!
3. How are $p()$ and $q()$ given? As numbers (coefficients and powers).
4. Example: if 3 is given then $p(n) = n^3$.
5. Thus an NP problem is essentially a three tuple $\langle p, q, C \rangle$ where C is either a program or a TM.

Sariel (UIUC) OLD CS473 26 Spring 2015 26 / 44
Reducing X to CSAT

1. X is in \textbf{NP} means we have access to $p(), q(), C(\cdot, \cdot)$.
2. What is $C(\cdot, \cdot)$? It is a program or equivalently a Turing Machine!
3. How are $p()$ and $q()$ given? As numbers (coefficients and powers).
4. Example: if 3 is given then $p(n) = n^3$.
5. Thus an \textbf{NP} problem is essentially a three tuple $\langle p, q, C \rangle$ where C is either a program or a \textbf{TM}.
Reducing X to CSAT

1. X is in **NP** means we have access to $p(), q(), C(\cdot, \cdot)$.

2. What is $C(\cdot, \cdot)$? It is a program or equivalently a Turing Machine!

3. How are $p()$ and $q()$ given? As numbers (coefficients and powers).

4. Example: if 3 is given then $p(n) = n^3$.

5. Thus an **NP** problem is essentially a three tuple $\langle p, q, C \rangle$ where C is either a program or a TM.
Reducing X to CSAT

1. X is in NP means we have access to $p(), q(), C(\cdot, \cdot)$.

2. What is $C(\cdot, \cdot)$? It is a program or equivalently a Turing Machine!

3. How are $p()$ and $q()$ given? As numbers (coefficients and powers).

4. Example: if 3 is given then $p(n) = n^3$.

5. Thus an NP problem is essentially a three tuple $\langle p, q, C \rangle$ where C is either a program or a TM.
Reducing X to **CSAT**

1. X is in **NP** means we have access to $p(), q(), C(\cdot, \cdot)$.

2. What is $C(\cdot, \cdot)$? It is a program or equivalently a Turing Machine!

3. How are $p()$ and $q()$ given? As numbers (coefficients and powers).

4. Example: if 3 is given then $p(n) = n^3$.

5. Thus an NP problem is essentially a three tuple $\langle p, q, C \rangle$ where C is either a program or a TM.
Reducing \(X \) to \textbf{CSAT}

1. \(X \) is in \textbf{NP} means we have access to \(p() \), \(q() \), \(C(\cdot, \cdot) \).

2. What is \(C(\cdot, \cdot) \)? It is a program or equivalently a Turing Machine!

3. How are \(p() \) and \(q() \) given? As numbers (coefficients and powers).

4. Example: if 3 is given then \(p(n) = n^3 \).

5. Thus an \textbf{NP} problem is essentially a three tuple \(\langle p, q, C \rangle \) where \(C \) is either a program or a \textbf{TM}.
Reducing \textbf{X} to \textbf{CSAT}

1. Thus an \textbf{NP} problem is essentially a three tuple $\langle p, q, C \rangle$ where C is either a program or \textbf{TM}.

2. Problem \textbf{X}: Given string s, is $s \in X$?

3. Same as the following: is there a proof t of length $p(|s|)$ such that $C(s, t)$ says YES.

4. How do we reduce \textbf{X} to \textbf{CSAT}? Need an algorithm A that
 1. takes s (and $\langle p, q, C \rangle$) and creates a circuit G in polynomial time in $|s|$ (note that $\langle p, q, C \rangle$ are fixed).
 2. G is satisfiable if and only if there is a proof t such that $C(s, t)$ says YES.
Thus an **NP** problem is essentially a three tuple $\langle p, q, C \rangle$ where C is either a program or **TM**.

Problem X: Given string s, is $s \in X$?

Same as the following: is there a proof t of length $p(|s|)$ such that $C(s, t)$ says YES.

How do we reduce X to **CSAT**? Need an algorithm A that

1. takes s (and $\langle p, q, C \rangle$) and creates a circuit G in polynomial time in $|s|$ (note that $\langle p, q, C \rangle$ are fixed).
2. G is satisfiable if and only if there is a proof t such that $C(s, t)$ says YES.
Reducing X to CSAT

1. Thus an **NP** problem is essentially a three tuple $\langle p, q, C \rangle$ where C is either a program or TM.

2. **Problem X**: Given string s, is $s \in X$?

3. Same as the following: is there a proof t of length $p(|s|)$ such that $C(s, t)$ says YES.

4. How do we reduce X to CSAT? Need an algorithm A that

 1. takes s (and $\langle p, q, C \rangle$) and creates a circuit G in polynomial time in $|s|$ (note that $\langle p, q, C \rangle$ are fixed).

 2. G is satisfiable if and only if there is a proof t such that $C(s, t)$ says YES.
Thus an \textbf{NP} problem is essentially a three tuple $\langle p, q, C \rangle$ where C is either a program or \textit{TM}.

Problem X: Given string s, is $s \in X$?

Same as the following: is there a proof t of length $p(|s|)$ such that $C(s, t)$ says \textbf{YES}.

How do we reduce \textbf{X} to \textbf{CSAT}? Need an algorithm \mathcal{A} that

1. takes s (and $\langle p, q, C \rangle$) and creates a circuit G in polynomial time in $|s|$ (note that $\langle p, q, C \rangle$ are fixed).
2. G is satisfiable if and only if there is a proof t such that $C(s, t)$ says \textbf{YES}.
Reducing \(X \) to \(\text{CSAT} \)

1. Thus an \(\text{NP} \) problem is essentially a three tuple \(\langle p, q, C \rangle \) where \(C \) is either a program or \(\text{TM} \).

2. Problem \(X \): Given string \(s \), is \(s \in X \)?

3. Same as the following: is there a proof \(t \) of length \(p(|s|) \) such that \(C(s, t) \) says YES.

4. How do we reduce \(X \) to \(\text{CSAT} \)? Need an algorithm \(A \) that

 1. takes \(s \) (and \(\langle p, q, C \rangle \)) and creates a circuit \(G \) in polynomial time in \(|s| \) (note that \(\langle p, q, C \rangle \) are fixed).

 2. \(G \) is satisfiable if and only if there is a proof \(t \) such that \(C(s, t) \) says YES.
Reducing \(X \) to \(\text{CSAT} \)

1. Thus an \(\text{NP} \) problem is essentially a three tuple \(\langle p, q, C \rangle \) where \(C \) is either a program or \(\text{TM} \).

2. Problem \(X \): Given string \(s \), is \(s \in X? \)

3. Same as the following: is there a proof \(t \) of length \(p(|s|) \) such that \(C(s, t) \) says YES.

4. How do we reduce \(X \) to \(\text{CSAT} \)? Need an algorithm \(A \) that
 1. takes \(s \) (and \(\langle p, q, C \rangle \)) and creates a circuit \(G \) in polynomial time in \(|s| \) (note that \(\langle p, q, C \rangle \) are fixed).
 2. \(G \) is satisfiable if and only if there is a proof \(t \) such that \(C(s, t) \) says YES.
Reducing X to CSAT

1. Thus an \textbf{NP} problem is essentially a three tuple $\langle p, q, C \rangle$ where C is either a program or TM.

2. Problem X: Given string s, is $s \in X$?

3. Same as the following: is there a proof t of length $p(|s|)$ such that $C(s, t)$ says YES.

4. How do we reduce X to CSAT? Need an algorithm A that
 1. takes s (and $\langle p, q, C \rangle$) and creates a circuit G in polynomial time in $|s|$ (note that $\langle p, q, C \rangle$ are fixed).
 2. G is satisfiable if and only if there is a proof t such that $C(s, t)$ says YES.
Reducing X to CSAT

1. Thus an **NP** problem is essentially a three tuple $\langle p, q, C \rangle$ where C is either a program or **TM**.

2. **Problem X**: Given string s, is $s \in X$?

3. Same as the following: is there a proof t of length $p(|s|)$ such that $C(s, t)$ says YES.

4. How do we reduce X to **CSAT**? Need an algorithm A that

 1. takes s (and $\langle p, q, C \rangle$) and creates a circuit G in polynomial time in $|s|$ (note that $\langle p, q, C \rangle$ are fixed).
 2. G is satisfiable if and only if there is a proof t such that $C(s, t)$ says YES.
Reducing X to CSAT

1. How do we reduce X to CSAT?
2. Need an algorithm \mathcal{A} that
 1. takes s (and $\langle p, q, C \rangle$) and creates a circuit G in polynomial time in $|s|$ (note that $\langle p, q, C \rangle$ are fixed).
 2. G is satisfiable if and only if there is a proof t such that $C(s, t)$ says YES
3. Simple but Big Idea: Programs are essentially the same as Circuits!
 1. Convert $C(s, t)$ into a circuit G with t as unknown inputs (rest is known including s)
 2. We know that $|t| = p(|s|)$ so express boolean string t as $p(|s|)$ variables t_1, t_2, \ldots, t_k where $k = p(|s|)$.
 3. Asking if there is a proof t that makes $C(s, t)$ say YES is same as whether there is an assignment of values to “unknown” variables t_1, t_2, \ldots, t_k that will make G evaluate to true/YES.
Reducing X to CSAT

1. How do we reduce X to CSAT?

2. Need an algorithm A that
 1. takes s (and $\langle p, q, C \rangle$) and creates a circuit G in polynomial time in $|s|$ (note that $\langle p, q, C \rangle$ are fixed).
 2. G is satisfiable if and only if there is a proof t such that $C(s, t)$ says YES

3. Simple but Big Idea: Programs are essentially the same as Circuits!
 1. Convert $C(s, t)$ into a circuit G with t as unknown inputs (rest is known including s)
 2. We know that $|t| = p(|s|)$ so express boolean string t as $p(|s|)$ variables t_1, t_2, \ldots, t_k where $k = p(|s|)$.
 3. Asking if there is a proof t that makes $C(s, t)$ say YES is same as whether there is an assignment of values to “unknown” variables t_1, t_2, \ldots, t_k that will make G evaluate to true/YES.
Reducing X to CSAT

1. How do we reduce X to CSAT?
2. Need an algorithm \mathcal{A} that

 1. takes s (and $\langle p, q, C \rangle$) and creates a circuit G in polynomial time in $|s|$ (note that $\langle p, q, C \rangle$ are fixed).
 2. G is satisfiable if and only if there is a proof t such that $C(s, t)$ says YES

3. Simple but Big Idea: Programs are essentially the same as Circuits!

 1. Convert $C(s, t)$ into a circuit G with t as unknown inputs (rest is known including s)
 2. We know that $|t| = p(|s|)$ so express boolean string t as $p(|s|)$ variables t_1, t_2, \ldots, t_k where $k = p(|s|)$.
 3. Asking if there is a proof t that makes $C(s, t)$ say YES is same as whether there is an assignment of values to “unknown” variables t_1, t_2, \ldots, t_k that will make G evaluate to true/YES.
Reducing X to CSAT

1. How do we reduce X to CSAT?

2. Need an algorithm A that
 1. takes s (and $\langle p, q, C \rangle$) and creates a circuit G in polynomial time in $|s|$ (note that $\langle p, q, C \rangle$ are fixed).
 2. G is satisfiable if and only if there is a proof t such that $C(s, t)$ says YES

3. Simple but Big Idea: Programs are essentially the same as Circuits!
 1. Convert $C(s, t)$ into a circuit G with t as unknown inputs (rest is known including s)
 2. We know that $|t| = p(|s|)$ so express boolean string t as $p(|s|)$ variables t_1, t_2, \ldots, t_k where $k = p(|s|)$.
 3. Asking if there is a proof t that makes $C(s, t)$ say YES is same as whether there is an assignment of values to “unknown” variables t_1, t_2, \ldots, t_k that will make G evaluate to true/YES.
Reducing X to CSAT

1. How do we reduce X to CSAT?
2. Need an algorithm \mathcal{A} that
 1. takes s (and $\langle p, q, C \rangle$) and creates a circuit G in polynomial time in $|s|$ (note that $\langle p, q, C \rangle$ are fixed).
 2. G is satisfiable if and only if there is a proof t such that $C(s, t)$ says YES.

3. Simple but Big Idea: Programs are essentially the same as Circuits!
 1. Convert $C(s, t)$ into a circuit G with t as unknown inputs (rest is known including s).
 2. We know that $|t| = p(|s|)$ so express boolean string t as $p(|s|)$ variables t_1, t_2, \ldots, t_k where $k = p(|s|)$.
 3. Asking if there is a proof t that makes $C(s, t)$ say YES is same as whether there is an assignment of values to “unknown” variables t_1, t_2, \ldots, t_k that will make G evaluate to true/YES.
Reducing X to CSAT

1. How do we reduce X to CSAT?
2. Need an algorithm A that
 1. takes s (and $\langle p, q, C \rangle$) and creates a circuit G in polynomial time in $|s|$ (note that $\langle p, q, C \rangle$ are fixed).
 2. G is satisfiable if and only if there is a proof t such that $C(s, t)$ says YES
3. Simple but Big Idea: Programs are essentially the same as Circuits!
 1. Convert $C(s, t)$ into a circuit G with t as unknown inputs (rest is known including s)
 2. We know that $|t| = p(|s|)$ so express boolean string t as $p(|s|)$ variables t_1, t_2, \ldots, t_k where $k = p(|s|)$.
 3. Asking if there is a proof t that makes $C(s, t)$ say YES is same as whether there is an assignment of values to “unknown” variables t_1, t_2, \ldots, t_k that will make G evaluate to true/YES.
Reducing X to CSAT

1. How do we reduce X to CSAT?
2. Need an algorithm A that
 1. takes s (and $\langle p, q, C \rangle$) and creates a circuit G in polynomial time in $|s|$ (note that $\langle p, q, C \rangle$ are fixed).
 2. G is satisfiable if and only if there is a proof t such that $C(s, t)$ says YES
3. Simple but Big Idea: Programs are essentially the same as Circuits!
 1. Convert $C(s, t)$ into a circuit G with t as unknown inputs (rest is known including s)
 2. We know that $|t| = p(|s|)$ so express boolean string t as $p(|s|)$ variables t_1, t_2, \ldots, t_k where $k = p(|s|)$.
 3. Asking if there is a proof t that makes $C(s, t)$ say YES is same as whether there is an assignment of values to “unknown” variables t_1, t_2, \ldots, t_k that will make G evaluate to true/YES.
Reducing X to CSAT

1. How do we reduce X to CSAT?
2. Need an algorithm A that
 1. takes s (and $⟨p, q, C⟩$) and creates a circuit G in polynomial time in $|s|$ (note that $⟨p, q, C⟩$ are fixed).
 2. G is satisfiable if and only if there is a proof t such that $C(s, t)$ says YES
3. Simple but Big Idea: Programs are essentially the same as Circuits!
 1. Convert $C(s, t)$ into a circuit G with t as unknown inputs (rest is known including s)
 2. We know that $|t| = p(|s|)$ so express boolean string t as $p(|s|)$ variables t_1, t_2, \ldots, t_k where $k = p(|s|)$.
 3. Asking if there is a proof t that makes $C(s, t)$ say YES is same as whether there is an assignment of values to “unknown” variables t_1, t_2, \ldots, t_k that will make G evaluate to true/YES.
Reducing X to CSAT

1. How do we reduce X to CSAT?
2. Need an algorithm A that
 1. takes s (and $\langle p, q, C \rangle$) and creates a circuit G in polynomial time in $|s|$ (note that $\langle p, q, C \rangle$ are fixed).
 2. G is satisfiable if and only if there is a proof t such that $C(s, t)$ says YES
3. Simple but Big Idea: Programs are essentially the same as Circuits!
 1. Convert $C(s, t)$ into a circuit G with t as unknown inputs (rest is known including s)
 2. We know that $|t| = p(|s|)$ so express boolean string t as $p(|s|)$ variables t_1, t_2, \ldots, t_k where $k = p(|s|)$.
 3. Asking if there is a proof t that makes $C(s, t)$ say YES is same as whether there is an assignment of values to “unknown” variables t_1, t_2, \ldots, t_k that will make G evaluate to true/YES.
Example: **Independent Set**

1. **Problem:** Does $G = (V, E)$ have an **Independent Set** of size $\geq k$?

 - **Certificate:** Set $S \subseteq V$.
 - **Certifier:** Check $|S| \geq k$ and no pair of vertices in S is connected by an edge.

2. Formally, why is **Independent Set** in NP?
Example: **Independent Set**

1. **Problem:** Does $G = (V, E)$ have an **Independent Set** of size $\geq k$?

 1. **Certificate:** Set $S \subseteq V$.
 2. **Certifier:** Check $|S| \geq k$ and no pair of vertices in S is connected by an edge.

2. Formally, why is **Independent Set** in **NP**?
Example: **Independent Set**

Formally why is **Independent Set** in **NP**?

1. **Input:** <

 \(n, y_{1,1}, y_{1,2}, \ldots, y_{1,n}, y_{2,1}, \ldots, y_{2,n}, \ldots, y_{n,1}, \ldots, y_{n,n}, k > \)

 encodes < \(G, k > \).

 - \(n \) is number of vertices in \(G \).
 - \(y_{i,j} \) is a bit which is 1 if edge \((i, j)\) is in \(G \) and 0 otherwise (adjacency matrix representation).
 - \(k \) is size of independent set.

2. **Certificate:** \(t = t_1 t_2 \ldots t_n \). Interpretation is that \(t_i \) is 1 if vertex \(i \) is in the independent set, 0 otherwise.
Example: Independent Set

Formally why is Independent Set in NP?

1. Input: \(<n, y_{1,1}, y_{1,2}, \ldots, y_{1,n}, y_{2,1}, \ldots, y_{2,n}, \ldots, y_{n,1}, \ldots, y_{n,n}, k>\)
 encodes \(<G, k>\).

 1. \(n\) is number of vertices in \(G\)
 2. \(y_{i,j}\) is a bit which is 1 if edge \((i, j)\) is in \(G\) and 0 otherwise
 (adjacency matrix representation)
 3. \(k\) is size of independent set.

2. Certificate: \(t = t_1 t_2 \ldots t_n\). Interpretation is that \(t_i\) is 1 if
 vertex \(i\) is in the independent set, 0 otherwise.
Example: **Independent Set**

Formally why is **Independent Set** in **NP**?

1. **Input:**

 \(< n, y_{1,1}, y_{1,2}, \ldots, y_{1,n}, y_{2,1}, \ldots, y_{2,n}, \ldots, y_{n,1}, \ldots, y_{n,n}, k >\)

 encodes \(\langle G, k \rangle\).

 1. \(n\) is number of vertices in \(G\)

 2. \(y_{i,j}\) is a bit which is \(1\) if edge \((i, j)\) is in \(G\) and \(0\) otherwise (adjacency matrix representation)

 3. \(k\) is size of independent set.

2. **Certificate:**

 \(t = t_1 t_2 \ldots t_n\). Interpretation is that \(t_i\) is \(1\) if vertex \(i\) is in the independent set, \(0\) otherwise.
Example: Independence Set

Formally why is Independent Set in NP?

1. Input: \(<n, y_{1,1}, y_{1,2}, \ldots, y_{1,n}, y_{2,1}, \ldots, y_{2,n}, \ldots, y_{n,1}, \ldots, y_{n,n}, k>\)
 encodes \(<G, k>\).

 1. \(n\) is number of vertices in \(G\).
 2. \(y_{i,j}\) is a bit which is 1 if edge \((i,j)\) is in \(G\) and 0 otherwise
 (adjacency matrix representation).
 3. \(k\) is size of independent set.

2. Certificate: \(t = t_1 t_2 \ldots t_n\). Interpretation is that \(t_i\) is 1 if vertex \(i\) is in the independent set, 0 otherwise.
Example: **Independent Set**

Formally why is **Independent Set** in NP?

1. **Input:** \(< n, y_{1,1}, y_{1,2}, \ldots, y_{1,n}, y_{2,1}, \ldots, y_{2,n}, \ldots, y_{n,1}, \ldots, y_{n,n}, k >\) encodes \(< G, k >\).
 1. \(n\) is number of vertices in \(G\).
 2. \(y_{i,j}\) is a bit which is 1 if edge \((i, j)\) is in \(G\) and 0 otherwise (adjacency matrix representation).
 3. \(k\) is size of independent set.

2. **Certificate:** \(t = t_1 t_2 \ldots t_n\). Interpretation is that \(t_i\) is 1 if vertex \(i\) is in the independent set, 0 otherwise.
Example: **Independent Set**

Formally why is **Independent Set** in **NP**?

1. **Input:**
 \[<n, y_{1,1}, y_{1,2}, \ldots, y_{1,n}, y_{2,1}, \ldots, y_{2,n}, \ldots, y_{n,1}, \ldots, y_{n,n}, k>\]
 encodes \(<G, k> \).

 1. \(n \) is number of vertices in \(G \)
 2. \(y_{i,j} \) is a bit which is 1 if edge \((i, j)\) is in \(G \) and 0 otherwise
 (adjacency matrix representation)
 3. \(k \) is size of independent set.

2. **Certificate:** \(t = t_1 t_2 \ldots t_n \). Interpretation is that \(t_i \) is 1 if vertex \(i \) is in the independent set, 0 otherwise.
Certifier for **Independent Set**

Certifier $C(s, t)$ for **Independent Set**:

\[
\begin{align*}
\text{if } (t_1 + t_2 + \ldots + t_n < k) & \text{ then} \\
& \quad \text{return NO} \\
\text{else} & \\
& \quad \text{for each } (i, j) \text{ do} \\
& \quad \quad \text{if } (t_i \land t_j \land y_{i,j}) & \text{ then} \\
& \quad \quad & \quad \text{return NO} \\
\text{return YES}
\end{align*}
\]
Example: Independent Set

A certifier circuit for Independent Set

Figure: Graph G with $k = 2$
Example: Independent Set

A certifier circuit for Independent Set

Figure: Graph G with $k = 2$

Encoding the graph
Example: Independent Set

A certifier circuit for Independent Set

Figure: Graph G with $k = 2$

Both ends of an edge

Two nodes?

Encoding the graph

Encoding the independent set
Consider “program” A that takes $f(|s|)$ steps on input string s.

Question: What computer is the program running on and what does step mean?

Real computers difficult to reason with mathematically because

1. instruction set is too rich
2. pointers and control flow jumps in one step
3. assumption that pointer to code fits in one word

Turing Machines

1. simpler model of computation to reason with
2. can simulate real computers with polynomial slow down
3. all moves are local (head moves only one cell)
Consider “program” \(A \) that takes \(f(|s|) \) steps on input string \(s \).

Question: What computer is the program running on and what does \textit{step} mean?

Real computers difficult to reason with mathematically because

1. instruction set is too rich
2. pointers and control flow jumps in one step
3. assumption that pointer to code fits in one word

Turing Machines

1. simpler model of computation to reason with
2. can simulate real computers with \textit{polynomial} slow down
3. all moves are \textit{local} (head moves only one cell)
Consider “program” A that takes $f(|s|)$ steps on input string s.

Question: What computer is the program running on and what does step mean?

Real computers difficult to reason with mathematically because:
1. instruction set is too rich
2. pointers and control flow jumps in one step
3. assumption that pointer to code fits in one word

Turing Machines
1. simpler model of computation to reason with
2. can simulate real computers with polynomial slow down
3. all moves are local (head moves only one cell)
Consider “program” A that takes $f(|s|)$ steps on input string s.

Question: What computer is the program running on and what does *step* mean?

Real computers difficult to reason with mathematically because

1. instruction set is too rich
2. pointers and control flow jumps in one step
3. assumption that pointer to code fits in one word

Turing Machines

1. simpler model of computation to reason with
2. can simulate real computers with *polynomial* slow down
3. all moves are *local* (head moves only one cell)
Consider “program” A that takes $f(|s|)$ steps on input string s.

Question: What computer is the program running on and what does *step* mean?

Real computers difficult to reason with mathematically because

1. instruction set is too rich
2. pointers and control flow jumps in one step
3. assumption that pointer to code fits in one word

Turing Machines

1. simpler model of computation to reason with
2. can simulate real computers with *polynomial* slow down
3. all moves are *local* (head moves only one cell)
Consider “program” A that takes $f(|s|)$ steps on input string s.

Question: What computer is the program running on and what does *step* mean?

Real computers difficult to reason with mathematically because

1. instruction set is too rich
2. pointers and control flow jumps in one step
3. assumption that pointer to code fits in one word

Turing Machines

1. simpler model of computation to reason with
2. can simulate real computers with *polynomial* slow down
3. all moves are *local* (head moves only one cell)
Consider “program” A that takes $f(|s|)$ steps on input string s.

Question: What computer is the program running on and what does \textit{step} mean?

Real computers difficult to reason with mathematically because

1. instruction set is too rich
2. pointers and control flow jumps in one step
3. assumption that pointer to code fits in one word

Turing Machines

1. simpler model of computation to reason with
2. can simulate real computers with \textit{polynomial} slow down
3. all moves are \textit{local} (head moves only one cell)
Consider “program” A that takes $f(|s|)$ steps on input string s.

Question: What computer is the program running on and what does step mean?

Real computers difficult to reason with mathematically because

1. instruction set is too rich
2. pointers and control flow jumps in one step
3. assumption that pointer to code fits in one word

Turing Machines

1. simpler model of computation to reason with
2. can simulate real computers with polynomial slow down
3. all moves are local (head moves only one cell)
Certifiers that at **TMs**

1. Assume $C(\cdot, \cdot)$ is a (deterministic) Turing Machine M
2. Problem: Given M, input s, p, q decide if there is a proof t of length $p(|s|)$ such that M on s, t will halt in $q(|s|)$ time and say YES.
3. There is an algorithm A that can reduce above problem to CSAT mechanically as follows.
 1. A first computes $p(|s|)$ and $q(|s|)$.
 2. Knows that M can use at most $q(|s|)$ memory/tape cells
 3. Knows that M can run for at most $q(|s|)$ time
 4. Simulates the evolution of the state of M and memory over time using a big circuit.
1. Assume $C(\cdot, \cdot)$ is a (deterministic) Turing Machine M

2. Problem: Given M, input s, p, q decide if there is a proof t of length $p(|s|)$ such that M on s, t will halt in $q(|s|)$ time and say YES.

3. There is an algorithm A that can reduce above problem to CSAT mechanically as follows.
 1. A first computes $p(|s|)$ and $q(|s|)$.
 2. Knows that M can use at most $q(|s|)$ memory/tape cells
 3. Knows that M can run for at most $q(|s|)$ time
 4. Simulates the evolution of the state of M and memory over time using a big circuit.
Certifiers that at TMs

1. Assume $C(\cdot, \cdot)$ is a (deterministic) Turing Machine M

2. **Problem:** Given M, input s, p, q decide if there is a proof t of length $p(|s|)$ such that M on s, t will halt in $q(|s|)$ time and say YES.

3. There is an algorithm A that can reduce above problem to CSAT mechanically as follows.
 1. A first computes $p(|s|)$ and $q(|s|)$.
 2. Knows that M can use at most $q(|s|)$ memory/tape cells.
 3. Knows that M can run for at most $q(|s|)$ time.
 4. Simulates the evolution of the state of M and memory over time using a big circuit.
Assume $C(\cdot, \cdot)$ is a (deterministic) Turing Machine M

Problem: Given M, input s, p, q decide if there is a proof t of length $p(|s|)$ such that M on s, t will halt in $q(|s|)$ time and say YES.

There is an algorithm A that can reduce above problem to CSAT mechanically as follows.

1. A first computes $p(|s|)$ and $q(|s|)$.
2. Knows that M can use at most $q(|s|)$ memory/tape cells.
3. Knows that M can run for at most $q(|s|)$ time.
4. Simulates the evolution of the state of M and memory over time using a big circuit.
Certifiers that at **TM**s

1. Assume \(C(\cdot, \cdot) \) is a (deterministic) Turing Machine \(M \)

2. **Problem:** Given \(M \), input \(s, p, q \) decide if there is a proof \(t \) of length \(p(|s|) \) such that \(M \) on \(s, t \) will halt in \(q(|s|) \) time and say YES.

3. There is an algorithm \(A \) that can reduce above problem to **CSAT** mechanically as follows.

 - 1. \(A \) first computes \(p(|s|) \) and \(q(|s|) \).
 - 2. Knows that \(M \) can use at most \(q(|s|) \) memory/tape cells
 - 3. Knows that \(M \) can run for at most \(q(|s|) \) time
 - 4. Simulates the evolution of the state of \(M \) and memory over time using a big circuit.
Certifiers that at TMs

1. Assume $C(\cdot, \cdot)$ is a (deterministic) Turing Machine M

2. **Problem:** Given M, input s, p, q decide if there is a proof t of length $p(|s|)$ such that M on s, t will halt in $q(|s|)$ time and say YES.

3. There is an algorithm A that can reduce above problem to CSAT mechanically as follows.
 1. A first computes $p(|s|)$ and $q(|s|)$.
 2. Knows that M can use at most $q(|s|)$ memory/tape cells
 3. Knows that M can run for at most $q(|s|)$ time
 4. Simulates the evolution of the state of M and memory over time using a big circuit.
Assume $C(\cdot, \cdot)$ is a (deterministic) Turing Machine M

Problem: Given M, input s, p, q decide if there is a proof t of length $p(|s|)$ such that M on s, t will halt in $q(|s|)$ time and say YES.

There is an algorithm A that can reduce above problem to CSAT mechanically as follows.

1. A first computes $p(|s|)$ and $q(|s|)$.
2. Knows that M can use at most $q(|s|)$ memory/tape cells
3. Knows that M can run for at most $q(|s|)$ time
4. Simulates the evolution of the state of M and memory over time using a big circuit.
Certifiers that at **TMs**

1. Assume \(C(\cdot, \cdot) \) is a (deterministic) Turing Machine \(M \)

2. **Problem:** Given \(M \), input \(s, p, q \) decide if there is a proof \(t \) of length \(p(|s|) \) such that \(M \) on \(s, t \) will halt in \(q(|s|) \) time and say YES.

3. There is an algorithm \(A \) that can reduce above problem to **CSAT** mechanically as follows.
 1. \(A \) first computes \(p(|s|) \) and \(q(|s|) \).
 2. Knows that \(M \) can use at most \(q(|s|) \) memory/tape cells
 3. Knows that \(M \) can run for at most \(q(|s|) \) time
 4. Simulates the evolution of the state of \(M \) and memory over time using a big circuit.
1. Think of M’s state at time ℓ as a string $x^{\ell} = x_1 x_2 \ldots x_k$ where each $x_i \in \{0, 1, B\} \times Q \cup \{q_{-1}\}$.

2. At time 0 the state of M consists of input string s a guess t (unknown variables) of length $p(|s|)$ and rest $q(|s|)$ blank symbols.

3. At time $q(|s|)$ we wish to know if M stops in q_{accept} with say all blanks on the tape.

4. We write a circuit C_ℓ which captures the transition of M from time ℓ to time $\ell + 1$.

5. Composition of the circuits for all times 0 to $q(|s|)$ gives a big (still poly) sized circuit C.

6. The final output of C should be true if and only if the entire state of M at the end leads to an accept state.
Think of M’s state at time ℓ as a string $x^\ell = x_1 x_2 \ldots x_k$ where each $x_i \in \{0, 1, B\} \times Q \cup \{q_{-1}\}$.

At time 0 the state of M consists of input string s a guess t (unknown variables) of length $p(|s|)$ and rest $q(|s|)$ blank symbols.

At time $q(|s|)$ we wish to know if M stops in q_{accept} with say all blanks on the tape.

We write a circuit C_ℓ which captures the transition of M from time ℓ to time $\ell + 1$.

Composition of the circuits for all times 0 to $q(|s|)$ gives a big (still poly) sized circuit C.

The final output of C should be true if and only if the entire state of M at the end leads to an accept state.
1. Think of M’s state at time ℓ as a string $x^{\ell} = x_1x_2 \ldots x_k$ where each $x_i \in \{0, 1, B\} \times Q \cup \{q_{-1}\}$.

2. At time 0 the state of M consists of input string s a guess t (unknown variables) of length $p(|s|)$ and rest $q(|s|)$ blank symbols.

3. At time $q(|s|)$ we wish to know if M stops in q_{accept} with say all blanks on the tape.

4. We write a circuit C_ℓ which captures the transition of M from time ℓ to time $\ell + 1$.

5. Composition of the circuits for all times 0 to $q(|s|)$ gives a big (still poly) sized circuit C.

6. The final output of C should be true if and only if the entire state of M at the end leads to an accept state.
Think of M’s state at time ℓ as a string $x^\ell = x_1 x_2 \ldots x_k$ where each $x_i \in \{0, 1, B\} \times Q \cup \{q_{-1}\}$.

At time 0 the state of M consists of input string s a guess t (unknown variables) of length $p(|s|)$ and rest $q(|s|)$ blank symbols.

At time $q(|s|)$ we wish to know if M stops in q_{accept} with say all blanks on the tape.

We write a circuit C_ℓ which captures the transition of M from time ℓ to time $\ell + 1$.

Composition of the circuits for all times 0 to $q(|s|)$ gives a big (still poly) sized circuit C.

The final output of C should be true if and only if the entire state of M at the end leads to an accept state.
1. Think of M’s state at time ℓ as a string $x^\ell = x_1 x_2 \ldots x_k$ where each $x_i \in \{0, 1, B\} \times Q \cup \{q_{-1}\}$.

2. At time 0 the state of M consists of input string s a guess t (unknown variables) of length $p(|s|)$ and rest $q(|s|)$ blank symbols.

3. At time $q(|s|)$ we wish to know if M stops in q_{accept} with say all blanks on the tape.

4. We write a circuit C_ℓ which captures the transition of M from time ℓ to time $\ell + 1$.

5. Composition of the circuits for all times 0 to $q(|s|)$ gives a big (still poly) sized circuit C.

6. The final output of C should be true if and only if the entire state of M at the end leads to an accept state.
Think of M’s state at time ℓ as a string $x^{\ell} = x_1 x_2 \ldots x_k$ where each $x_i \in \{0, 1, B\} \times Q \cup \{q_{-1}\}$.

At time 0 the state of M consists of input string s a guess t (unknown variables) of length $p(|s|)$ and rest $q(|s|)$ blank symbols.

At time $q(|s|)$ we wish to know if M stops in q_{accept} with say all blanks on the tape.

We write a circuit C_{ℓ} which captures the transition of M from time ℓ to time $\ell + 1$.

Composition of the circuits for all times 0 to $q(|s|)$ gives a big (still poly) sized circuit C.

The final output of C should be true if and only if the entire state of M at the end leads to an accept state.
Key Ideas in reduction:

1. Use TM as the code for certifier for simplicity.
2. Since \(p() \) and \(q() \) are known to \(A \), it can set up all required memory and time steps in advance.
3. Simulate computation of the TM from one time to the next as a circuit that only looks at three adjacent cells at a time.

Note: Above reduction can be done to SAT as well. Reduction to SAT was the original proof of Steve Cook.
Key Ideas in reduction:

1. Use TMs as the code for certifier for simplicity
2. Since $p()$ and $q()$ are known to A, it can set up all required memory and time steps in advance
3. Simulate computation of the TM from one time to the next as a circuit that only looks at three adjacent cells at a time

Note: Above reduction can be done to SAT as well. Reduction to SAT was the original proof of Steve Cook.
Key Ideas in reduction:

1. Use TMs as the code for certifier for simplicity
2. Since $p()$ and $q()$ are known to A, it can set up all required memory and time steps in advance
3. Simulate computation of the TM from one time to the next as a circuit that only looks at three adjacent cells at a time

Note: Above reduction can be done to SAT as well. Reduction to SAT was the original proof of Steve Cook.
1. Key Ideas in reduction:
 1. Use a TM as the code for certifier for simplicity.
 2. Since $p()$ and $q()$ are known to A, it can set up all required memory and time steps in advance.
 3. Simulate computation of the TM from one time to the next as a circuit that only looks at three adjacent cells at a time.

Note: Above reduction can be done to SAT as well. Reduction to SAT was the original proof of Steve Cook.
NP-Hardness of Circuit Satisfaction

1. Key Ideas in reduction:
 1. Use TMs as the code for certifier for simplicity
 2. Since $p()$ and $q()$ are known to A, it can set up all required memory and time steps in advance
 3. Simulate computation of the TM from one time to the next as a circuit that only looks at three adjacent cells at a time

2. Note: Above reduction can be done to SAT as well. Reduction to SAT was the original proof of Steve Cook.
23.2.4: Other NP Complete Problems
We have seen that \(\text{SAT} \in \text{NP} \)

To show \textbf{NP-Hardness}, we will reduce Circuit Satisiability (\textsc{CSAT}) to \textsc{SAT}

Instance of \textsc{CSAT} (we label each node):

\[
\begin{align*}
\text{Inputs:} & \quad 1, a & \quad ?, b & \quad ?, c & \quad 0, d & \quad ?, e \\
\text{Output:} & \quad \land, k \\
& \quad \neg, i & \quad \land, j \\
& \quad \land, f & \quad \lor, g & \quad \lor, h \\
\end{align*}
\]
SAT is NP-Complete

1. We have seen that SAT ∈ NP
2. To show NP-Hardness, we will reduce Circuit Satisfiability (CSAT) to SAT

Instance of CSAT (we label each node):

Output: \(\land, k \)

\[\neg, i \rightarrow \land, j \]

\[\land, f \leftarrow \lor, g \leftarrow \lor, h \]

Inputs:

1, a
?, b
?, c
0, d
?, e
Converting a circuit into a **CNF** formula

Label the nodes

(A) Input circuit

(B) Label the nodes.
Converting a circuit into a **CNF** formula

Introduce a variable for each node

(B) Label the nodes.
(C) Introduce var for each node.
Converting a circuit into a **CNF** formula

Write a sub-formula for each variable that is true if the var is computed correctly.

(C) Introduce var for each node.

(D) Write a sub-formula for each variable that is true if the var is computed correctly.

\[
\begin{align*}
 x_k & \quad \text{(Demand a sat' assignment!)} \\
 x_k &= x_i \land x_k \\
 x_j &= x_g \land x_h \\
 x_i &= \neg x_f \\
 x_h &= x_d \lor x_e \\
 x_g &= x_b \lor x_c \\
 x_f &= x_a \land x_b \\
 x_d &= 0 \\
 x_a &= 1
\end{align*}
\]
Converting a circuit into a CNF formula

Convert each sub-formula to an equivalent CNF formula

<table>
<thead>
<tr>
<th>x_k</th>
<th>x_k</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x_k = x_i \land x_j$</td>
<td>$(\neg x_k \lor x_i) \land (\neg x_k \lor x_j) \land (x_k \lor \neg x_i \lor \neg x_j)$</td>
</tr>
<tr>
<td>$x_j = x_g \land x_h$</td>
<td>$(\neg x_j \lor x_g) \land (\neg x_j \lor x_h) \land (x_j \lor \neg x_g \lor \neg x_h)$</td>
</tr>
<tr>
<td>$x_i = \neg x_f$</td>
<td>$(x_i \lor x_f) \land (\neg x_i \lor x_f)$</td>
</tr>
<tr>
<td>$x_h = x_d \lor x_e$</td>
<td>$(x_h \lor \neg x_d) \land (x_h \lor \neg x_e) \land (\neg x_h \lor x_d \lor x_e)$</td>
</tr>
<tr>
<td>$x_g = x_b \lor x_c$</td>
<td>$(x_g \lor \neg x_b) \land (x_g \lor \neg x_c) \land (\neg x_g \lor x_b \lor x_c)$</td>
</tr>
<tr>
<td>$x_f = x_a \land x_b$</td>
<td>$(\neg x_f \lor x_a) \land (\neg x_f \lor x_b) \land (x_f \lor \neg x_a \lor \neg x_b)$</td>
</tr>
<tr>
<td>$x_d = 0$</td>
<td>$\neg x_d$</td>
</tr>
<tr>
<td>$x_a = 1$</td>
<td>x_a</td>
</tr>
</tbody>
</table>
Converting a circuit into a **CNF** formula

Take the conjunction of all the CNF sub-formulas

We got a **CNF** formula that is satisfiable if and only if the original circuit is satisfiable.
Reduction: \textbf{CSAT} \leq_p \textbf{SAT}

1. For each gate (vertex) \(v \) in the circuit, create a variable \(x_v \).

2. Case \(\neg \): \(v \) is labeled \(\neg \) and has one incoming edge from \(u \) (so \(x_v = \neg x_u \)). In \textbf{SAT} formula generate, add clauses \((x_u \lor x_v)\), \((\neg x_u \lor \neg x_v)\). Observe that

\[x_v = \neg x_u \text{ is true } \iff (x_u \lor x_v) \land (\neg x_u \lor \neg x_v) \text{ both true.} \]
Reduction: \(\text{CSAT} \leq_p \text{SAT} \)

Continued...

1. Case \(\lor \): So \(x_v = x_u \lor x_w \). In \text{SAT} formula generated, add clauses \((x_v \lor \neg x_u), (x_v \lor \neg x_w)\), and \((\neg x_v \lor x_u \lor x_w)\). Again, observe that

\[
\left(x_v = x_u \lor x_w \right) \text{ is true } \iff \left(x_v \lor \neg x_u \right), \left(x_v \lor \neg x_w \right), \left(\neg x_v \lor x_u \lor x_w \right) \text{ all true.}
\]
Reduction: \textbf{CSAT} \: \leq_p \: \textbf{SAT}

Continued...

Case \land: So $x_v = x_u \land x_w$. In \textbf{SAT} formula generated, add clauses $(\neg x_v \lor x_u)$, $(\neg x_v \lor x_w)$, and $(x_v \lor \neg x_u \lor \neg x_w)$. Again observe that

\begin{align*}
x_v = x_u \land x_w \text{ is true} & \iff (\neg x_v \lor x_u), \\
& (\neg x_v \lor x_w), \\
& (x_v \lor \neg x_u \lor \neg x_w) \text{ all true.}
\end{align*}
If v is an input gate with a fixed value then we do the following.

1. If $x_v = 1$ add clause x_v. If $x_v = 0$ add clause $\neg x_v$

2. Add the clause x_v where v is the variable for the output gate
Correctness of Reduction

Need to show circuit C is satisfiable iff φ_C is satisfiable

\Rightarrow Consider a satisfying assignment a for C

1. Find values of all gates in C under a
2. Give value of gate v to variable x_v; call this assignment a'
3. a' satisfies φ_C (exercise)

\Leftarrow Consider a satisfying assignment a for φ_C

1. Let a' be the restriction of a to only the input variables
2. Value of gate v under a' is the same as value of x_v in a
3. Thus, a' satisfies C
Correctness of Reduction

Need to show circuit \(C \) is satisfiable iff \(\varphi_C \) is satisfiable

\[\Rightarrow \text{Consider a satisfying assignment } a \text{ for } C \]

1. Find values of all gates in \(C \) under \(a \)
2. Give value of gate \(v \) to variable \(x_v \); call this assignment \(a' \)
3. \(a' \) satisfies \(\varphi_C \) (exercise)

\[\Leftarrow \text{Consider a satisfying assignment } a \text{ for } \varphi_C \]

1. Let \(a' \) be the restriction of \(a \) to only the input variables
2. Value of gate \(v \) under \(a' \) is the same as value of \(x_v \) in \(a \)
3. Thus, \(a' \) satisfies \(C \)
Correctness of Reduction

Need to show circuit C is satisfiable iff φ_C is satisfiable

\Rightarrow Consider a satisfying assignment a for C

1. Find values of all gates in C under a
2. Give value of gate v to variable x_v; call this assignment a'
3. a' satisfies φ_C (exercise)

\Leftarrow Consider a satisfying assignment a for φ_C

1. Let a' be the restriction of a to only the input variables
2. Value of gate v under a' is the same as value of x_v in a
3. Thus, a' satisfies C
Correctness of Reduction

Need to show circuit C is satisfiable iff φ_C is satisfiable

⇒ Consider a satisfying assignment a for C

1. Find values of all gates in C under a
2. Give value of gate v to variable x_v; call this assignment a'
3. a' satisfies φ_C (exercise)

⇐ Consider a satisfying assignment a for φ_C

1. Let a' be the restriction of a to only the input variables
2. Value of gate v under a' is the same as value of x_v in a
3. Thus, a' satisfies C
Correctness of Reduction

Need to show circuit C is satisfiable iff φ_C is satisfiable

\Rightarrow Consider a satisfying assignment a for C

1. Find values of all gates in C under a
2. Give value of gate v to variable x_v; call this assignment a'
3. a' satisfies φ_C (exercise)

\Leftarrow Consider a satisfying assignment a for φ_C

1. Let a' be the restriction of a to only the input variables
2. Value of gate v under a' is the same as value of x_v in a
3. Thus, a' satisfies C
Correctness of Reduction

Need to show circuit C is satisfiable iff φ_C is satisfiable

\Rightarrow Consider a satisfying assignment a for C

1. Find values of all gates in C under a
2. Give value of gate v to variable x_v; call this assignment a'
3. a' satisfies φ_C (exercise)

\Leftarrow Consider a satisfying assignment a for φ_C

1. Let a' be the restriction of a to only the input variables
2. Value of gate v under a' is the same as value of x_v in a
3. Thus, a' satisfies C
Correctness of Reduction

Need to show circuit C is satisfiable iff φ_C is satisfiable

⇒ Consider a satisfying assignment a for C
 ① Find values of all gates in C under a
 ② Give value of gate v to variable x_v; call this assignment a'
 ③ a' satisfies φ_C (exercise)

⇐ Consider a satisfying assignment a for φ_C
 ① Let a' be the restriction of a to only the input variables
 ② Value of gate v under a' is the same as value of x_v in a
 ③ Thus, a' satisfies C
Correctness of Reduction

Need to show circuit C is satisfiable iff φ_C is satisfiable

\Rightarrow Consider a satisfying assignment a for C

1. Find values of all gates in C under a
2. Give value of gate v to variable x_v; call this assignment a'
3. a' satisfies φ_C (exercise)

\Leftarrow Consider a satisfying assignment a for φ_C

1. Let a' be the restriction of a to only the input variables
2. Value of gate v under a' is the same as value of x_v in a
3. Thus, a' satisfies C
Correctness of Reduction

Need to show circuit C is satisfiable iff φ_C is satisfiable

\Rightarrow Consider a satisfying assignment a for C

1. Find values of all gates in C under a
2. Give value of gate v to variable x_v; call this assignment a'
3. a' satisfies φ_C (exercise)

\Leftarrow Consider a satisfying assignment a for φ_C

1. Let a' be the restriction of a to only the input variables
2. Value of gate v under a' is the same as value of x_v in a
3. Thus, a' satisfies C
Theorem

SAT is NP-Complete.
Proving that a problem \(X \) is NP-Complete

1. To prove \(X \) is NP-Complete, show
 1. Show \(X \) is in NP.
 1. certificate/proof of polynomial size in input
 2. polynomial time certifier \(C(s, t) \)
 2. Reduction from a known NP-Complete problem such as CSAT or SAT to \(X \)

2. SAT \(\leq_P X \) implies that every NP problem \(Y \leq_P X \). Why?

3. Transitivity of reductions:

4. \(Y \leq_P SAT \) and SAT \(\leq_P X \) and hence \(Y \leq_P X \).
Proving that a problem X is NP-Complete

1. To prove X is NP-Complete, show
 1. Show X is in NP.
 1. certificate/proof of polynomial size in input
 2. polynomial time certifier $C(s, t)$
 2. Reduction from a known NP-Complete problem such as CSAT or SAT to X

2. SAT $\leq_P X$ implies that every NP problem $Y \leq_P X$. Why?
3. Transitivity of reductions:
4. $Y \leq_P SAT$ and SAT $\leq_P X$ and hence $Y \leq_P X$.

Proving that a problem \(X \) is \textbf{NP-Complete}

To prove \(X \) is \textbf{NP-Complete}, show

1. Show \(X \) is in \textbf{NP}.

 1. certificate/proof of polynomial size in input
 2. polynomial time certifier \(C(s, t) \)

2. Reduction from a known \textbf{NP-Complete} problem such as \textbf{CSAT} or \textbf{SAT} to \(X \)

3. \(\text{SAT} \leq_P X \) implies that every \textbf{NP} problem \(Y \leq_P X \). Why?

4. Transitivity of reductions:

 \(Y \leq_P \text{SAT} \) and \(\text{SAT} \leq_P X \) and hence \(Y \leq_P X \).
Proving that a problem X is **NP-Complete**

1. To prove X is **NP-Complete**, show
 1. Show X is in **NP**.
 1. certificate/proof of polynomial size in input
 2. polynomial time certifier $C(s, t)$
 2. Reduction from a known **NP-Complete** problem such as CSAT or SAT to X

2. SAT $\leq_P X$ implies that every **NP** problem $Y \leq_P X$. Why?

3. Transitivity of reductions:

4. $Y \leq_P SAT$ and $SAT \leq_P X$ and hence $Y \leq_P X$.
Proving that a problem X is NP-Complete

1. To prove X is NP-Complete, show
 1. Show X is in NP.
 1. certificate/proof of polynomial size in input
 2. polynomial time certifier $C(s, t)$
 2. Reduction from a known NP-Complete problem such as CSAT or SAT to X

2. $\text{SAT} \leq_P X$ implies that every NP problem $Y \leq_P X$. Why?

3. Transitivity of reductions:

4. $Y \leq_P \text{SAT}$ and $\text{SAT} \leq_P X$ and hence $Y \leq_P X$.
Proving that a problem X is NP-Complete

1. To prove X is NP-Complete, show
 1. Show X is in NP.
 1. certificate/proof of polynomial size in input
 2. polynomial time certifier $C(s, t)$
 2. Reduction from a known NP-Complete problem such as CSAT or SAT to X

2. SAT $\leq_p X$ implies that every NP problem $Y \leq_p X$. Why?

3. Transitivity of reductions:

4. $Y \leq_p SAT$ and SAT $\leq_p X$ and hence $Y \leq_p X$.

Proving that a problem X is NP-Complete

1. To prove X is NP-Complete, show
 1. Show X is in NP.
 1. certificate/prooft of polynomial size in input
 2. polynomial time certifier $C(s, t)$
 2. Reduction from a known NP-Complete problem such as CSAT or SAT to X

2. SAT $\leq_P X$ implies that every NP problem $Y \leq_P X$. Why?

3. Transitivity of reductions:

4. $Y \leq_P SAT$ and $SAT \leq_P X$ and hence $Y \leq_P X$.
Proving that a problem X is NP-Complete

1. To prove X is NP-Complete, show
 1. Show X is in NP.
 1. certificate/proof of polynomial size in input
 2. polynomial time certifier $C(s, t)$
 2. Reduction from a known NP-Complete problem such as CSAT or SAT to X

2. $SAT \leq_P X$ implies that every NP problem $Y \leq_P X$. Why?

3. Transitivity of reductions:
 4. $Y \leq_P SAT$ and $SAT \leq_P X$ and hence $Y \leq_P X$.
To prove X is NP-Complete, show

1. Show X is in NP.
 - certificate/proof of polynomial size in input
 - polynomial time certifier $C(s, t)$

2. Reduction from a known NP-Complete problem such as CSAT or SAT to X

$\text{SAT} \leq_P X$ implies that every NP problem $Y \leq_P X$. Why?

Transitivity of reductions:

$Y \leq_P \text{SAT}$ and $\text{SAT} \leq_P X$ and hence $Y \leq_P X$.
What we know so far:

1. **CSAT** is **NP-Complete**.
2. **CSAT \leq_p SAT** and **SAT** is in **NP** and hence **SAT** is **NP-Complete**.
3. **SAT \leq_p 3-SAT** and hence **3-SAT** is **NP-Complete**.
4. **3-SAT \leq_p Independent Set** (which is in **NP**) and hence **Independent Set** is **NP-Complete**.
5. **Vertex Cover** is **NP-Complete**.
6. **Clique** is **NP-Complete**.

Gazillion of different problems from many areas of science and engineering have been shown to be **NP-Complete**.

A surprisingly frequent phenomenon!
What we know so far:

1. **CSAT** is **NP-Complete**.
2. **CSAT \leq_P SAT** and **SAT** is in **NP** and hence **SAT** is **NP-Complete**.
3. **SAT \leq_P 3-SAT** and hence 3-SAT is **NP-Complete**.
4. **3-SAT \leq_P Independent Set** (which is in **NP**) and hence **Independent Set** is **NP-Complete**.
5. **Vertex Cover** is **NP-Complete**.
6. **Clique** is **NP-Complete**.

A surprisingly frequent phenomenon!
What we know so far:

1. **CSAT** is **NP-Complete**.
2. **CSAT** \leq_p **SAT** and **SAT** is in **NP** and hence **SAT** is **NP-Complete**.
3. **SAT** \leq_p **3-SAT** and hence 3-SAT is **NP-Complete**.
4. 3-SAT \leq_p Independent Set (which is in **NP**) and hence Independent Set is **NP-Complete**.
5. **Vertex Cover** is **NP-Complete**.
6. **Clique** is **NP-Complete**.

Gazillion of different problems from many areas of science and engineering have been shown to be **NP-Complete**.

A surprisingly frequent phenomenon!
What we know so far:

1. **CSAT** is **NP-Complete**.
2. **CSAT** \leq_p **SAT** and **SAT** is in **NP** and hence **SAT** is **NP-Complete**.
3. **SAT** \leq_p **3-SAT** and hence 3-SAT is **NP-Complete**.
4. **3-SAT** \leq_p **Independent Set** (which is in **NP**) and hence **Independent Set** is **NP-Complete**.
5. **Vertex Cover** is **NP-Complete**.
6. **Clique** is **NP-Complete**.

Gazillion of different problems from many areas of science and engineering have been shown to be **NP-Complete**.

A surprisingly frequent phenomenon!
NP-Completeness via Reductions

1 What we know so far:
 1. CSAT is NP-Complete.
 2. CSAT \(\leq_p\) SAT and SAT is in NP and hence SAT is NP-Complete.
 3. SAT \(\leq_p\) 3-SAT and hence 3-SAT is NP-Complete.
 4. 3-SAT \(\leq_p\) Independent Set (which is in NP) and hence Independent Set is NP-Complete.
 5. Vertex Cover is NP-Complete.
 6. Clique is NP-Complete.

2 Gazillion of different problems from many areas of science and engineering have been shown to be NP-Complete.

3 A surprisingly frequent phenomenon!
What we know so far:

1. **CSAT** is **NP-Complete**.
2. **CSAT** \leq_P **SAT** and **SAT** is in **NP** and hence **SAT** is **NP-Complete**.
3. **SAT** \leq_P **3-SAT** and hence 3-SAT is **NP-Complete**.
4. **3-SAT** \leq_P **Independent Set** (which is in **NP**) and hence **Independent Set** is **NP-Complete**.
5. **Vertex Cover** is **NP-Complete**.
6. **Clique** is **NP-Complete**.

Gazillion of different problems from many areas of science and engineering have been shown to be **NP-Complete**.

A surprisingly frequent phenomenon!
NP-Completeness via Reductions

What we know so far:

1. CSAT is NP-Complete.
2. CSAT \leq_P SAT and SAT is in NP and hence SAT is NP-Complete.
3. SAT \leq_P 3-SAT and hence 3-SAT is NP-Complete.
4. 3-SAT \leq_P Independent Set (which is in NP) and hence Independent Set is NP-Complete.
5. Vertex Cover is NP-Complete.
6. Clique is NP-Complete.

Gazillion of different problems from many areas of science and engineering have been shown to be NP-Complete.

A surprisingly frequent phenomenon!
NP-Completeness via Reductions

1. What we know so far:
 1. CSAT is NP-Complete.
 2. CSAT \leq_p SAT and SAT is in NP and hence SAT is NP-Complete.
 3. SAT \leq_p 3-SAT and hence 3-SAT is NP-Complete.
 4. 3-SAT \leq_p Independent Set (which is in NP) and hence Independent Set is NP-Complete.
 5. Vertex Cover is NP-Complete.
 6. Clique is NP-Complete.

2. Gazillion of different problems from many areas of science and engineering have been shown to be NP-Complete.

3. A surprisingly frequent phenomenon!