
OLD CS 473: Fundamental Algorithms, Spring

2015

Reductions and NP
Lecture 22
April 16, 2015

Sariel (UIUC) OLD CS473 1 Spring 2015 1 / 58

Part I

Reductions Continued

Sariel (UIUC) OLD CS473 2 Spring 2015 2 / 58

22.1: Reductions

Sariel (UIUC) OLD CS473 3 Spring 2015 3 / 58

Polynomial Time Reduction
Karp reduction

A polynomial time reduction from a decision problem X to a
decision problem Y is an algorithm A that has the following
properties:

1 given an instance IX of X , A produces an instance IY of Y
2 A runs in time polynomial in |IX |. This implies that |IY | (size of

IY) is polynomial in |IX |
3 Answer to IX YES iff answer to IY is YES.

Notation: X ≤P Y if X reduces to Y

Proposition
If X ≤P Y then a polynomial time algorithm for Y implies a
polynomial time algorithm for X .

Such a reduction is called a Karp reduction. Most reductions we
will need are Karp reductions.

Sariel (UIUC) OLD CS473 4 Spring 2015 4 / 58

A More General Reduction
Turing Reduction

Definition (Turing reduction.)

Problem X polynomial time reduces to Y if there is an algorithm A
for X that has the following properties:

1 on any given instance IX of X , A uses polynomial in |IX |
“steps”

2 a step is either a standard computation step, or

3 a sub-routine call to an algorithm that solves Y .

This is a Turing reduction.

Note: In making sub-routine call to algorithm to solve Y , A can only
ask questions of size polynomial in |IX |. Why?

Sariel (UIUC) OLD CS473 5 Spring 2015 5 / 58

A More General Reduction
Turing Reduction

Definition (Turing reduction.)

Problem X polynomial time reduces to Y if there is an algorithm A
for X that has the following properties:

1 on any given instance IX of X , A uses polynomial in |IX |
“steps”

2 a step is either a standard computation step, or

3 a sub-routine call to an algorithm that solves Y .

This is a Turing reduction.

Note: In making sub-routine call to algorithm to solve Y , A can only
ask questions of size polynomial in |IX |. Why?

Sariel (UIUC) OLD CS473 5 Spring 2015 5 / 58

Comparing reductions

1 Karp reduction:

Reduction
IX

Solver for Y

yes

no
Solver forX

IY

2 Turing reduction:

Algorithm
IX

Solver for Y

yes

no

Turing reduction

1 Algorithm to solve X can
call solver for Y many
times.

2 Conceptually, every call
to the solver of Y takes
constant time.

Sariel (UIUC) OLD CS473 6 Spring 2015 6 / 58

Example of Turing Reduction

Problem (Independent set in circular arcs graph.)

Input: Collection of arcs on a circle.
Goal: Compute the maximum number of non-overlapping arcs.

Reduced to the following problem:?

Problem (Independent set of intervals.)

Input: Collection of intervals on the line.
Goal: Compute the maximum number of non-overlapping intervals.

How? Used algorithm for interval problem multiple times.

Sariel (UIUC) OLD CS473 7 Spring 2015 7 / 58

Example of Turing Reduction

Problem (Independent set in circular arcs graph.)

Input: Collection of arcs on a circle.
Goal: Compute the maximum number of non-overlapping arcs.

Reduced to the following problem:?

Problem (Independent set of intervals.)

Input: Collection of intervals on the line.
Goal: Compute the maximum number of non-overlapping intervals.

How? Used algorithm for interval problem multiple times.

Sariel (UIUC) OLD CS473 7 Spring 2015 7 / 58

Example of Turing Reduction

Problem (Independent set in circular arcs graph.)

Input: Collection of arcs on a circle.
Goal: Compute the maximum number of non-overlapping arcs.

Reduced to the following problem:?

Problem (Independent set of intervals.)

Input: Collection of intervals on the line.
Goal: Compute the maximum number of non-overlapping intervals.

How? Used algorithm for interval problem multiple times.

Sariel (UIUC) OLD CS473 7 Spring 2015 7 / 58

Turing vs Karp Reductions

1 Turing reductions more general than Karp reductions.

2 Turing reduction useful in obtaining algorithms via reductions.

3 Karp reduction is simpler and easier to use to prove hardness of
problems.

4 Perhaps surprisingly, Karp reductions, although limited, suffice
for most known NP-Completeness proofs.

5 Karp reductions allow us to distinguish between NP and co-NP
(more on this later).

Sariel (UIUC) OLD CS473 8 Spring 2015 8 / 58

22.2: The Satisfiability Problem
(SAT)

Sariel (UIUC) OLD CS473 9 Spring 2015 9 / 58

Propositional Formulas

Definition
Consider a set of boolean variables x1, x2, . . . xn.

1 A literal is either a boolean variable xi or its negation ¬xi .

2 A clause is a disjunction of literals.
For example, x1 ∨ x2 ∨ ¬x4 is a clause.

3 A formula in conjunctive normal form (CNF) is
propositional formula which is a conjunction of clauses

1 (x1 ∨ x2 ∨ ¬x4) ∧ (x2 ∨ ¬x3) ∧ x5 is a CNF formula.

4 A formula φ is a 3CNF:
A CNF formula such that every clause has exactly 3 literals.

1 (x1 ∨ x2 ∨ ¬x4) ∧ (x2 ∨ ¬x3 ∨ x1) is a 3CNF formula, but
(x1 ∨ x2 ∨ ¬x4) ∧ (x2 ∨ ¬x3) ∧ x5 is not.

Sariel (UIUC) OLD CS473 10 Spring 2015 10 / 58

Propositional Formulas

Definition
Consider a set of boolean variables x1, x2, . . . xn.

1 A literal is either a boolean variable xi or its negation ¬xi .

2 A clause is a disjunction of literals.
For example, x1 ∨ x2 ∨ ¬x4 is a clause.

3 A formula in conjunctive normal form (CNF) is
propositional formula which is a conjunction of clauses

1 (x1 ∨ x2 ∨ ¬x4) ∧ (x2 ∨ ¬x3) ∧ x5 is a CNF formula.

4 A formula φ is a 3CNF:
A CNF formula such that every clause has exactly 3 literals.

1 (x1 ∨ x2 ∨ ¬x4) ∧ (x2 ∨ ¬x3 ∨ x1) is a 3CNF formula, but
(x1 ∨ x2 ∨ ¬x4) ∧ (x2 ∨ ¬x3) ∧ x5 is not.

Sariel (UIUC) OLD CS473 10 Spring 2015 10 / 58

Satisfiability

Problem: SAT

Instance: A CNF formula φ.
Question: Is there a truth assignment to the variable of
φ such that φ evaluates to true?

Problem: 3SAT

Instance: A 3CNF formula φ.
Question: Is there a truth assignment to the variable of
φ such that φ evaluates to true?

Sariel (UIUC) OLD CS473 11 Spring 2015 11 / 58

Satisfiability

SAT
Given a CNF formula φ, is there a truth assignment to variables
such that φ evaluates to true?

Example
1 (x1 ∨ x2 ∨ ¬x4) ∧ (x2 ∨ ¬x3) ∧ x5 is satisfiable; take

x1, x2, . . . x5 to be all true

2 (x1 ∨ ¬x2) ∧ (¬x1 ∨ x2) ∧ (¬x1 ∨ ¬x2) ∧ (x1 ∨ x2) is not
satisfiable.

3SAT
Given a 3CNF formula φ, is there a truth assignment to variables
such that φ evaluates to true?

(More on 2SAT in a bit...)
Sariel (UIUC) OLD CS473 12 Spring 2015 12 / 58

Importance of SAT and 3SAT

1 SAT and 3SAT are basic constraint satisfaction problems.

2 Many different problems can reduced to them because of the
simple yet powerful expressively of logical constraints.

3 Arise naturally in many applications involving hardware and
software verification and correctness.

4 As we will see, it is a fundamental problem in theory of
NP-Completeness.

Sariel (UIUC) OLD CS473 13 Spring 2015 13 / 58

Importance of SAT and 3SAT

1 SAT and 3SAT are basic constraint satisfaction problems.

2 Many different problems can reduced to them because of the
simple yet powerful expressively of logical constraints.

3 Arise naturally in many applications involving hardware and
software verification and correctness.

4 As we will see, it is a fundamental problem in theory of
NP-Completeness.

Sariel (UIUC) OLD CS473 13 Spring 2015 13 / 58

Importance of SAT and 3SAT

1 SAT and 3SAT are basic constraint satisfaction problems.

2 Many different problems can reduced to them because of the
simple yet powerful expressively of logical constraints.

3 Arise naturally in many applications involving hardware and
software verification and correctness.

4 As we will see, it is a fundamental problem in theory of
NP-Completeness.

Sariel (UIUC) OLD CS473 13 Spring 2015 13 / 58

Importance of SAT and 3SAT

1 SAT and 3SAT are basic constraint satisfaction problems.

2 Many different problems can reduced to them because of the
simple yet powerful expressively of logical constraints.

3 Arise naturally in many applications involving hardware and
software verification and correctness.

4 As we will see, it is a fundamental problem in theory of
NP-Completeness.

Sariel (UIUC) OLD CS473 13 Spring 2015 13 / 58

22.2.1: Converting a boolean formula with 3
variables to 3SAT

Sariel (UIUC) OLD CS473 14 Spring 2015 14 / 58

Converting z = x ∧ y to 3SAT

z x y
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

Sariel (UIUC) OLD CS473 15 Spring 2015 15 / 58

Converting z = x ∧ y to 3SAT

z x y z = x ∧ y
0 0 0 1
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1

Sariel (UIUC) OLD CS473 15 Spring 2015 15 / 58

Converting z = x ∧ y to 3SAT

z x y z = x ∧ y
0 0 0 1 1 1 1 1
0 0 1 1 1 1 1 1
0 1 0 1 1 1 1 1

0 1 1 0 0 1 1 1

1 0 0 0 1 0 1 1

1 0 1 0 1 1 0 1

1 1 0 0 1 1 1 0
1 1 1 1 1 1 1 1

Sariel (UIUC) OLD CS473 15 Spring 2015 15 / 58

Converting z = x ∧ y to 3SAT

z x y z = x ∧ y z ∨ x ∨ y

0 0 0 1 1 1 1 1
0 0 1 1 1 1 1 1
0 1 0 1 1 1 1 1

0 1 1 0 0 1 1 1
1 0 0 0 1 0 1 1
1 0 1 0 1 1 0 1
1 1 0 0 1 1 1 0
1 1 1 1 1 1 1 1

Sariel (UIUC) OLD CS473 15 Spring 2015 15 / 58

Converting z = x ∧ y to 3SAT

z x y z = x ∧ y z ∨ x ∨ y z ∨ x ∨ y

0 0 0 1 1 1 1 1
0 0 1 1 1 1 1 1
0 1 0 1 1 1 1 1
0 1 1 0 0 1 1 1

1 0 0 0 1 0 1 1
1 0 1 0 1 1 0 1
1 1 0 0 1 1 1 0
1 1 1 1 1 1 1 1

Sariel (UIUC) OLD CS473 15 Spring 2015 15 / 58

Converting z = x ∧ y to 3SAT

z x y z = x ∧ y z ∨ x ∨ y z ∨ x ∨ y z ∨ x ∨ y

0 0 0 1 1 1 1 1
0 0 1 1 1 1 1 1
0 1 0 1 1 1 1 1
0 1 1 0 0 1 1 1
1 0 0 0 1 0 1 1

1 0 1 0 1 1 0 1
1 1 0 0 1 1 1 0
1 1 1 1 1 1 1 1

Sariel (UIUC) OLD CS473 15 Spring 2015 15 / 58

Converting z = x ∧ y to 3SAT

z x y z = x ∧ y z ∨ x ∨ y z ∨ x ∨ y z ∨ x ∨ y z ∨ x ∨ y

0 0 0 1 1 1 1 1
0 0 1 1 1 1 1 1
0 1 0 1 1 1 1 1
0 1 1 0 0 1 1 1
1 0 0 0 1 0 1 1
1 0 1 0 1 1 0 1

1 1 0 0 1 1 1 0
1 1 1 1 1 1 1 1

Sariel (UIUC) OLD CS473 15 Spring 2015 15 / 58

Converting z = x ∧ y to 3SAT

z x y z = x ∧ y z ∨ x ∨ y z ∨ x ∨ y z ∨ x ∨ y z ∨ x ∨ y

0 0 0 1 1 1 1 1
0 0 1 1 1 1 1 1
0 1 0 1 1 1 1 1
0 1 1 0 0 1 1 1
1 0 0 0 1 0 1 1
1 0 1 0 1 1 0 1
1 1 0 0 1 1 1 0
1 1 1 1 1 1 1 1

Sariel (UIUC) OLD CS473 15 Spring 2015 15 / 58

Converting z = x ∧ y to 3SAT

z x y z = x ∧ y z ∨ x ∨ y z ∨ x ∨ y z ∨ x ∨ y z ∨ x ∨ y

0 0 0 1 1 1 1 1
0 0 1 1 1 1 1 1
0 1 0 1 1 1 1 1
0 1 1 0 0 1 1 1
1 0 0 0 1 0 1 1
1 0 1 0 1 1 0 1
1 1 0 0 1 1 1 0
1 1 1 1 1 1 1 1(

z = x ∧ y
)

≡
(z ∨ x ∨ y) ∧ (z ∨ x ∨ y) ∧ (z ∨ x ∨ y) ∧ (z ∨ x ∨ y)

Sariel (UIUC) OLD CS473 15 Spring 2015 15 / 58

Converting z = x ∧ y to 3SAT

z x y
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

Sariel (UIUC) OLD CS473 16 Spring 2015 16 / 58

Converting z = x ∧ y to 3SAT

z x y z = x ∧ y
0 0 0 1
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1

Sariel (UIUC) OLD CS473 16 Spring 2015 16 / 58

Converting z = x ∧ y to 3SAT

z x y z = x ∧ y clauses

0 0 0 1
0 0 1 1
0 1 0 1

0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1

Sariel (UIUC) OLD CS473 16 Spring 2015 16 / 58

Converting z = x ∧ y to 3SAT

z x y z = x ∧ y clauses

0 0 0 1
0 0 1 1
0 1 0 1

0 1 1 0 z ∨ x ∨ y
1 0 0 0 z ∨ x ∨ y
1 0 1 0 z ∨ x ∨ y
1 1 0 0 z ∨ x ∨ y
1 1 1 1

Sariel (UIUC) OLD CS473 16 Spring 2015 16 / 58

Converting z = x ∧ y to 3SAT

z x y z = x ∧ y clauses

0 0 0 1
0 0 1 1
0 1 0 1

0 1 1 0 z ∨ x ∨ y
1 0 0 0 z ∨ x ∨ y
1 0 1 0 z ∨ x ∨ y
1 1 0 0 z ∨ x ∨ y
1 1 1 1(

z = x ∧ y
)

≡
(z ∨ x ∨ y) ∧ (z ∨ x ∨ y) ∧ (z ∨ x ∨ y) ∧ (z ∨ x ∨ y)

Sariel (UIUC) OLD CS473 16 Spring 2015 16 / 58

Converting z = x ∨ y to 3SAT
Simplify further if you want to

1 Using that (x ∨ y) ∧ (x ∨ y) = x , we have that:

1

(
z ∨ x ∨ u

)
∧

(
z ∨ x ∨ y

)
=

(
z ∨ x

)
2

(
z ∨ x ∨ y

)
∧

(
z ∨ x ∨ y

)
=

(
z ∨ y

)
2 Using the above two observation, we have that our formula ψ ≡(

z ∨ x ∨ y
)
∧

(
z ∨ x ∨ y

)
∧

(
z ∨ x ∨ y

)
∧

(
z ∨ x ∨ y

)
is equivalent to ψ ≡

(
z ∨ x ∨ y

)
∧

(
z ∨ x

)
∧

(
z ∨ y

)
Lemma(
z = x ∧ y

)
≡

(
z ∨ x ∨ y

)
∧

(
z ∨ x

)
∧

(
z ∨ y

)
Sariel (UIUC) OLD CS473 17 Spring 2015 17 / 58

Converting z = x ∨ y to 3SAT
Simplify further if you want to

1 Using that (x ∨ y) ∧ (x ∨ y) = x , we have that:

1

(
z ∨ x ∨ u

)
∧

(
z ∨ x ∨ y

)
=

(
z ∨ x

)
2

(
z ∨ x ∨ y

)
∧

(
z ∨ x ∨ y

)
=

(
z ∨ y

)
2 Using the above two observation, we have that our formula ψ ≡(

z ∨ x ∨ y
)
∧

(
z ∨ x ∨ y

)
∧

(
z ∨ x ∨ y

)
∧

(
z ∨ x ∨ y

)
is equivalent to ψ ≡

(
z ∨ x ∨ y

)
∧

(
z ∨ x

)
∧

(
z ∨ y

)
Lemma(
z = x ∧ y

)
≡

(
z ∨ x ∨ y

)
∧

(
z ∨ x

)
∧

(
z ∨ y

)
Sariel (UIUC) OLD CS473 17 Spring 2015 17 / 58

Converting z = x ∨ y to 3SAT
Simplify further if you want to

1 Using that (x ∨ y) ∧ (x ∨ y) = x , we have that:

1

(
z ∨ x ∨ u

)
∧

(
z ∨ x ∨ y

)
=

(
z ∨ x

)
2

(
z ∨ x ∨ y

)
∧

(
z ∨ x ∨ y

)
=

(
z ∨ y

)
2 Using the above two observation, we have that our formula ψ ≡(

z ∨ x ∨ y
)
∧

(
z ∨ x ∨ y

)
∧

(
z ∨ x ∨ y

)
∧

(
z ∨ x ∨ y

)
is equivalent to ψ ≡

(
z ∨ x ∨ y

)
∧

(
z ∨ x

)
∧

(
z ∨ y

)
Lemma(
z = x ∧ y

)
≡

(
z ∨ x ∨ y

)
∧

(
z ∨ x

)
∧

(
z ∨ y

)
Sariel (UIUC) OLD CS473 17 Spring 2015 17 / 58

Converting z = x ∨ y to 3SAT
Simplify further if you want to

1 Using that (x ∨ y) ∧ (x ∨ y) = x , we have that:

1

(
z ∨ x ∨ u

)
∧

(
z ∨ x ∨ y

)
=

(
z ∨ x

)
2

(
z ∨ x ∨ y

)
∧

(
z ∨ x ∨ y

)
=

(
z ∨ y

)
2 Using the above two observation, we have that our formula ψ ≡(

z ∨ x ∨ y
)
∧

(
z ∨ x ∨ y

)
∧

(
z ∨ x ∨ y

)
∧

(
z ∨ x ∨ y

)
is equivalent to ψ ≡

(
z ∨ x ∨ y

)
∧

(
z ∨ x

)
∧

(
z ∨ y

)
Lemma(
z = x ∧ y

)
≡

(
z ∨ x ∨ y

)
∧

(
z ∨ x

)
∧

(
z ∨ y

)
Sariel (UIUC) OLD CS473 17 Spring 2015 17 / 58

Converting z = x ∨ y to 3SAT
Simplify further if you want to

1 Using that (x ∨ y) ∧ (x ∨ y) = x , we have that:

1

(
z ∨ x ∨ u

)
∧

(
z ∨ x ∨ y

)
=

(
z ∨ x

)
2

(
z ∨ x ∨ y

)
∧

(
z ∨ x ∨ y

)
=

(
z ∨ y

)
2 Using the above two observation, we have that our formula ψ ≡(

z ∨ x ∨ y
)
∧

(
z ∨ x ∨ y

)
∧

(
z ∨ x ∨ y

)
∧

(
z ∨ x ∨ y

)
is equivalent to ψ ≡

(
z ∨ x ∨ y

)
∧

(
z ∨ x

)
∧

(
z ∨ y

)
Lemma(
z = x ∧ y

)
≡

(
z ∨ x ∨ y

)
∧

(
z ∨ x

)
∧

(
z ∨ y

)
Sariel (UIUC) OLD CS473 17 Spring 2015 17 / 58

Converting z = x ∨ y to 3SAT

z x y
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

Sariel (UIUC) OLD CS473 18 Spring 2015 18 / 58

Converting z = x ∨ y to 3SAT

z x y z = x ∨ y
0 0 0 1
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

Sariel (UIUC) OLD CS473 18 Spring 2015 18 / 58

Converting z = x ∨ y to 3SAT

z x y z = x ∨ y clauses

0 0 0 1

0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

Sariel (UIUC) OLD CS473 18 Spring 2015 18 / 58

Converting z = x ∨ y to 3SAT

z x y z = x ∨ y clauses

0 0 0 1

0 0 1 0 z ∨ x ∨ y
0 1 0 0 z ∨ x ∨ y
0 1 1 0 z ∨ x ∨ y
1 0 0 0 z ∨ x ∨ y
1 0 1 1
1 1 0 1
1 1 1 1

Sariel (UIUC) OLD CS473 18 Spring 2015 18 / 58

Converting z = x ∨ y to 3SAT

z x y z = x ∨ y clauses

0 0 0 1

0 0 1 0 z ∨ x ∨ y
0 1 0 0 z ∨ x ∨ y
0 1 1 0 z ∨ x ∨ y
1 0 0 0 z ∨ x ∨ y
1 0 1 1
1 1 0 1
1 1 1 1(

z = x ∨ y
)

≡
(z ∨ x ∨ y) ∧ (z ∨ x ∨ y) ∧ (z ∨ x ∨ y) ∧ (z ∨ x ∨ y)

Sariel (UIUC) OLD CS473 18 Spring 2015 18 / 58

Converting z = x ∨ y to 3SAT
Simplify further if you want to

(
z = x ∨ y

)
≡ (z ∨ x ∨ y) ∧ (z ∨ x ∨ y) ∧ (z ∨ x ∨ y) ∧ (z ∨ x ∨ y)

1 Using that (x ∨ y) ∧ (x ∨ y) = x , we have that:

1 (z ∨ x ∨ y) ∧ (z ∨ x ∨ y) = z ∨ y .
2 (z ∨ x ∨ y) ∧ (z ∨ x ∨ y) = z ∨ x

2 Using the above two observation, we have the following.

Lemma
The formula z = x ∨ y is equivalent to the CNF formula(
z = x ∨ y

)
≡ (z ∨ y) ∧ (z ∨ x) ∧ (z ∨ x ∨ y)

Sariel (UIUC) OLD CS473 19 Spring 2015 19 / 58

Converting z = x ∨ y to 3SAT
Simplify further if you want to

(
z = x ∨ y

)
≡ (z ∨ x ∨ y) ∧ (z ∨ x ∨ y) ∧ (z ∨ x ∨ y) ∧ (z ∨ x ∨ y)

1 Using that (x ∨ y) ∧ (x ∨ y) = x , we have that:

1 (z ∨ x ∨ y) ∧ (z ∨ x ∨ y) = z ∨ y .
2 (z ∨ x ∨ y) ∧ (z ∨ x ∨ y) = z ∨ x

2 Using the above two observation, we have the following.

Lemma
The formula z = x ∨ y is equivalent to the CNF formula(
z = x ∨ y

)
≡ (z ∨ y) ∧ (z ∨ x) ∧ (z ∨ x ∨ y)

Sariel (UIUC) OLD CS473 19 Spring 2015 19 / 58

Converting z = x ∨ y to 3SAT
Simplify further if you want to

(
z = x ∨ y

)
≡ (z ∨ x ∨ y) ∧ (z ∨ x ∨ y) ∧ (z ∨ x ∨ y) ∧ (z ∨ x ∨ y)

1 Using that (x ∨ y) ∧ (x ∨ y) = x , we have that:

1 (z ∨ x ∨ y) ∧ (z ∨ x ∨ y) = z ∨ y .
2 (z ∨ x ∨ y) ∧ (z ∨ x ∨ y) = z ∨ x

2 Using the above two observation, we have the following.

Lemma
The formula z = x ∨ y is equivalent to the CNF formula(
z = x ∨ y

)
≡ (z ∨ y) ∧ (z ∨ x) ∧ (z ∨ x ∨ y)

Sariel (UIUC) OLD CS473 19 Spring 2015 19 / 58

Converting z = x ∨ y to 3SAT
Simplify further if you want to

(
z = x ∨ y

)
≡ (z ∨ x ∨ y) ∧ (z ∨ x ∨ y) ∧ (z ∨ x ∨ y) ∧ (z ∨ x ∨ y)

1 Using that (x ∨ y) ∧ (x ∨ y) = x , we have that:

1 (z ∨ x ∨ y) ∧ (z ∨ x ∨ y) = z ∨ y .
2 (z ∨ x ∨ y) ∧ (z ∨ x ∨ y) = z ∨ x

2 Using the above two observation, we have the following.

Lemma
The formula z = x ∨ y is equivalent to the CNF formula(
z = x ∨ y

)
≡ (z ∨ y) ∧ (z ∨ x) ∧ (z ∨ x ∨ y)

Sariel (UIUC) OLD CS473 19 Spring 2015 19 / 58

Converting z = x to CNF

Lemma
z = x ≡ (z ∨ x) ∧ (z ∨ x).

Sariel (UIUC) OLD CS473 20 Spring 2015 20 / 58

Converting into CNF- summary

Lemma

z = x ≡ (z ∨ x) ∧ (z ∨ x).

z = x ∨ y ≡ (z ∨ y) ∧ (z ∨ x) ∧ (z ∨ x ∨ y)

z = x ∧ y ≡ (z ∨ x ∨ y) ∧ (z ∨ x) ∧ (z ∨ y)

Sariel (UIUC) OLD CS473 21 Spring 2015 21 / 58

22.2.2: SAT and 3SAT

Sariel (UIUC) OLD CS473 22 Spring 2015 22 / 58

SAT ≤P 3SAT

How SAT is different from 3SAT?
In SAT clauses might have arbitrary length: 1, 2, 3, . . . variables:(

x ∨ y ∨ z ∨ w ∨ u
)
∧

(
¬x ∨ ¬y ∨ ¬z ∨ w ∨ u

)
∧

(
¬x

)
In 3SAT every clause must have exactly 3 different literals.

To reduce from an instance of SAT to an instance of 3SAT, we
must make all clauses to have exactly 3 variables...

Basic idea
1 Pad short clauses so they have 3 literals.

2 Break long clauses into shorter clauses.

3 Repeat the above till we have a 3CNF.

Sariel (UIUC) OLD CS473 23 Spring 2015 23 / 58

SAT ≤P 3SAT

How SAT is different from 3SAT?
In SAT clauses might have arbitrary length: 1, 2, 3, . . . variables:(

x ∨ y ∨ z ∨ w ∨ u
)
∧

(
¬x ∨ ¬y ∨ ¬z ∨ w ∨ u

)
∧

(
¬x

)
In 3SAT every clause must have exactly 3 different literals.

To reduce from an instance of SAT to an instance of 3SAT, we
must make all clauses to have exactly 3 variables...

Basic idea
1 Pad short clauses so they have 3 literals.

2 Break long clauses into shorter clauses.

3 Repeat the above till we have a 3CNF.

Sariel (UIUC) OLD CS473 23 Spring 2015 23 / 58

3SAT ≤P SAT

1 3SAT ≤P SAT.

2 Because...
A 3SAT instance is also an instance of SAT.

Sariel (UIUC) OLD CS473 24 Spring 2015 24 / 58

SAT ≤P 3SAT

Claim
SAT ≤P 3SAT.

Given φ a SAT formula we create a 3SAT formula φ′ such that

1 φ is satisfiable iff φ′ is satisfiable.

2 φ′ can be constructed from φ in time polynomial in |φ|.

Idea: if a clause of φ is not of length 3, replace it with several
clauses of length exactly 3.

Sariel (UIUC) OLD CS473 25 Spring 2015 25 / 58

SAT ≤P 3SAT

Claim
SAT ≤P 3SAT.

Given φ a SAT formula we create a 3SAT formula φ′ such that

1 φ is satisfiable iff φ′ is satisfiable.

2 φ′ can be constructed from φ in time polynomial in |φ|.

Idea: if a clause of φ is not of length 3, replace it with several
clauses of length exactly 3.

Sariel (UIUC) OLD CS473 25 Spring 2015 25 / 58

SAT ≤P 3SAT

Claim
SAT ≤P 3SAT.

Given φ a SAT formula we create a 3SAT formula φ′ such that

1 φ is satisfiable iff φ′ is satisfiable.

2 φ′ can be constructed from φ in time polynomial in |φ|.

Idea: if a clause of φ is not of length 3, replace it with several
clauses of length exactly 3.

Sariel (UIUC) OLD CS473 25 Spring 2015 25 / 58

SAT ≤P 3SAT
A clause with a single literal

Reduction Ideas
Challenge: Some of the clauses in φ may have less or more than 3
literals. For each clause with < 3 or > 3 literals, we will construct a
set of logically equivalent clauses.

1 Case clause with one literal: Let c be a clause with a single
literal (i.e., c = ℓ). Let u, v be new variables. Consider

c ′ =
(
ℓ ∨ u ∨ v

)
∧

(
ℓ ∨ u ∨ ¬v

)
∧

(
ℓ ∨ ¬u ∨ v

)
∧

(
ℓ ∨ ¬u ∨ ¬v

)
.

Observe that c ′ is satisfiable iff c is satisfiable

Sariel (UIUC) OLD CS473 26 Spring 2015 26 / 58

SAT ≤P 3SAT
A clause with two literals

Reduction Ideas: 2 and more literals
1 Case clause with 2 literals: Let c = ℓ1 ∨ ℓ2. Let u be a new

variable. Consider

c ′ =
(
ℓ1 ∨ ℓ2 ∨ u

)
∧

(
ℓ1 ∨ ℓ2 ∨ ¬u

)
.

Again c is satisfiable iff c ′ is satisfiable

Sariel (UIUC) OLD CS473 27 Spring 2015 27 / 58

Breaking a clause

Lemma
For any boolean formulas X and Y and z a new boolean variable.
Then

X ∨ Y is satisfiable

if and only if, z can be assigned a value such that(
X ∨ z

)
∧

(
Y ∨ ¬z

)
is satisfiable

(with the same assignment to the variables appearing in X and Y).

Sariel (UIUC) OLD CS473 28 Spring 2015 28 / 58

SAT ≤P 3SAT (contd)
Clauses with more than 3 literals

Let c = ℓ1 ∨ · · · ∨ ℓk . Let u1, . . . uk−3 be new variables. Consider

c ′ =
(
ℓ1 ∨ ℓ2 ∨ u1

)
∧

(
ℓ3 ∨ ¬u1 ∨ u2

)
∧

(
ℓ4 ∨ ¬u2 ∨ u3

)
∧

· · · ∧
(
ℓk−2 ∨ ¬uk−4 ∨ uk−3

)
∧

(
ℓk−1 ∨ ℓk ∨ ¬uk−3

)
.

Claim
c is satisfiable iff c ′ is satisfiable.

Another way to see it — reduce size of clause by one:

c ′ =
(
ℓ1 ∨ ℓ2 . . . ∨ ℓk−2 ∨ uk−3

)
∧

(
ℓk−1 ∨ ℓk ∨ ¬uk−3

)
.

Sariel (UIUC) OLD CS473 29 Spring 2015 29 / 58

An Example

Example

φ =
(
¬x1 ∨ ¬x4

)
∧

(
x1 ∨ ¬x2 ∨ ¬x3

)
∧

(
¬x2 ∨ ¬x3 ∨ x4 ∨ x1

)
∧

(
x1

)
.

Equivalent form:

ψ = (¬x1 ∨ ¬x4 ∨ z) ∧ (¬x1 ∨ ¬x4 ∨ ¬z)
∧ (x1 ∨ ¬x2 ∨ ¬x3)

∧ (¬x2 ∨ ¬x3 ∨ y1) ∧ (x4 ∨ x1 ∨ ¬y1)

∧ (x1 ∨ u ∨ v) ∧ (x1 ∨ u ∨ ¬v)
∧ (x1 ∨ ¬u ∨ v) ∧ (x1 ∨ ¬u ∨ ¬v).

Sariel (UIUC) OLD CS473 30 Spring 2015 30 / 58

An Example

Example

φ =
(
¬x1 ∨ ¬x4

)
∧

(
x1 ∨ ¬x2 ∨ ¬x3

)
∧

(
¬x2 ∨ ¬x3 ∨ x4 ∨ x1

)
∧

(
x1

)
.

Equivalent form:

ψ = (¬x1 ∨ ¬x4 ∨ z) ∧ (¬x1 ∨ ¬x4 ∨ ¬z)
∧ (x1 ∨ ¬x2 ∨ ¬x3)

∧ (¬x2 ∨ ¬x3 ∨ y1) ∧ (x4 ∨ x1 ∨ ¬y1)

∧ (x1 ∨ u ∨ v) ∧ (x1 ∨ u ∨ ¬v)
∧ (x1 ∨ ¬u ∨ v) ∧ (x1 ∨ ¬u ∨ ¬v).

Sariel (UIUC) OLD CS473 30 Spring 2015 30 / 58

An Example

Example

φ =
(
¬x1 ∨ ¬x4

)
∧

(
x1 ∨ ¬x2 ∨ ¬x3

)
∧

(
¬x2 ∨ ¬x3 ∨ x4 ∨ x1

)
∧

(
x1

)
.

Equivalent form:

ψ = (¬x1 ∨ ¬x4 ∨ z) ∧ (¬x1 ∨ ¬x4 ∨ ¬z)
∧ (x1 ∨ ¬x2 ∨ ¬x3)

∧ (¬x2 ∨ ¬x3 ∨ y1) ∧ (x4 ∨ x1 ∨ ¬y1)

∧ (x1 ∨ u ∨ v) ∧ (x1 ∨ u ∨ ¬v)
∧ (x1 ∨ ¬u ∨ v) ∧ (x1 ∨ ¬u ∨ ¬v).

Sariel (UIUC) OLD CS473 30 Spring 2015 30 / 58

An Example

Example

φ =
(
¬x1 ∨ ¬x4

)
∧

(
x1 ∨ ¬x2 ∨ ¬x3

)
∧

(
¬x2 ∨ ¬x3 ∨ x4 ∨ x1

)
∧

(
x1

)
.

Equivalent form:

ψ = (¬x1 ∨ ¬x4 ∨ z) ∧ (¬x1 ∨ ¬x4 ∨ ¬z)
∧ (x1 ∨ ¬x2 ∨ ¬x3)

∧ (¬x2 ∨ ¬x3 ∨ y1) ∧ (x4 ∨ x1 ∨ ¬y1)

∧ (x1 ∨ u ∨ v) ∧ (x1 ∨ u ∨ ¬v)
∧ (x1 ∨ ¬u ∨ v) ∧ (x1 ∨ ¬u ∨ ¬v).

Sariel (UIUC) OLD CS473 30 Spring 2015 30 / 58

Overall Reduction Algorithm
Reduction from SAT to 3SAT

ReduceSATTo3SAT(φ):
// φ: CNF formula.

for each clause c of φ do
if c does not have exactly 3 literals then

construct c ′ as before

else
c ′ = c

ψ is conjunction of all c ′ constructed in loop

return Solver3SAT(ψ)

Correctness (informal)

φ is satisfiable iff ψ is satisfiable because for each clause c , the new
3CNF formula c ′ is logically equivalent to c .

Sariel (UIUC) OLD CS473 31 Spring 2015 31 / 58

Overall Reduction Algorithm
Reduction from SAT to 3SAT

ReduceSATTo3SAT(φ):
// φ: CNF formula.

for each clause c of φ do
if c does not have exactly 3 literals then

construct c ′ as before

else
c ′ = c

ψ is conjunction of all c ′ constructed in loop

return Solver3SAT(ψ)

Correctness (informal)

φ is satisfiable iff ψ is satisfiable because for each clause c , the new
3CNF formula c ′ is logically equivalent to c .

Sariel (UIUC) OLD CS473 31 Spring 2015 31 / 58

What about 2SAT?

2SAT can be solved in polynomial time! (specifically, linear time!)

No known polynomial time reduction from SAT (or 3SAT) to
2SAT. If there was, then SAT and 3SAT would be solvable in
polynomial time.

Why the reduction from 3SAT to 2SAT fails?

Consider a clause (x ∨ y ∨ z). We need to reduce it to a collection
of 2CNF clauses. Introduce a face variable α, and rewrite this as

(x ∨ y ∨ α) ∧ (¬α ∨ z) (bad! clause with 3 vars)

or (x ∨ α) ∧ (¬α ∨ y ∨ z) (bad! clause with 3 vars).

(In animal farm language: 2SAT good, 3SAT bad.)
Sariel (UIUC) OLD CS473 32 Spring 2015 32 / 58

What about 2SAT?

A challenging exercise: Given a 2SAT formula show to compute its
satisfying assignment...
(Hint: Create a graph with two vertices for each variable (for a
variable x there would be two vertices with labels x = 0 and
x = 1). For ever 2CNF clause add two directed edges in the graph.
The edges are implication edges: They state that if you decide to
assign a certain value to a variable, then you must assign a certain
value to some other variable.
Now compute the strong connected components in this graph, and
continue from there...)

Sariel (UIUC) OLD CS473 33 Spring 2015 33 / 58

22.2.3: 3SAT and Independent Set

Sariel (UIUC) OLD CS473 34 Spring 2015 34 / 58

Independent Set

Problem: Independent Set

Instance: A graph G, integer k .
Question: Is there an independent set in G of size k?

Sariel (UIUC) OLD CS473 35 Spring 2015 35 / 58

3SAT ≤P Independent Set

The reduction 3SAT ≤P Independent Set
Input: Given a 3CNF formula φ
Goal: Construct a graph Gφ and number k such that Gφ has an
independent set of size k if and only if φ is satisfiable.
Gφ should be constructable in time polynomial in size of φ

1 Importance of reduction: Although 3SAT is much more
expressive, it can be reduced to a seemingly specialized
Independent Set problem.

2 Notice: We handle only 3CNF formulas – reduction would not
work for other kinds of boolean formulas.

Sariel (UIUC) OLD CS473 36 Spring 2015 36 / 58

3SAT ≤P Independent Set

The reduction 3SAT ≤P Independent Set
Input: Given a 3CNF formula φ
Goal: Construct a graph Gφ and number k such that Gφ has an
independent set of size k if and only if φ is satisfiable.
Gφ should be constructable in time polynomial in size of φ

1 Importance of reduction: Although 3SAT is much more
expressive, it can be reduced to a seemingly specialized
Independent Set problem.

2 Notice: We handle only 3CNF formulas – reduction would not
work for other kinds of boolean formulas.

Sariel (UIUC) OLD CS473 36 Spring 2015 36 / 58

3SAT ≤P Independent Set

The reduction 3SAT ≤P Independent Set
Input: Given a 3CNF formula φ
Goal: Construct a graph Gφ and number k such that Gφ has an
independent set of size k if and only if φ is satisfiable.
Gφ should be constructable in time polynomial in size of φ

1 Importance of reduction: Although 3SAT is much more
expressive, it can be reduced to a seemingly specialized
Independent Set problem.

2 Notice: We handle only 3CNF formulas – reduction would not
work for other kinds of boolean formulas.

Sariel (UIUC) OLD CS473 36 Spring 2015 36 / 58

3SAT ≤P Independent Set

The reduction 3SAT ≤P Independent Set
Input: Given a 3CNF formula φ
Goal: Construct a graph Gφ and number k such that Gφ has an
independent set of size k if and only if φ is satisfiable.
Gφ should be constructable in time polynomial in size of φ

1 Importance of reduction: Although 3SAT is much more
expressive, it can be reduced to a seemingly specialized
Independent Set problem.

2 Notice: We handle only 3CNF formulas – reduction would not
work for other kinds of boolean formulas.

Sariel (UIUC) OLD CS473 36 Spring 2015 36 / 58

Interpreting 3SAT

There are two ways to think about 3SAT

1 Find a way to assign 0/1 (false/true) to the variables such that
the formula evaluates to true, that is each clause evaluates to
true.

2 Pick a literal from each clause and find a truth assignment to
make all of them true. You will fail if two of the literals you pick
are in conflict, i.e., you pick xi and ¬xi

We will take the second view of 3SAT to construct the reduction.

Sariel (UIUC) OLD CS473 37 Spring 2015 37 / 58

Interpreting 3SAT

There are two ways to think about 3SAT

1 Find a way to assign 0/1 (false/true) to the variables such that
the formula evaluates to true, that is each clause evaluates to
true.

2 Pick a literal from each clause and find a truth assignment to
make all of them true. You will fail if two of the literals you pick
are in conflict, i.e., you pick xi and ¬xi

We will take the second view of 3SAT to construct the reduction.

Sariel (UIUC) OLD CS473 37 Spring 2015 37 / 58

Interpreting 3SAT

There are two ways to think about 3SAT

1 Find a way to assign 0/1 (false/true) to the variables such that
the formula evaluates to true, that is each clause evaluates to
true.

2 Pick a literal from each clause and find a truth assignment to
make all of them true. You will fail if two of the literals you pick
are in conflict, i.e., you pick xi and ¬xi

We will take the second view of 3SAT to construct the reduction.

Sariel (UIUC) OLD CS473 37 Spring 2015 37 / 58

Interpreting 3SAT

There are two ways to think about 3SAT

1 Find a way to assign 0/1 (false/true) to the variables such that
the formula evaluates to true, that is each clause evaluates to
true.

2 Pick a literal from each clause and find a truth assignment to
make all of them true. You will fail if two of the literals you pick
are in conflict, i.e., you pick xi and ¬xi

We will take the second view of 3SAT to construct the reduction.

Sariel (UIUC) OLD CS473 37 Spring 2015 37 / 58

The Reduction

1 Gφ will have one vertex for each literal in a clause
2 Connect the 3 literals in a clause to form a triangle; the

independent set will pick at most one vertex from each clause,
which will correspond to the literal to be set to true

3 Connect 2 vertices if they label complementary literals; this
ensures that the literals corresponding to the independent set do
not have a conflict

4 Take k to be the number of clauses

¬x1 ¬x2 ¬x1

x1 x3x3x2 x2 x4

Figure: Graph for
φ = (¬x1 ∨ x2 ∨ x3) ∧ (x1 ∨ ¬x2 ∨ x3) ∧ (¬x1 ∨ x2 ∨ x4)

Sariel (UIUC) OLD CS473 38 Spring 2015 38 / 58

The Reduction

1 Gφ will have one vertex for each literal in a clause
2 Connect the 3 literals in a clause to form a triangle; the

independent set will pick at most one vertex from each clause,
which will correspond to the literal to be set to true

3 Connect 2 vertices if they label complementary literals; this
ensures that the literals corresponding to the independent set do
not have a conflict

4 Take k to be the number of clauses

¬x1 ¬x2 ¬x1

x1 x3x3x2 x2 x4

Figure: Graph for
φ = (¬x1 ∨ x2 ∨ x3) ∧ (x1 ∨ ¬x2 ∨ x3) ∧ (¬x1 ∨ x2 ∨ x4)

Sariel (UIUC) OLD CS473 38 Spring 2015 38 / 58

The Reduction

1 Gφ will have one vertex for each literal in a clause
2 Connect the 3 literals in a clause to form a triangle; the

independent set will pick at most one vertex from each clause,
which will correspond to the literal to be set to true

3 Connect 2 vertices if they label complementary literals; this
ensures that the literals corresponding to the independent set do
not have a conflict

4 Take k to be the number of clauses

¬x1 ¬x2 ¬x1

x1 x3x3x2 x2 x4

Figure: Graph for
φ = (¬x1 ∨ x2 ∨ x3) ∧ (x1 ∨ ¬x2 ∨ x3) ∧ (¬x1 ∨ x2 ∨ x4)

Sariel (UIUC) OLD CS473 38 Spring 2015 38 / 58

The Reduction

1 Gφ will have one vertex for each literal in a clause
2 Connect the 3 literals in a clause to form a triangle; the

independent set will pick at most one vertex from each clause,
which will correspond to the literal to be set to true

3 Connect 2 vertices if they label complementary literals; this
ensures that the literals corresponding to the independent set do
not have a conflict

4 Take k to be the number of clauses

¬x1 ¬x2 ¬x1

x1 x3x3x2 x2 x4

Figure: Graph for
φ = (¬x1 ∨ x2 ∨ x3) ∧ (x1 ∨ ¬x2 ∨ x3) ∧ (¬x1 ∨ x2 ∨ x4)

Sariel (UIUC) OLD CS473 38 Spring 2015 38 / 58

The Reduction

1 Gφ will have one vertex for each literal in a clause
2 Connect the 3 literals in a clause to form a triangle; the

independent set will pick at most one vertex from each clause,
which will correspond to the literal to be set to true

3 Connect 2 vertices if they label complementary literals; this
ensures that the literals corresponding to the independent set do
not have a conflict

4 Take k to be the number of clauses

¬x1 ¬x2 ¬x1

x1 x3x3x2 x2 x4

Figure: Graph for
φ = (¬x1 ∨ x2 ∨ x3) ∧ (x1 ∨ ¬x2 ∨ x3) ∧ (¬x1 ∨ x2 ∨ x4)

Sariel (UIUC) OLD CS473 38 Spring 2015 38 / 58

Correctness

Proposition

φ is satisfiable iff Gφ has an independent set of size k (= number of
clauses in φ).

Proof.
⇒ Let a be the truth assignment satisfying φ

1 Pick one of the vertices, corresponding to true literals under a,
from each triangle. This is an independent set of the
appropriate size

Sariel (UIUC) OLD CS473 39 Spring 2015 39 / 58

Correctness

Proposition

φ is satisfiable iff Gφ has an independent set of size k (= number of
clauses in φ).

Proof.
⇒ Let a be the truth assignment satisfying φ

1 Pick one of the vertices, corresponding to true literals under a,
from each triangle. This is an independent set of the
appropriate size

Sariel (UIUC) OLD CS473 39 Spring 2015 39 / 58

Correctness (contd)

Proposition

φ is satisfiable iff Gφ has an independent set of size k (= number of
clauses in φ).

Proof.
⇐ Let S be an independent set of size k

1 S must contain exactly one vertex from each clause
2 S cannot contain vertices labeled by conflicting clauses
3 Thus, it is possible to obtain a truth assignment that makes in

the literals in S true; such an assignment satisfies one literal in
every clause

Sariel (UIUC) OLD CS473 40 Spring 2015 40 / 58

Transitivity of Reductions

Lemma
X ≤P Y and Y ≤P Z implies that X ≤P Z .

Note: X ≤P Y does not imply that Y ≤P X and hence it is very
important to know the FROM and TO in a reduction.

To prove X ≤P Y you need to show a reduction FROM X TO Y
In other words show that an algorithm for Y implies an algorithm for
X .

Sariel (UIUC) OLD CS473 41 Spring 2015 41 / 58

Part II

Definition of NP

Sariel (UIUC) OLD CS473 42 Spring 2015 42 / 58

Recap . . .

Problems
1 Independent Set

2 Vertex Cover

3 Set Cover

4 SAT

5 3SAT

Sariel (UIUC) OLD CS473 43 Spring 2015 43 / 58

Recap . . .

Problems
1 Independent Set

2 Vertex Cover

3 Set Cover

4 SAT

5 3SAT

Relationship

3SAT ≤P Independent Set
≤P

≥P Vertex Cover ≤P Set Cover
3SAT ≤P SAT ≤P 3SAT

Sariel (UIUC) OLD CS473 43 Spring 2015 43 / 58

Recap . . .

Problems
1 Independent Set

2 Vertex Cover

3 Set Cover

4 SAT

5 3SAT

Relationship

3SAT ≤P Independent Set
≤P

≥P Vertex Cover ≤P Set Cover
3SAT ≤P SAT ≤P 3SAT

Sariel (UIUC) OLD CS473 43 Spring 2015 43 / 58

Recap . . .

Problems
1 Independent Set

2 Vertex Cover

3 Set Cover

4 SAT

5 3SAT

Relationship

3SAT ≤P Independent Set
≤P

≥P Vertex Cover ≤P Set Cover
3SAT ≤P SAT ≤P 3SAT

Sariel (UIUC) OLD CS473 43 Spring 2015 43 / 58

Recap . . .

Problems
1 Independent Set

2 Vertex Cover

3 Set Cover

4 SAT

5 3SAT

Relationship

3SAT ≤P Independent Set
≤P

≥P Vertex Cover ≤P Set Cover
3SAT ≤P SAT ≤P 3SAT

Sariel (UIUC) OLD CS473 43 Spring 2015 43 / 58

22.3: Preliminaries

Sariel (UIUC) OLD CS473 44 Spring 2015 44 / 58

22.3.1: Problems and Algorithms

Sariel (UIUC) OLD CS473 45 Spring 2015 45 / 58

Problems and Algorithms: Formal Approach

Decision Problems
1 Problem Instance: Binary string s, with size |s|
2 Problem: A set X of strings on which the answer should be

“yes”; we call these YES instances of X . Strings not in X are
NO instances of X .

Definition
1 A is an algorithm for problem X if A(s) = ”yes” iff s ∈ X .

2 A is said to have a polynomial running time if there is a
polynomial p(·) such that for every string s, A(s) terminates in
at most O(p(|s|)) steps.

Sariel (UIUC) OLD CS473 46 Spring 2015 46 / 58

Polynomial Time

Definition
Polynomial time (denoted by P) is the class of all (decision)
problems that have an algorithm that solves it in polynomial time.

Sariel (UIUC) OLD CS473 47 Spring 2015 47 / 58

Polynomial Time

Definition
Polynomial time (denoted by P) is the class of all (decision)
problems that have an algorithm that solves it in polynomial time.

Example
Problems in P include

1 Is there a shortest path from s to t of length ≤ k in G?

2 Is there a flow of value ≥ k in network G?

3 Is there an assignment to variables to satisfy given linear
constraints?

Sariel (UIUC) OLD CS473 47 Spring 2015 47 / 58

Efficiency Hypothesis

A problem X has an efficient algorithm iff X ∈ P, that is X has a
polynomial time algorithm.
Justifications:

1 Robustness of definition to variations in machines.

2 A sound theoretical definition.

3 Most known polynomial time algorithms for “natural” problems
have small polynomial running times.

Sariel (UIUC) OLD CS473 48 Spring 2015 48 / 58

Problems with no known polynomial time

algorithms

Problems
1 Independent Set

2 Vertex Cover

3 Set Cover

4 SAT

5 3SAT

There are of course undecidable problems (no algorithm at all!) but
many problems that we want to solve are of similar flavor to the
above.

Question: What is common to above problems?

Sariel (UIUC) OLD CS473 49 Spring 2015 49 / 58

Efficient Checkability

Above problems share the following feature:

Checkability

For any YES instance IX of X there is a proof/certificate/solution
that is of length poly(|IX |) such that given a proof one can efficiently
check that IX is indeed a YES instance.

Examples:

1 SAT formula φ: proof is a satisfying assignment.

2 Independent Set in graph G and k : a subset S of vertices.

Sariel (UIUC) OLD CS473 50 Spring 2015 50 / 58

Efficient Checkability

Above problems share the following feature:

Checkability

For any YES instance IX of X there is a proof/certificate/solution
that is of length poly(|IX |) such that given a proof one can efficiently
check that IX is indeed a YES instance.

Examples:

1 SAT formula φ: proof is a satisfying assignment.

2 Independent Set in graph G and k : a subset S of vertices.

Sariel (UIUC) OLD CS473 50 Spring 2015 50 / 58

22.3.2: Certifiers/Verifiers

Sariel (UIUC) OLD CS473 51 Spring 2015 51 / 58

Certifiers

Definition
An algorithm C(·, ·) is a certifier for problem X if for every s ∈ X
there is some string t such that C(s, t) = ”yes”, and conversely, if
for some s and t, C(s, t) = ”yes” then s ∈ X .
The string t is called a certificate or proof for s.

Sariel (UIUC) OLD CS473 52 Spring 2015 52 / 58

Certifiers

Definition
An algorithm C(·, ·) is a certifier for problem X if for every s ∈ X
there is some string t such that C(s, t) = ”yes”, and conversely, if
for some s and t, C(s, t) = ”yes” then s ∈ X .
The string t is called a certificate or proof for s.

Definition (Efficient Certifier.)

A certifier C is an efficient certifier for problem X if there is a
polynomial p(·) such that for every string s, we have that
⋆ s ∈ X if and only if
⋆ there is a string t:

1 |t| ≤ p(|s|),
2 C(s, t) = ”yes”,
3 and C runs in polynomial time.

Sariel (UIUC) OLD CS473 52 Spring 2015 52 / 58

Example: Independent Set

1 Problem: Does G = (V ,E) have an independent set of size
≥ k?

1 Certificate: Set S ⊆ V .
2 Certifier: Check |S| ≥ k and no pair of vertices in S is

connected by an edge.

Sariel (UIUC) OLD CS473 53 Spring 2015 53 / 58

22.3.3: Examples

Sariel (UIUC) OLD CS473 54 Spring 2015 54 / 58

Example: Vertex Cover

1 Problem: Does G have a vertex cover of size ≤ k?
1 Certificate: S ⊆ V .
2 Certifier: Check |S| ≤ k and that for every edge at least one

endpoint is in S .

Sariel (UIUC) OLD CS473 55 Spring 2015 55 / 58

Example: SAT

1 Problem: Does formula φ have a satisfying truth assignment?
1 Certificate: Assignment a of 0/1 values to each variable.
2 Certifier: Check each clause under a and say “yes” if all clauses

are true.

Sariel (UIUC) OLD CS473 56 Spring 2015 56 / 58

Example:Composites

Problem: Composite

Instance: A number s.
Question: Is the number s a composite?

1 Problem: Composite.
1 Certificate: A factor t ≤ s such that t ̸= 1 and t ̸= s.
2 Certifier: Check that t divides s.

Sariel (UIUC) OLD CS473 57 Spring 2015 57 / 58

22.4: NP

Sariel (UIUC) OLD CS473 58 Spring 2015 58 / 58

22.4.1: Definition

Sariel (UIUC) OLD CS473 59 Spring 2015 59 / 58

Nondeterministic Polynomial Time

Definition
Nondeterministic Polynomial Time (denoted by NP) is the class of
all problems that have efficient certifiers.

Sariel (UIUC) OLD CS473 60 Spring 2015 60 / 58

Nondeterministic Polynomial Time

Definition
Nondeterministic Polynomial Time (denoted by NP) is the class of
all problems that have efficient certifiers.

Example
Independent Set, Vertex Cover, Set Cover, SAT, 3SAT, and
Composite are all examples of problems in NP.

Sariel (UIUC) OLD CS473 60 Spring 2015 60 / 58

Why is it called...
Nondeterministic Polynomial Time

A certifier is an algorithm C(I , c) with two inputs:

1 I : instance.
2 c : proof/certificate that the instance is indeed a YES instance

of the given problem.

One can think about C as an algorithm for the original problem, if:

1 Given I , the algorithm guess (non-deterministically, and who
knows how) the certificate c .

2 The algorithm now verifies the certificate c for the instance I .
Usually NP is described using Turing machines (gag).

Sariel (UIUC) OLD CS473 61 Spring 2015 61 / 58

Asymmetry in Definition of NP

Note that only YES instances have a short proof/certificate. NO
instances need not have a short certificate.

Example
SAT formula φ. No easy way to prove that φ is NOT satisfiable!

More on this and co-NP later on.

Sariel (UIUC) OLD CS473 62 Spring 2015 62 / 58

22.4.2: Intractability

Sariel (UIUC) OLD CS473 63 Spring 2015 63 / 58

P versus NP

Proposition
P ⊆ NP.

For a problem in P no need for a certificate!

Proof.
Consider problem X ∈ P with algorithm A. Need to demonstrate
that X has an efficient certifier:

1 Certifier C on input s, t, runs A(s) and returns the answer.

2 C runs in polynomial time.

3 If s ∈ X , then for every t, C(s, t) = ”yes”.

4 If s ̸∈ X , then for every t, C(s, t) = ”no”.

Sariel (UIUC) OLD CS473 64 Spring 2015 64 / 58

P versus NP

Proposition
P ⊆ NP.

For a problem in P no need for a certificate!

Proof.
Consider problem X ∈ P with algorithm A. Need to demonstrate
that X has an efficient certifier:

1 Certifier C on input s, t, runs A(s) and returns the answer.

2 C runs in polynomial time.

3 If s ∈ X , then for every t, C(s, t) = ”yes”.

4 If s ̸∈ X , then for every t, C(s, t) = ”no”.

Sariel (UIUC) OLD CS473 64 Spring 2015 64 / 58

Exponential Time

Definition
Exponential Time (denoted EXP) is the collection of all problems
that have an algorithm which on input s runs in exponential time,
i.e., O(2poly(|s|)).

Example: O(2n), O(2n log n), O(2n3
), ...

Sariel (UIUC) OLD CS473 65 Spring 2015 65 / 58

Exponential Time

Definition
Exponential Time (denoted EXP) is the collection of all problems
that have an algorithm which on input s runs in exponential time,
i.e., O(2poly(|s|)).

Example: O(2n), O(2n log n), O(2n3
), ...

Sariel (UIUC) OLD CS473 65 Spring 2015 65 / 58

NP versus EXP

Proposition
NP ⊆ EXP.

Proof.
Let X ∈ NP with certifier C . Need to design an exponential time
algorithm for X .

1 For every t, with |t| ≤ p(|s|) run C(s, t); answer “yes” if any
one of these calls returns “yes”.

2 The above algorithm correctly solves X (exercise).

3 Algorithm runs in O(q(|s| + |p(s)|)2p(|s|)), where q is the
running time of C .

Sariel (UIUC) OLD CS473 66 Spring 2015 66 / 58

Examples

1 SAT: try all possible truth assignment to variables.

2 Independent Set: try all possible subsets of vertices.

3 Vertex Cover: try all possible subsets of vertices.

Sariel (UIUC) OLD CS473 67 Spring 2015 67 / 58

Is NP efficiently solvable?

We know P ⊆ NP ⊆ EXP.

Sariel (UIUC) OLD CS473 68 Spring 2015 68 / 58

Is NP efficiently solvable?

We know P ⊆ NP ⊆ EXP.

Big Question

Is there are problem in NP that does not belong to P? Is P = NP?

Sariel (UIUC) OLD CS473 68 Spring 2015 68 / 58

If P = NP . . .
Or: If pigs could fly then life would be sweet.

1 Many important optimization problems can be solved efficiently.

2 The RSA cryptosystem can be broken.

3 No security on the web.

4 No e-commerce . . .

5 Creativity can be automated! Proofs for mathematical statement
can be found by computers automatically (if short ones exist).

Sariel (UIUC) OLD CS473 69 Spring 2015 69 / 58

If P = NP . . .
Or: If pigs could fly then life would be sweet.

1 Many important optimization problems can be solved efficiently.

2 The RSA cryptosystem can be broken.

3 No security on the web.

4 No e-commerce . . .

5 Creativity can be automated! Proofs for mathematical statement
can be found by computers automatically (if short ones exist).

Sariel (UIUC) OLD CS473 69 Spring 2015 69 / 58

If P = NP . . .
Or: If pigs could fly then life would be sweet.

1 Many important optimization problems can be solved efficiently.

2 The RSA cryptosystem can be broken.

3 No security on the web.

4 No e-commerce . . .

5 Creativity can be automated! Proofs for mathematical statement
can be found by computers automatically (if short ones exist).

Sariel (UIUC) OLD CS473 69 Spring 2015 69 / 58

If P = NP . . .
Or: If pigs could fly then life would be sweet.

1 Many important optimization problems can be solved efficiently.

2 The RSA cryptosystem can be broken.

3 No security on the web.

4 No e-commerce . . .

5 Creativity can be automated! Proofs for mathematical statement
can be found by computers automatically (if short ones exist).

Sariel (UIUC) OLD CS473 69 Spring 2015 69 / 58

If P = NP . . .
Or: If pigs could fly then life would be sweet.

1 Many important optimization problems can be solved efficiently.

2 The RSA cryptosystem can be broken.

3 No security on the web.

4 No e-commerce . . .

5 Creativity can be automated! Proofs for mathematical statement
can be found by computers automatically (if short ones exist).

Sariel (UIUC) OLD CS473 69 Spring 2015 69 / 58

P versus NP

Status
Relationship between P and NP remains one of the most important
open problems in mathematics/computer science.

Consensus: Most people feel/believe P ̸= NP.

Resolving P versus NP is a Clay Millennium Prize Problem. You can
win a million dollars in addition to a Turing award and major fame!

Sariel (UIUC) OLD CS473 70 Spring 2015 70 / 58

Notes

Sariel (UIUC) OLD CS473 71 Spring 2015 71 / 58

Notes

Sariel (UIUC) OLD CS473 72 Spring 2015 72 / 58

Notes

Sariel (UIUC) OLD CS473 73 Spring 2015 73 / 58

Notes

Sariel (UIUC) OLD CS473 74 Spring 2015 74 / 58

	Reductions Continued
	Reductions
	The Satisfiability Problem (SAT)
	Converting a boolean formula with 3 variables to 3SAT
	SAT and 3SAT
	3SAT and Independent Set

	Definition of NP
	Preliminaries
	Problems and Algorithms
	Certifiers/Verifiers
	Examples

	NP
	Definition
	Intractability

