Applications of Network Flows

Lecture 19
April 2, 2015
19.1: Important Properties of Flows
Network flow, what we know...

1. \(G \): Network flow with \(n \) vertices and \(m \) edges.
2. \texttt{algFordFulkerson} computes max-flow if capacities are integers.
3. If total capacity is \(C \), running time of \texttt{algFordFulkerson} is \(O(mC) \).
4. \texttt{algFordFulkerson} is not polynomial time.
5. \texttt{algFordFulkerson} might not terminate if capacities are real numbers.
6. ...see end of the slides in previous lectures for detailed example.
Network flow, what we know...

1. G: Network flow with n vertices and m edges.
2. algFordFulkerson computes max-flow if capacities are integers.
3. If total capacity is C, running time of algFordFulkerson is $O(mC)$.
4. algFordFulkerson is not polynomial time.
5. algFordFulkerson might not terminate if capacities are real numbers.
6. ...see end of the slides in previous lectures for detailed example.
Network flow, what we know...

1. \(G \): Network flow with \(n \) vertices and \(m \) edges.
2. \texttt{algFordFulkerson} computes max-flow if capacities are integers.
3. If total capacity is \(C \), running time of \texttt{algFordFulkerson} is \(O(mC) \).
4. \texttt{algFordFulkerson} is not polynomial time.
5. \texttt{algFordFulkerson} might not terminate if capacities are real numbers.
6. ...see end of the slides in previous lectures for detailed example.
G: Network flow with n vertices and m edges.

2. `algFordFulkerson` computes max-flow if capacities are integers.

3. If total capacity is C, running time of `algFordFulkerson` is $O(mC)$.

4. `algFordFulkerson` is not polynomial time.

5. `algFordFulkerson` might not terminate if capacities are real numbers.

6. ...see end of the slides in previous lectures for detailed example.
Network flow, what we know...

1. G: Network flow with n vertices and m edges.
2. algFordFulkerson computes max-flow if capacities are integers.
3. If total capacity is C, running time of algFordFulkerson is $O(mC)$.
4. algFordFulkerson is not polynomial time.
5. algFordFulkerson might not terminate if capacities are real numbers.
6. ...see end of the slides in previous lectures for detailed example.
Network flow, what we know...

1. **G**: Network flow with \(n \) vertices and \(m \) edges.

2. **algFordFulkerson** computes max-flow if capacities are integers.

3. If total capacity is \(C \), running time of **algFordFulkerson** is \(O(mC) \).

4. **algFordFulkerson** is not polynomial time.

5. **algFordFulkerson** might not terminate if capacities are real numbers.

6. ...see end of the slides in previous lectures for detailed example.
Part I

Edmonds-Karp algorithm
Edmonds-Karp algorithm

```
algEdmondsKarp
  for every edge e, f(e) = 0
  G_f is residual graph of G with respect to f
  while G_f has a simple s-t path do
    Perform BFS in G_f
    P: shortest s-t path in G_f
    f = augment(f, P)
  Construct new residual graph G_f.
```

Theorem

Given a network flow G with n vertices and m edges, and capacities that are real numbers, the algorithm algEdmondsKarp computes the maximum flow in G. The running time is O(m^2 n).
Edmonds-Karp algorithm

algEdmondsKarp

for every edge e, $f(e) = 0$

G_f is residual graph of G with respect to f

while G_f has a simple s-t path do

Perform BFS in G_f

P: shortest s-t path in G_f

$f = \text{augment}(f, P)$

Construct new residual graph G_f.

Theorem

Given a network flow G with n vertices and m edges, and capacities that are real numbers, the algorithm algEdmondsKarp computes the maximum flow in G.

The running time is $O(m^2 n)$.
19.2: Computing a minimum cut...
Finding a Minimum Cut

1. **Question**: How do we find an actual minimum $s-t$ cut?

2. **Proof gives the algorithm!**
 - Compute an $s-t$ maximum flow f in G
 - Obtain the residual graph G_f
 - Find the nodes A reachable from s in G_f
 - Output the cut $(A, B) = \{(u, v) \mid u \in A, v \in B\}$.
 Note: The cut is found in G while A is found in G_f

3. Running time is essentially the same as finding a maximum flow.

4. **Note**: Given G and a flow f there is a linear time algorithm to check if f is a maximum flow and if it is, outputs a minimum cut. How?
Finding a Minimum Cut

1. **Question:** How do we find an actual minimum $s-t$ cut?

2. Proof gives the algorithm!
 1. Compute an $s-t$ maximum flow f in G
 2. Obtain the residual graph G_f
 3. Find the nodes A reachable from s in G_f
 4. Output the cut $(A, B) = \{(u, v) \mid u \in A, v \in B\}$. Note: The cut is found in G while A is found in G_f

3. Running time is essentially the same as finding a maximum flow.

4. **Note:** Given G and a flow f there is a linear time algorithm to check if f is a maximum flow and if it is, outputs a minimum cut. How?
Finding a Minimum Cut

Question: How do we find an actual minimum \(s-t \) cut?

Proof gives the algorithm!

1. Compute an \(s-t \) maximum flow \(f \) in \(G \)
2. Obtain the residual graph \(G_f \)
3. Find the nodes \(A \) reachable from \(s \) in \(G_f \)
4. Output the cut \((A, B) = \{(u, v) \mid u \in A, v \in B\} \). Note:
 The cut is found in \(G \) while \(A \) is found in \(G_f \)

Running time is essentially the same as finding a maximum flow.

Note: Given \(G \) and a flow \(f \) there is a linear time algorithm to check if \(f \) is a maximum flow and if it is, outputs a minimum cut. How?
Finding a Minimum Cut

1. **Question:** How do we find an actual minimum $s-t$ cut?

2. **Proof gives the algorithm!**

 1. Compute an $s-t$ maximum flow f in G
 2. Obtain the residual graph G_f
 3. Find the nodes A reachable from s in G_f
 4. Output the cut $(A, B) = \{(u, v) \mid u \in A, v \in B\}$. Note: The cut is found in G while A is found in G_f

3. Running time is essentially the same as finding a maximum flow.

4. **Note:** Given G and a flow f there is a linear time algorithm to check if f is a maximum flow and if it is, outputs a minimum cut. How?
Finding a Minimum Cut

Question: How do we find an actual minimum $s-t$ cut?

Proof gives the algorithm!

1. Compute an $s-t$ maximum flow f in G
2. Obtain the residual graph G_f
3. Find the nodes A reachable from s in G_f
4. Output the cut $(A, B) = \{(u, v) \mid u \in A, v \in B\}$. Note: The cut is found in G while A is found in G_f

Running time is essentially the same as finding a maximum flow.

Note: Given G and a flow f there is a linear time algorithm to check if f is a maximum flow and if it is, outputs a minimum cut. How?
Finding a Minimum Cut

1. **Question**: How do we find an actual minimum s-t cut?

2. **Proof gives the algorithm**:
 - Compute an s-t maximum flow f in G
 - Obtain the residual graph G_f
 - Find the nodes A reachable from s in G_f
 - Output the cut $(A, B) = \{(u, v) \mid u \in A, v \in B\}$. Note: The cut is found in G while A is found in G_f

3. Running time is essentially the same as finding a maximum flow.

4. **Note**: Given G and a flow f there is a linear time algorithm to check if f is a maximum flow and if it is, outputs a minimum cut. How?
Finding a Minimum Cut

1. **Question:** How do we find an actual minimum \(s-t \) cut?

2. **Proof gives the algorithm!**
 1. Compute an \(s-t \) maximum flow \(f \) in \(G \)
 2. Obtain the residual graph \(G_f \)
 3. Find the nodes \(A \) reachable from \(s \) in \(G_f \)
 4. Output the cut \((A, B) = \{(u, v) \mid u \in A, v \in B\} \). Note: The cut is found in \(G \) while \(A \) is found in \(G_f \)

3. Running time is essentially the same as finding a maximum flow.

4. **Note:** Given \(G \) and a flow \(f \) there is a linear time algorithm to check if \(f \) is a maximum flow and if it is, outputs a minimum cut. How?
Finding a Minimum Cut

1. **Question**: How do we find an actual minimum s-t cut?

2. **Proof gives the algorithm!**
 1. Compute an s-t maximum flow f in G.
 2. Obtain the residual graph G_f.
 3. Find the nodes A reachable from s in G_f.
 4. Output the cut $(A, B) = \{ (u, v) \mid u \in A, v \in B \}$.
 Note: The cut is found in G while A is found in G_f.

3. **Running time is essentially the same as finding a maximum flow.**

4. **Note**: Given G and a flow f there is a linear time algorithm to check if f is a maximum flow and if it is, outputs a minimum cut. How?
Finding a Minimum Cut

1. **Question:** How do we find an actual minimum $s-t$ cut?

2. **Proof gives the algorithm!**

 1. Compute an $s-t$ maximum flow f in G
 2. Obtain the residual graph G_f
 3. Find the nodes A reachable from s in G_f
 4. Output the cut $(A, B) = \{(u, v) \mid u \in A, v \in B\}$. Note: The cut is found in G while A is found in G_f

3. Running time is essentially the same as finding a maximum flow.

4. **Note:** Given G and a flow f there is a linear time algorithm to check if f is a maximum flow and if it is, outputs a minimum cut. How?
Min cut from max-flow

Max flow
Min cut from max-flow

Max flow

Residual network
Min cut from max-flow

Max flow

Residual network

Reachable vertices from s
Min cut from max-flow

Max flow

Residual network

Reachable vertices from s

Resulting min-cut (A, B)
Network Flow: Facts to Remember

Flow network: directed graph G, capacities c, source s, sink t.

1. Maximum s-t flow can be computed:
 1. Using Ford-Fulkerson algorithm in $O(mC)$ time when capacities are integral and C is an upper bound on the flow.
 2. Using variant of algorithm, in $O(m^2 \log C)$ time, when capacities are integral. (Polynomial time.)
 3. Using Edmonds-Karp algorithm, in $O(m^2 n)$ time, when capacities are rational (strongly polynomial time algorithm).
Network Flow: Facts to Remember

Flow network: directed graph G, capacities c, source s, sink t.

1. Maximum s-t flow can be computed:
 1. Using Ford-Fulkerson algorithm in $O(mC)$ time when capacities are integral and C is an upper bound on the flow.
 2. Using variant of algorithm, in $O(m^2 \log C)$ time, when capacities are integral. (Polynomial time.)
 3. Using Edmonds-Karp algorithm, in $O(m^2 n)$ time, when capacities are rational (strongly polynomial time algorithm).
Network Flow: Facts to Remember

Flow network: directed graph G, capacities c, source s, sink t.

1. Maximum s-t flow can be computed:
 1. Using Ford-Fulkerson algorithm in $O(mC)$ time when capacities are integral and C is an upper bound on the flow.
 2. Using variant of algorithm, in $O(m^2 \log C)$ time, when capacities are integral. (Polynomial time.)
 3. Using Edmonds-Karp algorithm, in $O(m^2 n)$ time, when capacities are rational (strongly polynomial time algorithm).
Network Flow: Facts to Remember

Flow network: directed graph G, capacities c, source s, sink t.

1. Maximum s-t flow can be computed:
 1. Using Ford-Fulkerson algorithm in $O(mC)$ time when capacities are integral and C is an upper bound on the flow.
 2. Using variant of algorithm, in $O(m^2 \log C)$ time, when capacities are integral. (Polynomial time.)
 3. Using Edmonds-Karp algorithm, in $O(m^2 n)$ time, when capacities are rational (strongly polynomial time algorithm).
Network Flow

Even more facts to remember

1. If capacities are integral then there is a maximum flow that is integral and above algorithms give an integral max flow. This is known as **integrality of flow**.

2. Given a flow of value \(v \), can decompose into \(O(m + n) \) flow paths of same total value \(v \). Integral flow implies integral flow on paths.

3. Maximum flow is equal to the minimum cut and minimum cut can be found in \(O(m + n) \) time given any maximum flow.
1. If capacities are integral then there is a maximum flow that is integral and above algorithms give an integral max flow. This is known as **integrality of flow**.

2. Given a flow of value v, can decompose into $O(m + n)$ flow paths of same total value v. Integral flow implies integral flow on paths.

3. Maximum flow is equal to the minimum cut and minimum cut can be found in $O(m + n)$ time given any maximum flow.
1. If capacities are integral then there is a maximum flow that is integral and above algorithms give an integral max flow. This is known as **integrality of flow**.

2. Given a flow of value v, can decompose into $O(m + n)$ flow paths of same total value v. Integral flow implies integral flow on paths.

3. Maximum flow is equal to the minimum cut and minimum cut can be found in $O(m + n)$ time given any maximum flow.
Definition

Given a flow network $G = (V, E)$ and a flow $f : E \rightarrow \mathbb{R}_{\geq 0}$ on the edges, the **support** of f is the set of edges $E' \subseteq E$ with non-zero flow on them. That is, $E' = \{e \in E \mid f(e) > 0\}$.

Question: Given a flow f, can there by cycles in its support?
Definition

Given a flow network $G = (V, E)$ and a flow $f : E \rightarrow \mathbb{R}^\geq 0$ on the edges, the support of f is the set of edges $E' \subseteq E$ with non-zero flow on them. That is, $E' = \{e \in E | f(e) > 0\}$.

Question: Given a flow f, can there be cycles in its support?
Definition

Given a flow network $G = (V, E)$ and a flow $f : E \to \mathbb{R}^{\geq 0}$ on the edges, the **support** of f is the set of edges $E' \subseteq E$ with non-zero flow on them. That is, $E' = \{e \in E \mid f(e) > 0\}$.

Question: Given a flow f, can there be cycles in its support?
Definition

Given a flow network $G = (V, E)$ and a flow $f : E \to \mathbb{R}^\geq 0$ on the edges, the **support** of f is the set of edges $E' \subseteq E$ with non-zero flow on them. That is, $E' = \{e \in E \mid f(e) > 0\}$.

Question: Given a flow f, can there be cycles in its support?

![Graph with flow values]
Proposition

In any flow network, if \(f \) is a flow then there is another flow \(f' \) such that the support of \(f' \) is an acyclic graph and \(v(f') = v(f) \). Further if \(f \) is an integral flow then so is \(f' \).

Proof.

1. \(E' = \{ e \in E \mid f(e) > 0 \} \), support of \(f \).
2. Suppose there is a directed cycle \(C \) in \(E' \).
3. Let \(e' \) be the edge in \(C \) with least amount of flow.
4. For each \(e \in C \), reduce flow by \(f(e') \). Remains a flow. Why?
5. Flow on \(e' \) is reduced to 0.
6. Claim: Flow value from \(s \) to \(t \) does not change. Why?
7. Iterate until no cycles.
Proposition

In any flow network, if f is a flow then there is another flow f' such that the support of f' is an acyclic graph and $\nu(f') = \nu(f)$. Further if f is an integral flow then so is f'.

Proof.

1. $E' = \{ e \in E \mid f(e) > 0 \}$, support of f.

2. Suppose there is a directed cycle C in E'

3. Let e' be the edge in C with least amount of flow

4. For each $e \in C$, reduce flow by $f(e')$. Remains a flow. Why?

5. Flow on e' is reduced to 0.

6. Claim: Flow value from s to t does not change. Why?

7. Iterate until no cycles
Proposition

In any flow network, if f is a flow then there is another flow f' such that the support of f' is an acyclic graph and $v(f') = v(f)$. Further if f is an integral flow then so is f'.

Proof.

1. $E' = \{ e \in E \mid f(e) > 0 \}$, support of f.
2. Suppose there is a directed cycle C in E'
3. Let e' be the edge in C with least amount of flow
4. For each $e \in C$, reduce flow by $f(e')$. Remains a flow. Why?
5. Flow on e' is reduced to 0.
6. Claim: Flow value from s to t does not change. Why?
7. Iterate until no cycles
Proposition

In any flow network, if f is a flow then there is another flow f' such that the support of f' is an acyclic graph and $v(f') = v(f)$. Further if f is an integral flow then so is f'.

Proof.

1. $E' = \{e \in E \mid f(e) > 0\}$, support of f.
2. Suppose there is a directed cycle C in E'
3. Let e' be the edge in C with least amount of flow
4. For each $e \in C$, reduce flow by $f(e')$. Remains a flow. Why?
5. Flow on e' is reduced to 0.
6. Claim: Flow value from s to t does not change. Why?
7. Iterate until no cycles
Proposition

In any flow network, if f is a flow then there is another flow f' such that the support of f' is an acyclic graph and $v(f') = v(f)$. Further if f is an integral flow then so is f'.

Proof.

1. $E' = \{ e \in E \mid f(e) > 0 \}$, support of f.
2. Suppose there is a directed cycle C in E'
3. Let e' be the edge in C with least amount of flow
4. For each $e \in C$, reduce flow by $f(e')$. Remains a flow. Why?
5. Flow on e' is reduced to 0.
6. Claim: Flow value from s to t does not change. Why?
7. Iterate until no cycles.
Proposition

In any flow network, if f is a flow then there is another flow f' such that the support of f' is an acyclic graph and $v(f') = v(f)$. Further if f is an integral flow then so is f'.

Proof.

1. $E' = \{ e \in E \mid f(e) > 0 \}$, support of f.
2. Suppose there is a directed cycle C in E'
3. Let e' be the edge in C with least amount of flow
4. For each $e \in C$, reduce flow by $f(e')$. Remains a flow. Why?
5. Flow on e' is reduced to 0.
6. Claim: Flow value from s to t does not change. Why?
7. Iterate until no cycles
Acyclicity of Flows

Proposition

In any flow network, if f is a flow then there is another flow f' such that the support of f' is an acyclic graph and $v(f') = v(f)$. Further if f is an integral flow then so is f'.

Proof.

1. $E' = \{e \in E \mid f(e) > 0\}$, support of f.
2. Suppose there is a directed cycle C in E'.
3. Let e' be the edge in C with least amount of flow.
4. For each $e \in C$, reduce flow by $f(e')$. Remains a flow. Why?
5. Flow on e' is reduced to 0.
6. Claim: Flow value from s to t does not change. Why?
7. Iterate until no cycles.
Proposition

In any flow network, if f is a flow then there is another flow f' such that the support of f' is an acyclic graph and $v(f') = v(f)$. Further if f is an integral flow then so is f'.

Proof.

1. $E' = \{ e \in E \mid f(e) > 0 \}$, support of f.
2. Suppose there is a directed cycle C in E'.
3. Let e' be the edge in C with least amount of flow.
4. For each $e \in C$, reduce flow by $f(e')$. Remains a flow. Why?
5. Flow on e' is reduced to 0.
6. Claim: Flow value from s to t does not change. Why?
7. Iterate until no cycles.
Example
Example

Throw away edge with no flow on it
Find a cycle in the support/flow
Reduce flow on cycle as much as possible
Example

Throw away edge with no flow on it
Example

Find a cycle in the support/flow
Reduce flow on cycle as much as possible
Example

Throw away edge with no flow on it
Example

Viola!!! An equivalent flow with no cycles in it. Original flow:
Flow Decomposition

Lemma

Given an edge based flow $f : E \to \mathbb{R}^{\geq 0}$, there exists a collection of paths \mathcal{P} and cycles \mathcal{C} and an assignment of flow to them $f' : \mathcal{P} \cup \mathcal{C} \to \mathbb{R}^{\geq 0}$ such that:

1. $|\mathcal{P} \cup \mathcal{C}| \leq m$
2. For each $e \in E$, $\sum_{P \in \mathcal{P} : e \in P} f'(P) + \sum_{C \in \mathcal{C} : e \in C} f'(C) = f(e)$
3. $v(f) = \sum_{P \in \mathcal{P}} f'(P)$.
4. If f is integral then so are $f'(P)$ and $f'(C)$ for all P and C.

Proof Idea.

1. Remove all cycles as in previous proposition.
2. Next, decompose into paths as in previous lecture.
3. Exercise: verify claims.
Flow Decomposition

Lemma

Given an edge based flow $f : E \to \mathbb{R}^\geq 0$, there exists a collection of paths \mathcal{P} and cycles \mathcal{C} and an assignment of flow to them $f' : \mathcal{P} \cup \mathcal{C} \to \mathbb{R}^\geq 0$ such that:

1. $|\mathcal{P} \cup \mathcal{C}| \leq m$
2. For each $e \in E$, $\sum_{P : e \in P} f'(P) + \sum_{C : e \in C} f'(C) = f(e)$
3. $v(f) = \sum_{P \in \mathcal{P}} f'(P)$.
4. If f is integral then so are $f'(P)$ and $f'(C)$ for all P and C.

Proof Idea.

1. Remove all cycles as in previous proposition.
2. Next, decompose into paths as in previous lecture.
3. Exercise: verify claims.
Flow Decomposition

Lemma

Given an edge based flow $f : E \rightarrow \mathbb{R}^{\geq 0}$, there exists a collection of paths \mathcal{P} and cycles \mathcal{C} and an assignment of flow to them $f' : \mathcal{P} \cup \mathcal{C} \rightarrow \mathbb{R}^{\geq 0}$ such that:*

1. $|\mathcal{P} \cup \mathcal{C}| \leq m$
2. For each $e \in E$, $\sum_{P \in \mathcal{P} : e \in P} f'(P) + \sum_{C \in \mathcal{C} : e \in C} f'(C) = f(e)$
3. $v(f) = \sum_{P \in \mathcal{P}} f'(P)$.
4. If f is integral then so are $f'(P)$ and $f'(C)$ for all P and C.

Proof Idea.

1. Remove all cycles as in previous proposition.
2. Next, decompose into paths as in previous lecture.
3. Exercise: verify claims.
Lemma

Given an edge based flow $f : E \to \mathbb{R}^\geq 0$, there exists a collection of paths \mathcal{P} and cycles \mathcal{C} and an assignment of flow to them $f' : \mathcal{P} \cup \mathcal{C} \to \mathbb{R}^\geq 0$ such that:

1. $|\mathcal{P} \cup \mathcal{C}| \leq m$
2. for each $e \in E$, $\sum_{P \in \mathcal{P} : e \in P} f'(P) + \sum_{C \in \mathcal{C} : e \in C} f'(C) = f(e)$
3. $v(f) = \sum_{P \in \mathcal{P}} f'(P)$.
4. if f is integral then so are $f'(P)$ and $f'(C)$ for all P and C.

Proof Idea.

1. Remove all cycles as in previous proposition.
2. Next, decompose into paths as in previous lecture.
3. Exercise: verify claims.
Flow Decomposition

Lemma

Given an edge based flow \(f : E \to \mathbb{R}^{\geq 0} \), there exists a collection of paths \(\mathcal{P} \) and cycles \(\mathcal{C} \) and an assignment of flow to them \(f' : \mathcal{P} \cup \mathcal{C} \to \mathbb{R}^{\geq 0} \) such that:

1. \(|\mathcal{P} \cup \mathcal{C}| \leq m \)
2. For each \(e \in E \), \(\sum_{P : e \in P} f'(P) + \sum_{C : e \in C} f'(C) = f(e) \)
3. \(v(f) = \sum_{P \in \mathcal{P}} f'(P) \).
4. If \(f \) is integral then so are \(f'(P) \) and \(f'(C) \) for all \(P \) and \(C \).

Proof Idea.

1. Remove all cycles as in previous proposition.
2. Next, decompose into paths as in previous lecture.
3. Exercise: verify claims.
Flow Decomposition

Lemma

Given an edge based flow \(f : E \to \mathbb{R}_{\geq 0} \), there exists a collection of paths \(\mathcal{P} \) and cycles \(\mathcal{C} \) and an assignment of flow to them \(f' : \mathcal{P} \cup \mathcal{C} \to \mathbb{R}_{\geq 0} \) such that:

1. \(|\mathcal{P} \cup \mathcal{C}| \leq m \)
2. for each \(e \in E \), \(\sum_{P \in \mathcal{P} : e \in P} f'(P) + \sum_{C \in \mathcal{C} : e \in C} f'(C) = f(e) \)
3. \(\nu(f) = \sum_{P \in \mathcal{P}} f'(P) \).
4. if \(f \) is integral then so are \(f'(P) \) and \(f'(C) \) for all \(P \) and \(C \)

Proof Idea.

1. Remove all cycles as in previous proposition.
2. Next, decompose into paths as in previous lecture.
3. Exercise: verify claims.
Lemma

Given an edge based flow $f : E \rightarrow \mathbb{R}^\geq 0$, there exists a collection of paths P and cycles C and an assignment of flow to them $f' : P \cup C \rightarrow \mathbb{R}^\geq 0$ such that:

1. $|P \cup C| \leq m$
2. For each $e \in E$, $\sum_{P : e \in P} f'(P) + \sum_{C : e \in C} f'(C) = f(e)$
3. $\nu(f) = \sum_{P \in P} f'(P)$.
4. If f is integral then so are $f'(P)$ and $f'(C)$ for all P and C

Proof Idea.

1. Remove all cycles as in previous proposition.
2. Next, decompose into paths as in previous lecture.
3. Exercise: verify claims.
Flow Decomposition

Lemma

Given an edge based flow \(f : E \to \mathbb{R}^{\geq 0} \), there exists a collection of paths \(\mathcal{P} \) and cycles \(\mathcal{C} \) and an assignment of flow to them \(f' : \mathcal{P} \cup \mathcal{C} \to \mathbb{R}^{\geq 0} \) such that:

1. \(|\mathcal{P} \cup \mathcal{C}| \leq m \)
2. for each \(e \in E \), \(\sum_{P \in \mathcal{P} : e \in P} f'(P) + \sum_{C \in \mathcal{C} : e \in C} f'(C) = f(e) \)
3. \(v(f) = \sum_{P \in \mathcal{P}} f'(P) \).
4. If \(f \) is integral then so are \(f'(P) \) and \(f'(C) \) for all \(P \) and \(C \).

Proof Idea.

1. Remove all cycles as in previous proposition.
2. Next, decompose into paths as in previous lecture.
3. Exercise: verify claims.
Flow Decomposition

Lemma

Given an edge based flow $f : E \rightarrow \mathbb{R}^{\geq 0}$, there exists a collection of paths \mathcal{P} and cycles \mathcal{C} and an assignment of flow to them $f' : \mathcal{P} \cup \mathcal{C} \rightarrow \mathbb{R}^{\geq 0}$ such that:

1. $|\mathcal{P} \cup \mathcal{C}| \leq m$
2. for each $e \in E$, $\sum_{P \in \mathcal{P} : e \in P} f'(P) + \sum_{C \in \mathcal{C} : e \in C} f'(C) = f(e)$
3. $\nu(f) = \sum_{P \in \mathcal{P}} f'(P)$.
4. if f is integral then so are $f'(P)$ and $f'(C)$ for all P and C

Proof Idea.

1. Remove all cycles as in previous proposition.
2. Next, decompose into paths as in previous lecture.
3. Exercise: verify claims.
Example

Find cycles as shown before
Find a source to sink path, and push max flow along it (5 unites)
Compute remaining flow
Example

Find a source to sink path, and push max flow along it (5 unites). Edges with 0 flow on them can not be used as they are no longer in the support of the flow.
Example

Compute remaining flow
Find a source to sink path, and push max flow along it (10 units).
Example

Compute remaining flow
Example

Find a source to sink path, and push max flow along it (5 unites).
Example

Compute remaining flow
No flow remains in the graph. We fully decomposed the flow into flow on paths. Together with the cycles, we get a decomposition of the original flow into m flows on paths and cycles.
Flow Decomposition

Lemma

Given an edge based flow \(f : E \rightarrow \mathbb{R}^{\geq 0} \), there exists a collection of paths \(\mathcal{P} \) and cycles \(\mathcal{C} \) and an assignment of flow to them \(f' : \mathcal{P} \cup \mathcal{C} \rightarrow \mathbb{R}^{\geq 0} \) such that:

1. \(|\mathcal{P} \cup \mathcal{C}| \leq m \)
2. for each \(e \in E \), \(\sum_{P \in \mathcal{P} : e \in P} f'(P) + \sum_{C \in \mathcal{C} : e \in C} f'(C) = f(e) \)
3. \(v(f) = \sum_{P \in \mathcal{P}} f'(P) \).
4. if \(f \) is integral then so are \(f'(P) \) and \(f'(C) \) for all \(P \) and \(C \).

Above flow decomposition can be computed in \(O(m^2) \) time.
Lemma

Given an edge based flow \(f : E \rightarrow \mathbb{R}^{\geq 0} \), there exists a collection of paths \(\mathcal{P} \) and cycles \(\mathcal{C} \) and an assignment of flow to them \(f' : \mathcal{P} \cup \mathcal{C} \rightarrow \mathbb{R}^{\geq 0} \) such that:

1. \(|\mathcal{P} \cup \mathcal{C}| \leq m \)
2. for each \(e \in E \), \(\sum_{P \in \mathcal{P} : e \in P} f'(P) + \sum_{C \in \mathcal{C} : e \in C} f'(C) = f(e) \)
3. \(v(f) = \sum_{P \in \mathcal{P}} f'(P) \).
4. if \(f \) is integral then so are \(f'(P) \) and \(f'(C) \) for all \(P \) and \(C \).

Above flow decomposition can be computed in \(O(m^2) \) time.
Flow Decomposition

Lemma

Given an edge based flow $f : E \to \mathbb{R}^{\geq 0}$, there exists a collection of paths \mathcal{P} and cycles \mathcal{C} and an assignment of flow to them $f' : \mathcal{P} \cup \mathcal{C} \to \mathbb{R}^{\geq 0}$ such that:

1. $|\mathcal{P} \cup \mathcal{C}| \leq m$
2. for each $e \in E$, $\sum_{P \in \mathcal{P} : e \in P} f'(P) + \sum_{C \in \mathcal{C} : e \in C} f'(C) = f(e)$
3. $v(f) = \sum_{P \in \mathcal{P}} f'(P)$.
4. if f is integral then so are $f'(P)$ and $f'(C)$ for all P and C.

Above flow decomposition can be computed in $O(m^2)$ time.
Flow Decomposition

Lemma

Given an edge based flow $f : E \to \mathbb{R}^{\geq 0}$, there exists a collection of paths \mathcal{P} and cycles \mathcal{C} and an assignment of flow to them $f' : \mathcal{P} \cup \mathcal{C} \to \mathbb{R}^{\geq 0}$ such that:

1. $|\mathcal{P} \cup \mathcal{C}| \leq m$
2. for each $e \in E$, $\sum_{P \in \mathcal{P} : e \in P} f'(P) + \sum_{C \in \mathcal{C} : e \in C} f'(C) = f(e)$
3. $v(f) = \sum_{P \in \mathcal{P}} f'(P)$.
4. if f is integral then so are $f'(P)$ and $f'(C)$ for all P and C.

Above flow decomposition can be computed in $O(m^2)$ time.
Flow Decomposition

Lemma

Given an edge based flow \(f : E \rightarrow \mathbb{R}^{\geq 0} \), there exists a collection of paths \(\mathcal{P} \) and cycles \(\mathcal{C} \) and an assignment of flow to them \(f' : \mathcal{P} \cup \mathcal{C} \rightarrow \mathbb{R}^{\geq 0} \) such that:

1. \(|\mathcal{P} \cup \mathcal{C}| \leq m \)
2. for each \(e \in E \), \(\sum_{P \in \mathcal{P} : e \in P} f'(P) + \sum_{C \in \mathcal{C} : e \in C} f'(C) = f(e) \)
3. \(v(f) = \sum_{P \in \mathcal{P}} f'(P) \).
4. if \(f \) is integral then so are \(f'(P) \) and \(f'(C) \) for all \(P \) and \(C \).

Above flow decomposition can be computed in \(O(m^2) \) time.
Part II

Network Flow Applications I
19.3: Edge Disjoint Paths
19.3.1: Directed Graphs
A set of paths is **edge disjoint** if no two paths share an edge.

Problem

Given a directed graph with two special vertices s and t, find the *maximum* number of edge disjoint paths from s to t.

Applications: Fault tolerance in routing — edges/nodes in networks can fail. Disjoint paths allow for planning backup routes in case of failures.
A set of paths is **edge disjoint** if no two paths share an edge.

Problem

Given a directed graph with two special vertices \(s \) and \(t \), find the maximum number of edge disjoint paths from \(s \) to \(t \).

Applications: Fault tolerance in routing — edges/nodes in networks can fail. Disjoint paths allow for planning backup routes in case of failures.
19.3.2: Reduction to Max-Flow
Problem

Given a directed graph G with two special vertices s and t, find the maximum number of edge disjoint paths from s to t.

Reduction

Consider G as a flow network with edge capacities 1, and compute max-flow.
Correctness of Reduction

Lemma

If G has k edge disjoint paths P_1, P_2, \ldots, P_k then there is an s-t flow of value k in G.

Proof.

Set $f(e) = 1$ if e belongs to one of the paths P_1, P_2, \ldots, P_k; otherwise set $f(e) = 0$. This defines a flow of value k.

Correctness of Reduction

Lemma

If G has k edge disjoint paths P_1, P_2, \ldots, P_k then there is an s-t flow of value k in G.

Proof.

Set $f(e) = 1$ if e belongs to one of the paths P_1, P_2, \ldots, P_k; otherwise set $f(e) = 0$. This defines a flow of value k. \qed
Correctness of Reduction

Lemma

If \(G \) has a flow of value \(k \) then there are \(k \) edge disjoint paths between \(s \) and \(t \).

Proof.

1. Capacities are all 1 and hence there is integer flow of value \(k \), that is \(f(e) = 0 \) or \(f(e) = 1 \) for each \(e \).
2. Decompose flow into paths.
3. Flow on each path is either 1 or 0.
4. Hence there are \(k \) paths \(P_1, P_2, \ldots, P_k \) with flow of 1 each.
5. Paths are edge-disjoint since capacities are 1.
Correctness of Reduction

Lemma

If G has a flow of value k then there are k edge disjoint paths between s and t.

Proof.

1. Capacities are all 1 and hence there is integer flow of value k, that is $f(e) = 0$ or $f(e) = 1$ for each e.
2. Decompose flow into paths.
3. Flow on each path is either 1 or 0.
4. Hence there are k paths P_1, P_2, \ldots, P_k with flow of 1 each.
5. Paths are edge-disjoint since capacities are 1.
Correctness of Reduction

Lemma
If G has a flow of value k then there are k edge disjoint paths between s and t.

Proof.

1. Capacities are all 1 and hence there is integer flow of value k, that is $f(e) = 0$ or $f(e) = 1$ for each e.
2. Decompose flow into paths.
3. Flow on each path is either 1 or 0.
4. Hence there are k paths P_1, P_2, \ldots, P_k with flow of 1 each.
5. Paths are edge-disjoint since capacities are 1.
Correctness of Reduction

Lemma

If G has a flow of value k then there are k edge disjoint paths between s and t.

Proof.

1. Capacities are all 1 and hence there is integer flow of value k, that is $f(e) = 0$ or $f(e) = 1$ for each e.
2. Decompose flow into paths.
3. Flow on each path is either 1 or 0.
4. Hence there are k paths P_1, P_2, \ldots, P_k with flow of 1 each.
5. Paths are edge-disjoint since capacities are 1.
Correctness of Reduction

Lemma

If G has a flow of value k then there are k edge disjoint paths between s and t.

Proof.

1. Capacities are all 1 and hence there is integer flow of value k, that is $f(e) = 0$ or $f(e) = 1$ for each e.
2. Decompose flow into paths.
3. Flow on each path is either 1 or 0.
4. Hence there are k paths P_1, P_2, \ldots, P_k with flow of 1 each.
5. Paths are edge-disjoint since capacities are 1.
Correctness of Reduction

Lemma

If G has a flow of value k then there are k edge disjoint paths between s and t.

Proof.

1. Capacities are all 1 and hence there is integer flow of value k, that is $f(e) = 0$ or $f(e) = 1$ for each e.
2. Decompose flow into paths.
3. Flow on each path is either 1 or 0.
4. Hence there are k paths P_1, P_2, \ldots, P_k with flow of 1 each.
5. Paths are edge-disjoint since capacities are 1.
Correctness of Reduction

Lemma

If G has a flow of value k then there are k edge disjoint paths between s and t.

Proof.

1. Capacities are all 1 and hence there is integer flow of value k, that is $f(e) = 0$ or $f(e) = 1$ for each e.
2. Decompose flow into paths.
3. Flow on each path is either 1 or 0.
4. Hence there are k paths P_1, P_2, \ldots, P_k with flow of 1 each.
5. Paths are edge-disjoint since capacities are 1.
Theorem

The number of edge disjoint paths in G can be found in $O(mn)$ time.

Proof.

1. Set capacities of edges in G to 1.
2. Run Ford-Fulkerson algorithm.
3. Maximum value of flow is n and hence run-time is $O(nm)$.
4. Decompose flow into k paths ($k \leq n$).
 Takes $O(k \times m) = O(km) = O(mn)$ time.

Remark

Algorithm computes set of edge-disjoint paths realizing opt. solution.
Running Time

Theorem

The number of edge disjoint paths in G can be found in $O(mn)$ time.

Proof.

1. Set capacities of edges in G to 1.
2. Run Ford-Fulkerson algorithm.
3. Maximum value of flow is n and hence run-time is $O(nm)$.
4. Decompose flow into k paths ($k \leq n$).
 - Takes $O(k \times m) = O(km) = O(mn)$ time.

Remark

Algorithm computes set of edge-disjoint paths realizing opt. solution.
Theorem

The number of edge disjoint paths in G can be found in $O(mn)$ time.

Proof.

1. Set capacities of edges in G to 1.
2. Run Ford-Fulkerson algorithm.
3. Maximum value of flow is n and hence run-time is $O(nm)$.
4. Decompose flow into k paths ($k \leq n$).
 Takes $O(k \times m) = O(km) = O(mn)$ time.

Remark

Algorithm computes set of edge-disjoint paths realizing opt. solution.
Theorem

The number of edge disjoint paths in \(G \) can be found in \(O(mn) \) time.

Proof.

1. Set capacities of edges in \(G \) to 1.
2. Run Ford-Fulkerson algorithm.
3. Maximum value of flow is \(n \) and hence run-time is \(O(nm) \).
4. Decompose flow into \(k \) paths (\(k \leq n \)).
 Takes \(O(k \times m) = O(km) = O(mn) \) time.

Remark

Algorithm computes set of edge-disjoint paths realizing opt. solution.
The number of edge disjoint paths in G can be found in $O(mn)$ time.

Proof.

1. Set capacities of edges in G to 1.
2. Run Ford-Fulkerson algorithm.
3. Maximum value of flow is n and hence run-time is $O(nm)$.
4. Decompose flow into k paths ($k \leq n$). Takes $O(k \times m) = O(km) = O(mn)$ time.

Remark

Algorithm computes set of edge-disjoint paths realizing opt. solution.
Theorem

The number of edge disjoint paths in G can be found in $O(mn)$ time.

Proof.

1. Set capacities of edges in G to 1.
2. Run Ford-Fulkerson algorithm.
3. Maximum value of flow is n and hence run-time is $O(nm)$.
4. Decompose flow into k paths ($k \leq n$).
 Takes $O(k \times m) = O(km) = O(mn)$ time.

Remark

Algorithm computes set of edge-disjoint paths realizing opt. solution.
19.3.3: Menger’s Theorem
Menger’s Theorem

Theorem (Menger [1927])

Let G be a directed graph. The minimum number of edges whose removal disconnects s from t (the minimum-cut between s and t) is equal to the maximum number of edge-disjoint paths in G between s and t.

Proof.

Maxflow-mincut theorem and integrality of flow.

Menger proved his theorem before Maxflow-Mincut theorem! Maxflow-Mincut theorem is a generalization of Menger’s theorem to capacitated graphs.
Menger’s Theorem

Theorem (Menger [1927])

Let G be a directed graph. The minimum number of edges whose removal disconnects s from t (the minimum-cut between s and t) is equal to the maximum number of edge-disjoint paths in G between s and t.

Proof.

Maxflow-mincut theorem and integrality of flow.

Menger proved his theorem before Maxflow-Mincut theorem! Maxflow-Mincut theorem is a generalization of Menger’s theorem to capacitated graphs.
Menger’s Theorem

Theorem (**Menger [1927]**)

Let G be a directed graph. The minimum number of edges whose removal disconnects s from t (the minimum-cut between s and t) is equal to the maximum number of edge-disjoint paths in G between s and t.

Proof.

Maxflow-mincut theorem and integrality of flow.

Menger proved his theorem before Maxflow-Mincut theorem! Maxflow-Mincut theorem is a generalization of Menger’s theorem to capacitated graphs.
19.3.4: Undirected Graphs
The problem:

Given an undirected graph G, find the maximum number of edge disjoint paths in G.

Reduction:

1. create directed graph H by adding directed edges (u, v) and (v, u) for each edge uv in G.
2. compute maximum s-t flow in H.

Problem: Both edges (u, v) and (v, u) may have non-zero flow!

Not a Problem! Can assume maximum flow in H is acyclic and hence cannot have non-zero flow on both (u, v) and (v, u). Reduction works. See book for more details.
The problem:

Given an undirected graph G, find the maximum number of edge disjoint paths in G.

Reduction:

1. create directed graph H by adding directed edges (u, v) and (v, u) for each edge uv in G.
2. compute maximum s-t flow in H.

Problem: Both edges (u, v) and (v, u) may have non-zero flow!

Not a Problem! Can assume maximum flow in H is acyclic and hence cannot have non-zero flow on both (u, v) and (v, u). Reduction works. See book for more details.
The problem:

Problem

Given an undirected graph G, find the maximum number of edge disjoint paths in G

Reduction:

1. create directed graph H by adding directed edges (u, v) and (v, u) for each edge uv in G.
2. compute maximum s-t flow in H.

3. Problem: Both edges (u, v) and (v, u) may have non-zero flow!

4. Not a Problem! Can assume maximum flow in H is acyclic and hence cannot have non-zero flow on both (u, v) and (v, u). Reduction works. See book for more details.
The problem:

Problem

Given an undirected graph G, find the maximum number of edge disjoint paths in G

Reduction:

1. create directed graph H by adding directed edges (u, v) and (v, u) for each edge uv in G.
2. compute maximum s-t flow in H.

Problem: Both edges (u, v) and (v, u) may have non-zero flow!

Not a Problem! Can assume maximum flow in H is acyclic and hence cannot have non-zero flow on both (u, v) and (v, u). Reduction works. See book for more details.
The problem:

Given an undirected graph G, find the maximum number of edge disjoint paths in G.

Reduction:

1. create directed graph H by adding directed edges (u, v) and (v, u) for each edge uv in G.
2. compute maximum $s-t$ flow in H.

Problem: Both edges (u, v) and (v, u) may have non-zero flow!

Not a Problem! Can assume maximum flow in H is acyclic and hence cannot have non-zero flow on both (u, v) and (v, u). Reduction works. See book for more details.
Edge Disjoint Paths in Undirected Graphs

The problem:

Problem
Given an undirected graph G, find the maximum number of edge disjoint paths in G.

Reduction:
1. create directed graph H by adding directed edges (u, v) and (v, u) for each edge uv in G.
2. compute maximum s-t flow in H.

Problem: Both edges (u, v) and (v, u) may have non-zero flow!

Not a Problem! Can assume maximum flow in H is acyclic and hence cannot have non-zero flow on both (u, v) and (v, u). Reduction works. See book for more details.
The problem:

Given an undirected graph G, find the maximum number of edge disjoint paths in G.

Reduction:
1. create directed graph H by adding directed edges (u, v) and (v, u) for each edge uv in G.
2. compute maximum s-t flow in H.

Problem: Both edges (u, v) and (v, u) may have non-zero flow!

Not a Problem! Can assume maximum flow in H is acyclic and hence cannot have non-zero flow on both (u, v) and (v, u). Reduction works. See book for more details.
19.4: Multiple Sources and Sinks
Multiple Sources and Sinks

1. **Input:**
 1. A directed graph G with edge capacities $c(e)$.
 2. Source nodes s_1, s_2, \ldots, s_k.
 3. Sink nodes t_1, t_2, \ldots, t_ℓ.
 4. Sources and sinks are *disjoint*.

1. **Maximum Flow:** Send as much flow as possible from the sources to the sinks. *Sinks don’t care which source they get flow from.*

2. **Minimum Cut:** Find a minimum capacity set of edge E' such that removing E' disconnects every source from every sink.
Multiple Sources and Sinks

1. **Input:**
 1. A directed graph G with edge capacities $c(e)$.
 2. Source nodes s_1, s_2, \ldots, s_k.
 3. Sink nodes t_1, t_2, \ldots, t_ℓ.
 4. Sources and sinks are *disjoint*.

1. **Maximum Flow:** Send as much flow as possible from the sources to the sinks. *Sinks don’t care which source they get flow from.*

2. **Minimum Cut:** Find a minimum capacity set of edge E' such that removing E' disconnects every source from every sink.
Multiple Sources and Sinks

1 Input:
 1 A directed graph G with edge capacities $c(e)$.
 2 Source nodes s_1, s_2, \ldots, s_k.
 3 Sink nodes t_1, t_2, \ldots, t_ℓ.
 4 Sources and sinks are disjoint.

1 Maximum Flow: Send as much flow as possible from the sources to the sinks. *Sinks don’t care which source they get flow from.*

2 Minimum Cut: Find a minimum capacity set of edge E' such that removing E' disconnects every source from every sink.
Multiple Sources and Sinks

1. **Input:**
 - A directed graph G with edge capacities $c(e)$.
 - Source nodes s_1, s_2, \ldots, s_k.
 - Sink nodes t_1, t_2, \ldots, t_ℓ.
 - Sources and sinks are disjoint.

1. **Maximum Flow:** Send as much flow as possible from the sources to the sinks. *Sinks don’t care which source they get flow from.*

2. **Minimum Cut:** Find a minimum capacity set of edge $E’$ such that removing $E’$ disconnects every source from every sink.
Multiple Sources and Sinks

1 Input:
 1 A directed graph G with edge capacities $c(e)$.
 2 Source nodes s_1, s_2, \ldots, s_k.
 3 Sink nodes t_1, t_2, \ldots, t_ℓ.
 4 Sources and sinks are disjoint.

1 Maximum Flow: Send as much flow as possible from the sources to the sinks. *Sinks don’t care which source they get flow from.*

2 Minimum Cut: Find a minimum capacity set of edge E' such that removing E' disconnects every source from every sink.
Multiple Sources and Sinks

1. **Input:**
 1. A directed graph G with edge capacities $c(e)$.
 2. Source nodes s_1, s_2, \ldots, s_k.
 3. Sink nodes t_1, t_2, \ldots, t_ℓ.
 4. Sources and sinks are disjoint.

1. **Maximum Flow:** Send as much flow as possible from the sources to the sinks. *Sinks don’t care which source they get flow from.*

2. **Minimum Cut:** Find a minimum capacity set of edge E' such that removing E' disconnects every source from every sink.
Multiple Sources and Sinks

1 Input:
 1 A directed graph G with edge capacities $c(e)$.
 2 Source nodes s_1, s_2, \ldots, s_k.
 3 Sink nodes t_1, t_2, \ldots, t_ℓ.
 4 Sources and sinks are disjoint.

1 Maximum Flow: Send as much flow as possible from the sources to the sinks. Sinks don’t care which source they get flow from.

2 Minimum Cut: Find a minimum capacity set of edge E' such that removing E' disconnects every source from every sink.
Multiple Sources and Sinks

1. **Input:**
 1. A directed graph G with edge capacities $c(e)$.
 2. Source nodes s_1, s_2, \ldots, s_k.
 3. Sink nodes t_1, t_2, \ldots, t_ℓ.
 4. Sources and sinks are *disjoint*.

1. **Maximum Flow:** Send as much flow as possible from the sources to the sinks. *Sinks don’t care which source they get flow from.*

2. **Minimum Cut:** Find a minimum capacity set of edge E' such that removing E' disconnects every source from every sink.
Multiple Sources and Sinks: Formal Definition

1. Input:
 1. A directed graph G with edge capacities $c(e)$.
 2. Source nodes s_1, s_2, \ldots, s_k.
 3. Sink nodes t_1, t_2, \ldots, t_ℓ.
 4. Sources and sinks are disjoint.

2. A function $f : E \to \mathbb{R}^\geq 0$ is a flow if:
 1. For each $e \in E$, $f(e) \leq c(e)$, and
 2. for each v which is not a source or a sink $f^{\text{in}}(v) = f^{\text{out}}(v)$.

3. Goal: $\max \sum_{i=1}^{k} (f^{\text{out}}(s_i) - f^{\text{in}}(s_i))$, that is, flow out of sources.
Multiple Sources and Sinks: Formal Definition

1. **Input:**
 1. A directed graph G with edge capacities $c(e)$.
 2. Source nodes s_1, s_2, \ldots, s_k.
 3. Sink nodes t_1, t_2, \ldots, t_ℓ.
 4. Sources and sinks are disjoint.

2. A function $f : E \rightarrow \mathbb{R}^\geq 0$ is a flow if:
 1. For each $e \in E$, $f(e) \leq c(e)$, and
 2. for each v which is not a source or a sink $f^{\text{in}}(v) = f^{\text{out}}(v)$.

3. **Goal:** $\max \sum_{i=1}^{k} (f^{\text{out}}(s_i) - f^{\text{in}}(s_i))$, that is, flow out of sources.
Multiple Sources and Sinks: Formal Definition

1. **Input:**
 1. A directed graph G with edge capacities $c(e)$.
 2. Source nodes s_1, s_2, \ldots, s_k.
 3. Sink nodes t_1, t_2, \ldots, t_ℓ.
 4. Sources and sinks are disjoint.

2. A function $f : E \to \mathbb{R}_{\geq 0}$ is a **flow** if:
 1. For each $e \in E$, $f(e) \leq c(e)$, and
 2. for each v which is not a source or a sink $f^{\text{in}}(v) = f^{\text{out}}(v)$.

3. **Goal:** $\max \sum_{i=1}^{k} (f^{\text{out}}(s_i) - f^{\text{in}}(s_i))$, that is, flow out of sources.
Multiple Sources and Sinks: Formal Definition

1. **Input:**
 - A directed graph G with edge capacities $c(e)$.
 - Source nodes s_1, s_2, \ldots, s_k.
 - Sink nodes t_1, t_2, \ldots, t_ℓ.
 - Sources and sinks are disjoint.

2. A function $f : E \rightarrow \mathbb{R}_{\geq 0}$ is a flow if:
 - For each $e \in E$, $f(e) \leq c(e)$, and
 - for each v which is not a source or a sink $f^{\text{in}}(v) = f^{\text{out}}(v)$.

3. **Goal:** $\max \sum_{i=1}^{k} (f^{\text{out}}(s_i) - f^{\text{in}}(s_i))$, that is, flow out of sources.
Multiple Sources and Sinks: Formal Definition

1. **Input:**
 1. A directed graph G with edge capacities $c(e)$.
 2. Source nodes s_1, s_2, \ldots, s_k.
 3. Sink nodes t_1, t_2, \ldots, t_ℓ.
 4. Sources and sinks are disjoint.

2. A function $f : E \rightarrow \mathbb{R}_{\geq 0}$ is a **flow** if:
 1. For each $e \in E$, $f(e) \leq c(e)$, and
 2. for each v which is not a source or a sink $f^{\text{in}}(v) = f^{\text{out}}(v)$.

3. **Goal:** $\max \sum_{i=1}^{k} (f^{\text{out}}(s_i) - f^{\text{in}}(s_i))$, that is, flow out of sources.
Multiple Sources and Sinks: Formal Definition

1. **Input:**
 1. A directed graph G with edge capacities $c(e)$.
 2. Source nodes s_1, s_2, \ldots, s_k.
 3. Sink nodes t_1, t_2, \ldots, t_ℓ.
 4. Sources and sinks are *disjoint*.

2. A function $f : E \rightarrow \mathbb{R}^{\geq 0}$ is a **flow** if:
 1. For each $e \in E$, $f(e) \leq c(e)$, and
 2. for each v which is not a source or a sink $f^{\text{in}}(v) = f^{\text{out}}(v)$.

3. **Goal:** $\max \sum_{i=1}^{k} (f^{\text{out}}(s_i) - f^{\text{in}}(s_i))$, that is, flow out of sources.
Multiple Sources and Sinks: Formal Definition

1. **Input:**
 1. A directed graph G with edge capacities $c(e)$.
 2. Source nodes s_1, s_2, \ldots, s_k.
 3. Sink nodes t_1, t_2, \ldots, t_ℓ.
 4. Sources and sinks are disjoint.

2. A function $f : E \rightarrow \mathbb{R}^{\geq 0}$ is a flow if:
 1. For each $e \in E$, $f(e) \leq c(e)$, and
 2. for each v which is not a source or a sink $f^\text{in}(v) = f^\text{out}(v)$.

3. **Goal:** $\max \sum_{i=1}^{k} (f^\text{out}(s_i) - f^\text{in}(s_i))$, that is, flow out of sources.
Multiple Sources and Sinks: Formal Definition

1. **Input:**
 1. A directed graph G with edge capacities $c(e)$.
 2. Source nodes s_1, s_2, \ldots, s_k.
 3. Sink nodes t_1, t_2, \ldots, t_ℓ.
 4. Sources and sinks are disjoint.

2. A function $f : E \rightarrow \mathbb{R} \geq 0$ is a **flow** if:
 1. For each $e \in E$, $f(e) \leq c(e)$, and
 2. for each v which is not a source or a sink $f^{\text{in}}(v) = f^{\text{out}}(v)$.

3. **Goal:** $\max \sum_{i=1}^{k} (f^{\text{out}}(s_i) - f^{\text{in}}(s_i))$, that is, flow out of sources.
Multiple Sources and Sinks: Formal Definition

Input:
1. A directed graph G with edge capacities $c(e)$.
2. Source nodes s_1, s_2, \ldots, s_k.
3. Sink nodes t_1, t_2, \ldots, t_ℓ.
4. Sources and sinks are disjoint.

A function $f : E \rightarrow \mathbb{R}^\geq 0$ is a flow if:
1. For each $e \in E$, $f(e) \leq c(e)$, and
2. for each v which is not a source or a sink $f^\text{in}(v) = f^\text{out}(v)$.

Goal: $\max \sum_{i=1}^{k} (f^\text{out}(s_i) - f^\text{in}(s_i))$, that is, flow out of sources.
Multiple Sources and Sinks: Formal Definition

Input:
1. A directed graph G with edge capacities $c(e)$.
2. Source nodes s_1, s_2, \ldots, s_k.
3. Sink nodes t_1, t_2, \ldots, t_ℓ.
4. Sources and sinks are disjoint.

A function $f : E \rightarrow \mathbb{R}_{\geq 0}$ is a flow if:
1. For each $e \in E$, $f(e) \leq c(e)$, and
2. for each v which is not a source or a sink $f^{\text{in}}(v) = f^{\text{out}}(v)$.

Goal: $\max \sum_{i=1}^{k} (f^{\text{out}}(s_i) - f^{\text{in}}(s_i))$, that is, flow out of sources.
Reduction to Single-Source Single-Sink

1. Add a **source** node \(s \) and a **sink** node \(t \).
2. Add edges \((s, s_1), (s, s_2), \ldots, (s, s_k)\).
3. Add edges \((t_1, t), (t_2, t), \ldots, (t_\ell, t)\).
4. Set the capacity of the new edges to be \(\infty \).
Add a **source** node s and a **sink** node t.

Add edges $(s, s_1), (s, s_2), \ldots, (s, s_k)$.

Add edges $(t_1, t), (t_2, t), \ldots, (t_\ell, t)$.

Set the capacity of the new edges to be ∞.

Reduction to Single-Source Single-Sink
Reduction to Single-Source Single-Sink

1. Add a source node s and a sink node t.
2. Add edges $(s, s_1), (s, s_2), \ldots, (s, s_k)$.
3. Add edges $(t_1, t), (t_2, t), \ldots, (t_\ell, t)$.
4. Set the capacity of the new edges to be ∞.

![Graph Diagram](image-url)
Reduction to Single-Source Single-Sink

1. Add a source node s and a sink node t.
2. Add edges $(s, s_1), (s, s_2), \ldots, (s, s_k)$.
3. Add edges $(t_1, t), (t_2, t), \ldots, (t_\ell, t)$.
4. Set the capacity of the new edges to be ∞.
Supplies and Demands

A further generalization:

1 source s_i has a supply of $S_i \geq 0$
2 since t_j has a demand of $D_j \geq 0$ units

Question: is there a flow from source to sinks such that supplies are not exceeded and demands are met?

Formally: additional constraints that $f^{\text{out}}(s_i) - f^{\text{in}}(s_i) \leq S_i$ for each source s_i and $f^{\text{in}}(t_j) - f^{\text{out}}(t_j) \geq D_j$ for each sink t_j.
A further generalization:

1. source s_i has a supply of $S_i \geq 0$
2. since t_j has a demand of $D_j \geq 0$ units

Question: is there a flow from source to sinks such that supplies are not exceeded and demands are met?

Formally: additional constraints that $f_{out}(s_i) - f_{in}(s_i) \leq S_i$ for each source s_i and $f_{in}(t_j) - f_{out}(t_j) \geq D_j$ for each sink t_j.
Supplies and Demands

1. A further generalization:
 1. source s_i has a supply of $S_i \geq 0$
 2. since t_j has a demand of $D_j \geq 0$ units

2. Question: is there a flow from source to sinks such that supplies are not exceeded and demands are met?

3. Formally: additional constraints that $f^{\text{out}}(s_i) - f^{\text{in}}(s_i) \leq S_i$ for each source s_i and $f^{\text{in}}(t_j) - f^{\text{out}}(t_j) \geq D_j$ for each sink t_j.
A further generalization:

1. source s_i has a supply of $S_i \geq 0$
2. since t_j has a demand of $D_j \geq 0$ units

Question: is there a flow from source to sinks such that supplies are not exceeded and demands are met?

Formally: additional constraints that $f^\text{out}(s_i) - f^\text{in}(s_i) \leq S_i$ for each source s_i and $f^\text{in}(t_j) - f^\text{out}(t_j) \geq D_j$ for each sink t_j.
A further generalization:

1. source s_i has a supply of $S_i \geq 0$
2. since t_j has a demand of $D_j \geq 0$ units

Question: is there a flow from source to sinks such that supplies are not exceeded and demands are met?

Formally: additional constraints that $f^{\text{out}}(s_i) - f^{\text{in}}(s_i) \leq S_i$ for each source s_i and $f^{\text{in}}(t_j) - f^{\text{out}}(t_j) \geq D_j$ for each sink t_j.

![Graph diagram](image)
19.5: Bipartite Matching
19.5.1: Definitions
Matching

Problem (Matching)

Input: Given a (undirected) graph $G = (V, E)$.
Goal: Find a matching of maximum cardinality.

1. A matching is $M \subseteq E$ such that at most one edge in M is incident on any vertex.
Matching

Problem (Matching)

Input: Given a (undirected) graph $G = (V, E)$.

Goal: Find a matching of maximum cardinality.

1. A matching is $M \subseteq E$ such that at most one edge in M is incident on any vertex.
Bipartite Matching

Problem (Bipartite matching)

Input: Given a bipartite graph $G = (L \cup R, E)$.

Goal: Find a matching of maximum cardinality

Maximum matching has 4 edges
Bipartite Matching

Problem (Bipartite matching)

Input: Given a bipartite graph \(G = (L \cup R, E) \).

Goal: Find a matching of maximum cardinality

Maximum matching has 4 edges
Bipartite Matching

Problem (Bipartite matching)

Input: Given a bipartite graph $G = (L \cup R, E)$.

Goal: Find a matching of maximum cardinality

Maximum matching has 4 edges
19.5.2: Reduction of bipartite matching to max-flow
Max-Flow Construction

Given graph $G = (L \cup R, E)$ create flow-network $G' = (V', E')$ as follows:

1. $V' = L \cup R \cup \{s, t\}$ where s and t are the new source and sink.
2. Direct all edges in E from L to R, and add edges from s to all vertices in L and from each vertex in R to t.
3. Capacity of every edge is 1.
Reduction of bipartite matching to max-flow

Max-Flow Construction

Given graph $G = (L \cup R, E)$ create flow-network $G' = (V', E')$ as follows:

1. $V' = L \cup R \cup \{s, t\}$ where s and t are the new source and sink.
2. Direct all edges in E from L to R, and add edges from s to all vertices in L and from each vertex in R to t.
3. Capacity of every edge is 1.
Reduction of bipartite matching to max-flow

Max-Flow Construction

Given graph $G = (L \cup R, E)$ create flow-network $G' = (V', E')$ as follows:

1. $V' = L \cup R \cup \{s, t\}$ where s and t are the new source and sink.
2. Direct all edges in E from L to R, and add edges from s to all vertices in L and from each vertex in R to t.
3. Capacity of every edge is 1.
Reduction of bipartite matching to max-flow

Max-Flow Construction

Given graph \(G = (L \cup R, E) \) create flow-network \(G' = (V', E') \) as follows:

1. \(V' = L \cup R \cup \{s, t\} \) where \(s \) and \(t \) are the new source and sink.
2. Direct all edges in \(E \) from \(L \) to \(R \), and add edges from \(s \) to all vertices in \(L \) and from each vertex in \(R \) to \(t \).
3. Capacity of every edge is 1.
Correctness: Matching to Flow

Proposition

If G has a matching of size k then G' has a flow of value k.

Proof.

Let M be matching of size k. Let $M = \{(u_1, v_1), \ldots, (u_k, v_k)\}$. Consider following flow f in G':

1. $f(s, u_i) = 1$ and $f(v_i, t) = 1$ for $1 \leq i \leq k$
2. $f(u_i, v_i) = 1$ for $1 \leq i \leq k$
3. for all other edges flow is zero.

Verify that f is a flow of value k (because M is a matching).
Correctness: Matching to Flow

Proposition

If G has a matching of size k then G' has a flow of value k.

Proof.

Let M be matching of size k. Let $M = \{(u_1, v_1), \ldots, (u_k, v_k)\}$. Consider following flow f in G':

1. $f(s, u_i) = 1$ and $f(v_i, t) = 1$ for $1 \leq i \leq k$
2. $f(u_i, v_i) = 1$ for $1 \leq i \leq k$
3. for all other edges flow is zero.

Verify that f is a flow of value k (because M is a matching).
Correctness: Matching to Flow

Proposition

If G has a matching of size k then G' has a flow of value k.

Proof.

Let M be matching of size k. Let $M = \{(u_1, v_1), \ldots, (u_k, v_k)\}$. Consider following flow f in G':

1. $f(s, u_i) = 1$ and $f(v_i, t) = 1$ for $1 \leq i \leq k$
2. $f(u_i, v_i) = 1$ for $1 \leq i \leq k$
3. for all other edges flow is zero.

Verify that f is a flow of value k (because M is a matching).
Proposition

If G has a matching of size k then G' has a flow of value k.

Proof.

Let M be matching of size k. Let $M = \{(u_1, v_1), \ldots, (u_k, v_k)\}$. Consider following flow f in G':

1. $f(s, u_i) = 1$ and $f(v_i, t) = 1$ for $1 \leq i \leq k$
2. $f(u_i, v_i) = 1$ for $1 \leq i \leq k$
3. for all other edges flow is zero.

Verify that f is a flow of value k (because M is a matching).
Correctness: Matching to Flow

Proposition

If G has a matching of size k then G' has a flow of value k.

Proof.

Let M be matching of size k. Let $M = \{(u_1, v_1), \ldots, (u_k, v_k)\}$. Consider following flow f in G':

1. $f(s, u_i) = 1$ and $f(v_i, t) = 1$ for $1 \leq i \leq k$
2. $f(u_i, v_i) = 1$ for $1 \leq i \leq k$
3. for all other edges flow is zero.

Verify that f is a flow of value k (because M is a matching).
Correctness: Flow to Matching

Proposition

If G' has a flow of value k then G has a matching of size k.

Proof.

Consider flow f of value k.

1. Can assume f is integral. Thus each edge has flow 1 or 0.
2. Consider the set M of edges from L to R that have flow 1.
 1. M has k edges because value of flow is equal to the number of non-zero flow edges crossing cut $(L \cup \{s\}, R \cup \{t\})$
 2. Each vertex has at most one edge in M incident upon it. Why?
Correctness: Flow to Matching

Proposition

If G' has a flow of value k then G has a matching of size k.

Proof.

Consider flow f of value k.

1. Can assume f is integral. Thus each edge has flow 1 or 0.

2. Consider the set M of edges from L to R that have flow 1.
 1. M has k edges because value of flow is equal to the number of non-zero flow edges crossing cut $(L \cup \{s\}, R \cup \{t\})$
 2. Each vertex has at most one edge in M incident upon it. Why?
Correctness: Flow to Matching

Proposition

If G' has a flow of value k then G has a matching of size k.

Proof.

Consider flow f of value k.

1. Can assume f is integral. Thus each edge has flow 1 or 0.
2. Consider the set M of edges from L to R that have flow 1.
 1. M has k edges because value of flow is equal to the number of non-zero flow edges crossing cut $(L \cup \{s\}, R \cup \{t\})$
 2. Each vertex has at most one edge in M incident upon it. Why?
Correctness: Flow to Matching

Proposition

If G' has a flow of value k then G has a matching of size k.

Proof.

Consider flow f of value k.

1. Can assume f is integral. Thus each edge has flow 1 or 0.
2. Consider the set M of edges from L to R that have flow 1.
 1. M has k edges because value of flow is equal to the number of non-zero flow edges crossing cut $(L \cup \{s\}, R \cup \{t\})$
 2. Each vertex has at most one edge in M incident upon it. Why?
Correctness: Flow to Matching

Proposition

If G' has a flow of value k then G has a matching of size k.

Proof.

Consider flow f of value k.

1. Can assume f is integral. Thus each edge has flow 1 or 0.
2. Consider the set M of edges from L to R that have flow 1.
 1. M has k edges because value of flow is equal to the number of non-zero flow edges crossing cut $(L \cup \{s\}, R \cup \{t\})$
 2. Each vertex has at most one edge in M incident upon it. Why?
Correctness of Reduction

Theorem

The maximum flow value in $G' = \text{maximum cardinality of matching in } G$.

Consequence

Thus, to find maximum cardinality matching in G, we construct G' and find the maximum flow in G'. Note that the matching itself (not just the value) can be found efficiently from the flow.
Running Time

For graph G with n vertices and m edges G' has $O(n + m)$ edges, and $O(n)$ vertices.

1. Generic Ford-Fulkerson: Running time is $O(mC) = O(nm)$ since $C = n$.

2. Capacity scaling: Running time is $O(m^2 \log C) = O(m^2 \log n)$.

Better running time is known: $O(m\sqrt{n})$.
Running Time

For graph G with n vertices and m edges G' has $O(n + m)$ edges, and $O(n)$ vertices.

1. **Generic Ford-Fulkerson:** Running time is $O(mC) = O(nm)$ since $C = n$.

2. **Capacity scaling:** Running time is $O(m^2 \log C) = O(m^2 \log n)$.

Better running time is known: $O(m\sqrt{n})$.
Running Time

For graph G with n vertices and m edges G' has $O(n + m)$ edges, and $O(n)$ vertices.

1. Generic Ford-Fulkerson: Running time is $O(mC) = O(nm)$ since $C = n$.

2. Capacity scaling: Running time is $O(m^2 \log C) = O(m^2 \log n)$.

Better running time is known: $O(m\sqrt{n})$.
Running Time

For graph G with n vertices and m edges G' has $O(n + m)$ edges, and $O(n)$ vertices.

1. Generic Ford-Fulkerson: Running time is $O(mC) = O(nm)$ since $C = n$.

2. Capacity scaling: Running time is $O(m^2 \log C) = O(m^2 \log n)$.

Better running time is known: $O(m\sqrt{n})$.
19.5.3: Perfect Matchings
Perfect Matchings

Definition

A matching M is **perfect** if every vertex has one edge in M incident upon it.

Figure: This graph does not have a perfect matching
Characterizing Perfect Matchings

Problem
When does a bipartite graph have a perfect matching?

1. Clearly $|L| = |R|$
2. Are there any necessary and sufficient conditions?
A Necessary Condition

Lemma

If $G = (L \cup R, E)$ has a perfect matching then for any $X \subseteq L$, $|N(X)| \geq |X|$, where $N(X)$ is the set of neighbors of vertices in X.

Proof.

Since G has a perfect matching, every vertex of X is matched to a different neighbor, and so $|N(X)| \geq |X|$.
Lemma

If $G = (L \cup R, E)$ has a perfect matching then for any $X \subseteq L$, $|N(X)| \geq |X|$, where $N(X)$ is the set of neighbors of vertices in X.

Proof.

Since G has a perfect matching, every vertex of X is matched to a different neighbor, and so $|N(X)| \geq |X|$.
Hall’s Theorem

1. Frobenius-Hall theorem:

Theorem

Let $G = (L \cup R, E)$ be a bipartite graph with $|L| = |R|$. G has a perfect matching if and only if for every $X \subseteq L$, $|N(X)| \geq |X|$.

2. One direction is the necessary condition.

3. For the other direction we will show the following:
 1. Create flow network G' from G.
 2. If $|N(X)| \geq |X|$ for all X, show that minimum s-t cut in G' is of capacity $n = |L| = |R|$.
 3. Implies that G has a perfect matching.
Hall’s Theorem

Frobenius-Hall theorem:

Theorem

Let $G = (L \cup R, E)$ be a bipartite graph with $|L| = |R|$. G has a perfect matching if and only if for every $X \subseteq L$, $|N(X)| \geq |X|$.

1. One direction is the necessary condition.
2. For the other direction we will show the following:
 1. Create flow network G' from G.
 2. If $|N(X)| \geq |X|$ for all X, show that minimum s-t cut in G' is of capacity $n = |L| = |R|$.
 3. Implies that G has a perfect matching.
Hall’s Theorem

1. Frobenius-Hall theorem:

Theorem

Let $G = (L \cup R, E)$ be a bipartite graph with $|L| = |R|$. G has a perfect matching if and only if for every $X \subseteq L$, $|N(X)| \geq |X|$.

2. One direction is the necessary condition.

3. For the other direction we will show the following:
 1. Create flow network G' from G.
 2. If $|N(X)| \geq |X|$ for all X, show that minimum s-t cut in G' is of capacity $n = |L| = |R|$.
 3. Implies that G has a perfect matching.
Hall’s Theorem

1. Frobenius-Hall theorem:

Theorem

Let $G = (L \cup R, E)$ be a bipartite graph with $|L| = |R|$. G has a perfect matching if and only if for every $X \subseteq L$, $|N(X)| \geq |X|$.

2. One direction is the necessary condition.

3. For the other direction we will show the following:

 1. Create flow network G' from G.
 2. If $|N(X)| \geq |X|$ for all X, show that minimum s-t cut in G' is of capacity $n = |L| = |R|$.
 3. Implies that G has a perfect matching.
Hall’s Theorem

1. Frobenius-Hall theorem:

Theorem

Let $G = (L \cup R, E)$ be a bipartite graph with $|L| = |R|$. G has a perfect matching if and only if for every $X \subseteq L$, $|N(X)| \geq |X|$.

2. One direction is the necessary condition.

3. For the other direction we will show the following:

 1. Create flow network G' from G.
 2. If $|N(X)| \geq |X|$ for all X, show that minimum s-t cut in G' is of capacity $n = |L| = |R|$.
 3. Implies that G has a perfect matching.
Hall’s Theorem

1. Frobenius-Hall theorem:

Theorem

Let \(G = (L \cup R, E) \) be a bipartite graph with \(|L| = |R| \). \(G \) has a perfect matching if and only if for every \(X \subseteq L \), \(|N(X)| \geq |X| \).

2. One direction is the necessary condition.

3. For the other direction we will show the following:
 1. Create flow network \(G' \) from \(G \).
 2. If \(|N(X)| \geq |X| \) for all \(X \), show that minimum \(s-t \) cut in \(G' \) is of capacity \(n = |L| = |R| \).
 3. Implies that \(G \) has a perfect matching.
Hall’s Theorem

1. Frobenius-Hall theorem:

Theorem

Let $G = (L \cup R, E)$ be a bipartite graph with $|L| = |R|$. G has a perfect matching if and only if for every $X \subseteq L$, $|N(X)| \geq |X|$.

2. One direction is the necessary condition.

3. For the other direction we will show the following:
 1. Create flow network G' from G.
 2. If $|N(X)| \geq |X|$ for all X, show that minimum s-t cut in G' is of capacity $n = |L| = |R|$.
 3. Implies that G has a perfect matching.
Proof of Sufficiency

1. Assume $|N(X)| \geq |X|$ for any $X \subseteq L$. Then show that min s-t cut in G' is of capacity at least n.

2. Let (A, B) be an arbitrary s-t cut in G'

 1. Let $X = A \cap L$ and $Y = A \cap R$.
 2. Cut capacity is at least $(|L| - |X|) + |Y| + |N(X) \setminus Y|$
Proof of Sufficiency

1. Assume $|N(X)| \geq |X|$ for any $X \subseteq L$. Then show that min $s-t$ cut in G' is of capacity at least n.

2. Let (A, B) be an arbitrary $s-t$ cut in G'
 1. Let $X = A \cap L$ and $Y = A \cap R$.
 2. Cut capacity is at least $(|L| - |X|) + |Y| + |N(X) \setminus Y|$
Proof of Sufficiency

1. Assume $|N(X)| \geq |X|$ for any $X \subseteq L$. Then show that min $s-t$ cut in G' is of capacity at least n.

2. Let (A, B) be an arbitrary $s-t$ cut in G'

 1. Let $X = A \cap L$ and $Y = A \cap R$.
 2. Cut capacity is at least $(|L| - |X|) + |Y| + |N(X) \setminus Y|$
Proof of Sufficiency

1. Assume $|N(X)| \geq |X|$ for any $X \subseteq L$. Then show that min s-t cut in G' is of capacity at least n.

2. Let (A, B) be an arbitrary s-t cut in G'

 1. Let $X = A \cap L$ and $Y = A \cap R$.

 2. Cut capacity is at least $(|L| - |X|) + |Y| + |N(X) \setminus Y|$

Because there are...

1. $|L| - |X|$ edges from s to $L \cap B$.
2. $|Y|$ edges from Y to t.
3. there are at least $|N(X) \setminus Y|$ edges from X to vertices on the right side that are not in Y.

\[|L| - |X| \leq |Y| + |N(X) \setminus Y| \]
Proof of Sufficiency

1. Assume $|N(X)| \geq |X|$ for any $X \subseteq L$. Then show that min s-t cut in G' is of capacity at least n.

2. Let (A, B) be an arbitrary s-t cut in G'

 1. Let $X = A \cap L$ and $Y = A \cap R$.
 2. Cut capacity is at least $(|L| - |X|) + |Y| + |N(X) \setminus Y|$.

 Because there are...

 1. $|L| - |X|$ edges from s to $L \cap B$.
 2. $|Y|$ edges from Y to t.
 3. there are at least $|N(X) \setminus Y|$ edges from X to vertices on the right side that are not in Y.
Proof of Sufficiency

1. Assume \(|N(X)| \geq |X|\) for any \(X \subseteq L\). Then show that min \(s-t\) cut in \(G'\) is of capacity at least \(n\).

2. Let \((A, B)\) be an arbitrary \(s-t\) cut in \(G'\)
 1. Let \(X = A \cap L\) and \(Y = A \cap R\).
 2. Cut capacity is at least \(|L| - |X| + |Y| + |N(X) \setminus Y|\)

Because there are...

1. \(|L| - |X|\) edges from \(s\) to \(L \cap B\).
2. \(|Y|\) edges from \(Y\) to \(t\).
3. there are at least \(|N(X) \setminus Y|\) edges from \(X\) to vertices on the right side that are not in \(Y\).
Proof of Sufficiency

1. Assume $|N(X)| \geq |X|$ for any $X \subseteq L$. Then show that min s-t cut in G' is of capacity at least n.

2. Let (A, B) be an arbitrary s-t cut in G'
 1. Let $X = A \cap L$ and $Y = A \cap R$.
 2. Cut capacity is at least $(|L| - |X|) + |Y| + |N(X) \setminus Y|$

Because there are...

1. $|L| - |X|$ edges from s to $L \cap B$.
2. $|Y|$ edges from Y to t.
3. there are at least $|N(X) \setminus Y|$ edges from X to vertices on the right side that are not in Y.
By the above, cut capacity is at least
\[\alpha = (|L| - |X|) + |Y| + |N(X) \setminus Y|. \]

2. \[|N(X) \setminus Y| \geq |N(X)| - |Y|. \]
 (This holds for any two sets.)

3. By assumption \(|N(X)| \geq |X|\) and hence
 \[|N(X) \setminus Y| \geq |N(X)| - |Y| \geq |X| - |Y|. \]

4. Cut capacity is therefore at least
 \[\alpha = (|L| - |X|) + |Y| + |N(X) \setminus Y| \geq |L| - |X| + |Y| + |X| - |Y| \geq |L| = n. \]

5. Any \(s-t\) cut capacity is at least \(n \implies \) max flow at least \(n\) units \(\implies\) perfect matching. \(\text{QED}\)
Proof of Sufficiency

Continued...

1. By the above, cut capacity is at least

\[\alpha = (|L| - |X|) + |Y| + |N(X) \setminus Y|. \]

2. \[|N(X) \setminus Y| \geq |N(X)| - |Y|. \]

(This holds for any two sets.)

3. By assumption \(|N(X)| \geq |X|\) and hence

\[|N(X) \setminus Y| \geq |N(X)| - |Y| \geq |X| - |Y|. \]

4. Cut capacity is therefore at least

\[\alpha = (|L| - |X|) + |Y| + |N(X) \setminus Y| \]

\[\geq |L| - |X| + |Y| + |X| - |Y| \geq |L| = n. \]

5. Any \(s-t\) cut capacity is at least \(n \implies \max \text{ flow at least } n\) units \(\implies \text{ perfect matching.} \)

QED
Proof of Sufficiency

Continued...

1. By the above, cut capacity is at least
 \[\alpha = (|L| - |X|) + |Y| + |N(X) \setminus Y|. \]

2. \[|N(X) \setminus Y| \geq |N(X)| - |Y|. \]
 (This holds for any two sets.)

3. By assumption \(|N(X)| \geq |X| \) and hence
 \[|N(X) \setminus Y| \geq |N(X)| - |Y| \geq |X| - |Y|. \]

4. Cut capacity is therefore at least
 \[\alpha = (|L| - |X|) + |Y| + |N(X) \setminus Y| \geq |L| - |X| + |Y| + |X| - |Y| \geq |L| = n. \]

5. Any \(s-t \) cut capacity is at least \(n \quad \Rightarrow \quad \) max flow at least \(n \) units \(\Rightarrow \quad \) perfect matching.

QED
Proof of Sufficiency

Continued...

1. By the above, cut capacity is at least
 \[\alpha = (|L| - |X|) + |Y| + |N(X) \setminus Y|. \]

2. \[|N(X) \setminus Y| \geq |N(X)| - |Y|. \]
 (This holds for any two sets.)

3. By assumption \(|N(X)| \geq |X|\) and hence
 \[|N(X) \setminus Y| \geq |N(X)| - |Y| \geq |X| - |Y|. \]

4. Cut capacity is therefore at least
 \[\alpha = (|L| - |X|) + |Y| + |N(X) \setminus Y| \geq |L| - |X| + |Y| + |X| - |Y| \geq |L| = n. \]

5. Any \(s-t\) cut capacity is at least \(n \implies \text{max flow at least } n\) units \(\implies \text{perfect matching.}\)

QED
By the above, cut capacity is at least
\[\alpha = (|L| - |X|) + |Y| + |N(X) \setminus Y|. \]
\[|N(X) \setminus Y| \geq |N(X)| - |Y|. \]
(This holds for any two sets.)

By assumption \(|N(X)| \geq |X| \) and hence
\[|N(X) \setminus Y| \geq |N(X)| - |Y| \geq |X| - |Y|. \]

Cut capacity is therefore at least
\[\alpha = (|L| - |X|) + |Y| + |N(X) \setminus Y| \geq |L| - |X| + |Y| + |X| - |Y| \geq |L| = n. \]

Any \(s-t \) cut capacity is at least \(n \iff \) max flow at least \(n \) units \(\iff \) perfect matching. \(\text{QED} \)
Hall’s Theorem: Generalization

Theorem (Frobenius-Hall)

Let $G = (L \cup R, E)$ be a bipartite graph with $|L| \leq |R|$. G has a matching that matches all nodes in L if and only if for every $X \subseteq L$, $|N(X)| \geq |X|$.

Proof is essentially the same as the previous one.
Problem: Assigning jobs to people

Problem:

1. n jobs or tasks
2. m people.
3. For each job a set of people who can do that job.
4. For each person j a limit on number of jobs k_j.
5. Goal: find an assignment of jobs to people so that all jobs are assigned and no person is overloaded.
Problem: Assigning jobs to people

Problem:

1. \(n \) jobs or tasks
2. \(m \) people.
3. For each job a set of people who can do that job.
4. For each person \(j \) a limit on number of jobs \(k_j \).
5. Goal: find an assignment of jobs to people so that all jobs are assigned and no person is overloaded.
Problem: Assigning jobs to people

Problem:

1. n jobs or tasks
2. m people.
3. For each job a set of people who can do that job.
4. For each person j a limit on number of jobs k_j.
5. Goal: find an assignment of jobs to people so that all jobs are assigned and no person is overloaded.
Problem: Assigning jobs to people

Problem:

1. n jobs or tasks
2. m people.
3. For each job a set of people who can do that job.
4. For each person j a limit on number of jobs k_j.
5. **Goal:** find an assignment of jobs to people so that all jobs are assigned and no person is overloaded.
Application: Assigning jobs to people

1. Reduce to max-flow similar to matching.

2. Arises in many settings. Using *minimum-cost flows* can also handle the case when assigning a job \(i \) to person \(j \) costs \(c_{ij} \) and goal is assign all jobs but minimize cost of assignment.
Application: Assigning jobs to people

1. Reduce to max-flow similar to matching.

2. Arises in many settings. Using *minimum-cost flows* can also handle the case when assigning a job \(i \) to person \(j \) costs \(c_{ij} \) and goal is assign all jobs but minimize cost of assignment.
Application: Assigning jobs to people

1. Reduce to max-flow similar to matching.

2. Arises in many settings. Using *minimum-cost flows* can also handle the case when assigning a job i to person j costs c_{ij} and goal is assign all jobs but minimize cost of assignment.
Reduction to Maximum Flow

For assigning jobs to people

1. Create directed graph $G = (V, E)$ as follows
 1. $V = \{s, t\} \cup L \cup R$: L set of n jobs, R set of m people
 2. add edges (s, i) for each job $i \in L$, capacity 1
 3. add edges (j, t) for each person $j \in R$, capacity k_j
 4. if job i can be done by person j add an edge (i, j), capacity 1

2. Compute max s-t flow. There is an assignment if and only if flow value is n.
1. Matchings in general graphs more complicated.
2. There is a polynomial time algorithm to compute a maximum matching in a general graph. Best known running time is $O(m\sqrt{n})$.
1. Matchings in general graphs more complicated.

2. There is a polynomial time algorithm to compute a maximum matching in a general graph. Best known running time is $O(m\sqrt{n})$.
Matchings in general graphs more complicated.

There is a polynomial time algorithm to compute a maximum matching in a general graph. Best known running time is $O(m\sqrt{n})$.