Dictionary Data Structure

- **U**: universe of keys with total order: numbers, strings, etc.
- Data structure to store a subset $S \subseteq U$
- **Operations**:
 - **Search/lookup**: given $x \in U$ is $x \in S$?
 - **Insert**: given $x \not\in S$ add x to S.
 - **Delete**: given $x \in S$ delete x from S
- **Static** structure: S given in advance or changes very infrequently, main operations are lookups.
- **Dynamic** structure: S changes rapidly so inserts and deletes as important as lookups.

Dictionary Data Structures

Common solutions:

- **Static**:
 - Store S as a sorted array
 - **Lookup**: Binary search in $O(\log |S|)$ time (comparisons)
- **Dynamic**:
 - Store S in a balanced binary search tree
 - Lookup, Insert, Delete in $O(\log |S|)$ time (comparisons)
Dictionary Data Structures II

Question: “Should Tables be Sorted?”
(also title of famous paper by Turing award winner Andy Yao)

Motivation:
1. Universe \mathcal{U} may not be (naturally) totally ordered.
2. Keys correspond to large objects (images, graphs etc) for which comparisons are very expensive.
3. Want to improve “average” performance of lookups to $O(1)$ even at cost of extra space or errors with small probability: many applications for fast lookups in networking, security, etc.

Hashing and Hash Tables

Hash Table data structure:
1. A (hash) table/array T of size m (the table size).
2. A hash function $h: \mathcal{U} \rightarrow \{0, \ldots, m-1\}$.
3. Item $x \in \mathcal{U}$ hashes to slot $h(x)$ in T.

Given $S \subseteq \mathcal{U}$. How do we store S and how do we do lookups?

Handling Collisions

Collision: $h(x) = h(y)$ for some $x \neq y$.

Chaining to handle collisions:
1. For each slot i store all items hashed to slot i in a linked list. $T[i]$ points to the linked list.
2. Lookup: to find if $y \in \mathcal{U}$ is in T, check the linked list at $T[h(y)]$. Time proportion to size of linked list.

This is also known as Open hashing.
Understanding Hashing

- Does hashing give $O(1)$ time per operation for dictionaries?
- **Questions:**
 - Complexity of evaluating h on a given element?
 - Relative sizes of the universe \mathcal{U} and the set to be stored S.
 - Size of table relative to size of S.
 - Worst-case vs average-case vs randomized (expected) time?
 - How do we choose h?

Considerations:

1. Complexity of evaluating h on a given element? Should be small.
2. Relative sizes of the universe \mathcal{U} and the set to be stored S: typically $|\mathcal{U}| \gg |S|$.
3. Size of table relative to size of S. The load factor of T is the ratio n/t where $n = |S|$ and $m = |T|$. Typically n/t is a small constant smaller than 1. Also known as the fill factor.
4. Worst-case vs average-case vs randomized (expected) time?
5. How do we choose h?

Single hash function

- \mathcal{U}: universe (very large).
- Assume $N = |\mathcal{U}| \gg m$ where m is size of table T. In particular assume $N \geq m^2$ (very conservative).
- Fix hash function $h : \mathcal{U} \rightarrow \{0, \ldots, m-1\}$.
- N items hashed to m slots. By pigeon hole principle there is some $i \in \{0, \ldots, m-1\}$ such that $N/m \geq m$ elements of \mathcal{U} get hashed to i (!).
- Implies that there is a set $S \subseteq \mathcal{U}$ where $|S| = m$ such that all of S hashes to same slot. Ooops.

Lesson: For every hash function there is a very bad set. Bad set. Bad.

Picking a hash function

- How to pick functions?
 - Hash function are often chosen in an ad hoc fashion. Implicit assumption is that input behaves well.
 - Theory and sound practice suggests that a hash function should be chosen properly with guarantees on its behavior.
- **Parameters:** $N = |\mathcal{U}|$, $m = |T|$, $n = |S|$.
 - \mathcal{H} is a family of hash functions: each function $h \in \mathcal{H}$ should be efficient to evaluate (that is, to compute $h(x)$).
 - h is chosen randomly from \mathcal{H} (typically uniformly at random). Implicitly assumes that \mathcal{H} allows an efficient sampling.
 - Randomized guarantee: should have the property that for any fixed set $S \subseteq \mathcal{U}$ of size m the expected number of collisions for a function chosen from \mathcal{H} should be “small”. Here the expectation is over the randomness in choice of h.

Lesson: For every hash function there is a very bad set. Bad set. Bad.
Picking a hash function II

Question: Why not let H be the set of all functions from U to $\{0, 1, \ldots, m-1\}$?

- Too many functions! A random function has high complexity!

 \# of functions: $M = |U|^m$.

 Bits to encode such a function $\approx \log M = |U| \log m$.

Question: Are there good and compact families H?

- Yes... But what it means for H to be good and compact.

Uniform hashing

Question: What are good properties of H in distributing data?

- Consider any element $x \in U$. Then if $h \in H$ is picked randomly then x should go into a random slot in T. In other words $Pr[h(x) = i] = 1/m$ for every $0 \leq i < m$.

- Consider any two distinct elements $x, y \in U$. Then if $h \in H$ is picked randomly then the probability of a collision between x and y should be at most $1/m$. In other words $Pr[h(x) = h(y)] = 1/m$ (cannot be smaller).

- Second property is stronger than the first and the crucial issue.

Definition

A family hash function H is **2-universal** if for all distinct $x, y \in U$, $Pr[h(x) = h(y)] = 1/m$ where m is the table size.

Note: The set of all hash functions satisfies stronger properties!

Analyzing Uniform Hashing

- T is hash table of size m.
- $S \subseteq U$ is a **fixed** set of size $\leq m$.
- h is chosen randomly from a uniform hash family H.
- x is a **fixed** element of U. Assume for simplicity that $x \notin S$.

Question: What is the expected time to look up x in T using h assuming chaining used to resolve collisions?

- The time to look up x is the size of the list at $T[h(x)]$: same as the number of elements in S that collide with x under h.

- Let $\ell(x)$ be this number. We want $E[\ell(x)]$

- For $y \in S$ let A_y be the event that x, y collide and D_y be the corresponding indicator variable.
Analyzing Uniform Hashing

Continued...

Number of elements colliding with x: $\ell(x) = \sum_{y \in S} D_y$.

$$\Rightarrow E[\ell(x)] = \sum_{y \in S} E[D_y] \quad \text{linearity of expectation}$$

$$= \sum_{y \in S} Pr[h(x) = h(y)]$$

$$= \sum_{y \in S} \frac{1}{m} \quad \text{since } \mathcal{H} \text{ is a uniform hash family}$$

$$= \frac{|S|}{m} \quad \text{since } |S| \leq m$$

Rehashing, amortization and...

... making the hash table dynamic

Previous analysis assumed fixed S of size $\approx m$.

Question: What happens as items are inserted and deleted?

- If $|S|$ grows to more than cm for some constant c then hash table performance clearly degrades.
- If $|S|$ stays around $\approx m$ but incurs many insertions and deletions then the initial random hash function is no longer random enough!

Solution: Rebuild hash table periodically!

- Choose a new table size based on current number of elements in table.
- Choose a new random hash function and rehash the elements.
- Discard old table and hash function.

Question: When to rebuild? How expensive?

Rebuilding the hash table

- Start with table size m where m is some estimate of $|S|$ (can be some large constant).
- If $|S|$ grows to more than twice current table size, build new hash table (choose a new random hash function) with double the current number of elements. Can also use similar trick if table size falls below quarter the size.
- If $|S|$ stays roughly the same but more than $c|S|$ operations on table for some chosen constant c (say 10), rebuild.

The amortize cost of rebuilding to previously performed operations. Rebuilding ensures $O(1)$ expected analysis holds even when S changes. Hence $O(1)$ expected look up/insert/delete time dynamic data dictionary data structure!
Lemma

Let \(p \) be a prime number,

\(x: \) an integer number in \(\{1, \ldots, p - 1\} \).

\(\implies \) There exists a unique \(y \) s.t. \(xy \equiv 1 \mod p \).

In other words: For every element there is a unique inverse.

\(\implies \mathbb{Z}_p = \{0, 1, \ldots, p - 1\} \) when working module \(p \) is a field.

Proof of lemma

Claim

Let \(p \) be a prime number. For any \(\alpha, \beta, i \in \{1, \ldots, p - 1\} \) s.t. \(\alpha \neq \beta \), we have that \(\alpha i \neq \beta i \mod p \).

Proof.

Assume for the sake of contradiction \(\alpha i = \beta i \mod p \). Then

\[i(\alpha - \beta) = 0 \mod p \]

\(\implies \) \(p \) divides \(i(\alpha - \beta) \)

\(\implies \) \(p \) divides \(\alpha - \beta \)

\(\implies \) \(\alpha - \beta = 0 \)

\(\implies \alpha = \beta \).

And that is a contradiction.

Proof of lemma...

Uniqueness.

Lemma

Let \(p \) be a prime number,

\(x: \) an integer number in \(\{1, \ldots, p - 1\} \).

\(\implies \) There exists a unique \(y \) s.t. \(xy \equiv 1 \mod p \).

Proof.

Assume the lemma is false and there are two distinct numbers \(y, z \in \{1, \ldots, p - 1\} \) such that

\[xy \equiv 1 \mod p \quad \text{and} \quad xz \equiv 1 \mod p. \]

But this contradicts the above claim (set \(i = x, \alpha = y \) and \(\beta = z \)).

Proof of lemma...

Existence

Proof.

By claim, for any \(\alpha \in \{1, \ldots, p - 1\} \) we have that

\[\{\alpha \cdot 1 \mod p, \alpha \cdot 2 \mod p, \ldots, \alpha \cdot (p - 1) \mod p\} = \{1, 2, \ldots, p - 1\}. \]

\(\implies \) There exists a number \(y \in \{1, \ldots, p - 1\} \) such that \(\alpha y \equiv 1 \mod p \).
Constructing Universal Hash Families

Parameters: \(N = |\mathcal{U}|, m = |\mathcal{T}|, n = |\mathcal{S}| \)

- Choose a prime number \(p \geq N \). \(\mathbb{Z}_p = \{0, 1, \ldots, p-1\} \) is a field.
- For \(a, b \in \mathbb{Z}_p, a \neq 0 \), define the hash function \(h_{a,b} \) as \(h_{a,b}(x) = ((ax+b) \mod p) \mod m \).
- Let \(\mathcal{H} = \{h_{a,b} \mid a, b \in \mathbb{Z}_p, a \neq 0\} \). Note that \(|\mathcal{H}| = p(p-1) \).

Theorem

\(\mathcal{H} \) is a 2-universal hash family.

Comments:

- Hash family is of small size, easy to sample from.
- Easy to store a hash function \((a, b)\) have to be stored\) and evaluate it.

What the is going on?

\(h_{a,b}(x) = ((ax+b) \mod p) \mod m \)

First map \(x \neq y \) to \(r = h(x) \) and \(s = h(y) \).

This is a random uniform mapping (choosing \(a \) and \(b \)) – every cell has the same probability to be the target, for fixed \(x \) and \(y \).

Some Lemmas

Lemma

If \(x \neq y \) then for any \(a, b \in \mathbb{Z}_p \) such that \(a \neq 0 \), we have \(ax + b \mod p \neq ay + b \mod p \).

Proof.

If \(ax + b \mod p = ay + b \mod p \) then \(a(x - y) \mod p = 0 \) and \(a \neq 0 \) and \((x - y) \neq 0 \). However, \(a \) and \((x - y) \) cannot divide \(p \) since \(p \) is prime and \(a < p \) and \((x - y) < p \). □
Some Lemmas

Lemma

If \(x \neq y \) then for each \((r, s)\) such that \(r \neq s \) and
\(0 \leq r, s \leq p - 1 \) there is exactly one \((a, b)\) such that
\[ax + b \mod p = r \text{ and } ay + b \mod p = s. \]

Proof.

Solve the two equations:

\[ax + b = r \mod p \quad \text{and} \quad ay + b = s \mod p. \]

We get \(a = \frac{r-s}{x-y} \mod p \) and \(b = r - ax \mod p. \)

Understanding the hashing

Once we fix \(a \) and \(b \), and we are given a value \(x \), we compute the hash value of \(x \) in two stages:

- **Compute:** \(r \leftarrow (ax + b) \mod p. \)
- **Fold:** \(r' \leftarrow r \mod m. \)

Collision...

Given two values \(x \) and \(y \) they might collide because of either steps.

Lemma

\# not equal pairs of \(\mathbb{Z}_p \times \mathbb{Z}_p \) that are folded to the same number is \(p(p - 1)/m. \)

Proof.

Let \(a, b \in \mathbb{Z}_p \) such that \(a \neq 0 \) and \(h_{a,b}(x) = h_{a,b}(y). \)

- Let \(ax + b \mod p = r \) and \(ay + b \mod p = s \mod p. \)
- Collision if and only if \(r = s \mod m. \)
- (Folding error): Number of pairs \((r, s)\) such that \(r \neq s \) and \(0 \leq r, s \leq p - 1 \) and \(r = s \mod m \) is \(p(p - 1)/m. \)
- From previous lemma for each bad pair \((a, b)\) there is a unique pair \((r, s)\) such that \(r = s \mod m. \) Hence total number of bad pairs is \(p(p - 1)/m. \)

Proof of Claim

\# of bad pairs is \(p(p - 1)/m. \)

Prob of \(x \) and \(y \) to collide:

\[\frac{\# \text{ bad pairs}}{\# \text{pairs}} = \frac{p(p-1)/m}{p(p-1)} = \frac{1}{m}. \]
Perfect Hashing

- **Question:** Can we make look up time $O(1)$ in worst case?
- Yes, for static dictionaries but then space usage is $O(m)$ only in expectation.

Practical Issues

Hashing used typically for integers, vectors, strings etc.
- Universal hashing is defined for integers. To implement for other objects need to map objects in some fashion to integers (via representation)
- Practical methods for various important cases such as vectors, strings are studied extensively. See http://en.wikipedia.org/wiki/Universal_hashing for some pointers.

Bloom Filters

- **Hashing:**
 - To insert x in dictionary store x in table in location $h(x)$
 - To lookup y in dictionary check contents of location $h(y)$
- **Bloom Filter:** tradeoff space for false positives
 - Storing items in dictionary expensive in terms of memory, especially if items are unwieldy objects such a long strings, images, etc with non-uniform sizes.
 - To insert x in dictionary set bit to 1 in location $h(x)$ (initially all bits are set to 0)
 - To lookup y if bit in location $h(y)$ is 1 say yes, else no.

Bloom Filters

- **Bloom Filter:** tradeoff space for false positives
 - To insert x in dictionary set bit to 1 in location $h(x)$ (initially all bits are set to 0)
 - To lookup y if bit in location $h(y)$ is 1 say yes, else no
 - No false negatives but false positives possible due to collisions
- Reducing false positives:
 - Pick k hash functions h_1, h_2, \ldots, h_k independently
 - To insert x for $1 \leq i \leq k$ set bit in location $h_i(x)$ in table i to 1
 - To lookup y compute $h_i(y)$ for $1 \leq i \leq k$ and say yes only if each bit in the corresponding location is 1, otherwise say no. If probability of false positive for one hash function is $\alpha < 1$ then with k independent hash function it is α^k.
Take away points

- Hashing is a powerful and important technique for dictionaries. Many practical applications.
- Randomization fundamental to understanding hashing.
- Good and efficient hashing possible in theory and practice with proper definitions (universal, perfect, etc).
- Related ideas of creating a compact fingerprint/sketch for objects is very powerful in theory and practice.
- Many applications in practice.