Randomized Algorithms: QuickSort and QuickSelect

Lecture 15
March 12, 2015
Part I

Slick analysis of QuickSort
A Slick Analysis of **QuickSort**

1. Let $Q(A)$ be number of comparisons done on input array A:
 - R_{ij}: event that rank i element is compared with rank j element, for $1 \leq i < j \leq n$.
 - X_{ij} is the indicator random variable for R_{ij}. That is, $X_{ij} = 1$ if rank i is compared with rank j element, otherwise 0.

2. $Q(A) = \sum_{1 \leq i < j \leq n} X_{ij}$.

3. By linearity of expectation,

$$
E[Q(A)] = E\left[\sum_{1 \leq i < j \leq n} X_{ij} \right] = \sum_{1 \leq i < j \leq n} E[X_{ij}]
$$

$$
= \sum_{1 \leq i < j \leq n} \Pr[R_{ij}].
$$
A Slick Analysis of QuickSort

1. Let $Q(A)$ be number of comparisons done on input array A:
 1. R_{ij}: event that rank i element is compared with rank j element, for $1 \leq i < j \leq n$.
 2. X_{ij} is the indicator random variable for R_{ij}. That is, $X_{ij} = 1$ if rank i is compared with rank j element, otherwise 0.

2. $Q(A) = \sum_{1 \leq i < j \leq n} X_{ij}$.

3. By linearity of expectation,

$$
E\left[Q(A) \right] = E\left[\sum_{1 \leq i < j \leq n} X_{ij} \right] = \sum_{1 \leq i < j \leq n} E\left[X_{ij} \right]
$$

$$
= \sum_{1 \leq i < j \leq n} \Pr\left[R_{ij} \right].
$$
A Slick Analysis of QuickSort

1. Let $Q(A)$ be number of comparisons done on input array A:
 1. R_{ij}: event that rank i element is compared with rank j element, for $1 \leq i < j \leq n$.
 2. X_{ij} is the indicator random variable for R_{ij}. That is, $X_{ij} = 1$ if rank i is compared with rank j element, otherwise 0.

2. $Q(A) = \sum_{1 \leq i < j \leq n} X_{ij}$.

3. By linearity of expectation,

 $$
 E[Q(A)] = E\left[\sum_{1 \leq i < j \leq n} X_{ij} \right] = \sum_{1 \leq i < j \leq n} E[X_{ij}]
 $$

 $$
 = \sum_{1 \leq i < j \leq n} Pr[R_{ij}].
 $$
A Slick Analysis of **QuickSort**

1. Let $Q(A)$ be number of comparisons done on input array A:
 - R_{ij}: event that rank i element is compared with rank j element, for $1 \leq i < j \leq n$.
 - X_{ij} is the indicator random variable for R_{ij}. That is, $X_{ij} = 1$ if rank i is compared with rank j element, otherwise 0.

2. $Q(A) = \sum_{1 \leq i < j \leq n} X_{ij}$.

3. By linearity of expectation,

\[
E\left[Q(A)\right] = E\left[\sum_{1 \leq i < j \leq n} X_{ij}\right] = \sum_{1 \leq i < j \leq n} E\left[X_{ij}\right]
\]

\[
= \sum_{1 \leq i < j \leq n} \Pr\left[R_{ij}\right].
\]
A Slick Analysis of **QuickSort**

1. Let $Q(A)$ be number of comparisons done on input array A:
 - R_{ij}: event that rank i element is compared with rank j element, for $1 \leq i < j \leq n$.
 - X_{ij} is the indicator random variable for R_{ij}. That is, $X_{ij} = 1$ if rank i is compared with rank j element, otherwise 0.

2. $Q(A) = \sum_{1 \leq i < j \leq n} X_{ij}$.

3. By linearity of expectation,

 $$
 E\left[Q(A) \right] = E \left[\sum_{1 \leq i < j \leq n} X_{ij} \right] = \sum_{1 \leq i < j \leq n} E\left[X_{ij} \right]
 $$

 $$
 = \sum_{1 \leq i < j \leq n} \Pr\left[R_{ij} \right].
 $$
Let $Q(A)$ be the number of comparisons done on input array A:

1. R_{ij}: event that rank i element is compared with rank j element, for $1 \leq i < j \leq n$.
2. X_{ij} is the indicator random variable for R_{ij}. That is, $X_{ij} = 1$ if rank i is compared with rank j element, otherwise 0.

$Q(A) = \sum_{1 \leq i < j \leq n} X_{ij}$.

By linearity of expectation,

$$E[Q(A)] = E\left[\sum_{1 \leq i < j \leq n} X_{ij} \right] = \sum_{1 \leq i < j \leq n} E[X_{ij}]$$

$$= \sum_{1 \leq i < j \leq n} \Pr[R_{ij}].$$
A Slick Analysis of QuickSort

1. Let $Q(A)$ be number of comparisons done on input array A:
 - R_{ij}: event that rank i element is compared with rank j element, for $1 \leq i < j \leq n$.
 - X_{ij} is the indicator random variable for R_{ij}. That is, $X_{ij} = 1$ if rank i is compared with rank j element, otherwise 0.

2. $Q(A) = \sum_{1 \leq i < j \leq n} X_{ij}$.

3. By linearity of expectation,

\[
E\left[Q(A)\right] = E\left[\sum_{1 \leq i < j \leq n} X_{ij}\right] = \sum_{1 \leq i < j \leq n} E\left[X_{ij}\right]
\]

\[
= \sum_{1 \leq i < j \leq n} \Pr\left[R_{ij}\right].
\]
A Slick Analysis of QuickSort

$R_{ij} = \text{rank } i \text{ element is compared with rank } j \text{ element.}$

Question: What is $Pr[R_{ij}]$?

7 5 9 1 3 4 8 6
$R_{ij} = \text{rank } i \text{ element is compared with rank } j \text{ element.}$

Question: What is $\Pr[R_{ij}]$?

With ranks: 6 4 8 1 2 3 7 5
R_{ij} = rank i element is compared with rank j element.

Question: What is $\Pr[R_{ij}]$?

With ranks: 6 4 8 1 2 3 7 5

As such, probability of comparing 5 to 8 is $\Pr[R_{4,7}]$.

A Slick Analysis of QuickSort

\[R_{ij} = \text{rank } i \text{ element is compared with rank } j \text{ element.} \]

Question: What is \(\Pr[R_{ij}] \)?

With ranks: 6 4 8 1 2 3 7 5

1. If pivot too small (say 3 [rank 2]). Partition and call recursively:

 Decision if to compare 5 to 8 is moved to subproblem.
A Slick Analysis of QuickSort

\[R_{ij} = \text{rank } i \text{ element is compared with rank } j \text{ element}. \]

Question: What is \(\Pr[R_{ij}] \)?

With ranks: 6 4 8 1 2 3 7 5

1. If pivot too small (say 3 [rank 2]). Partition and call recursively:

\[
\begin{bmatrix}
7 & 5 & 9 & 1 & 3 & 4 & 8 & 6 \\
\end{bmatrix}
\Rightarrow
\begin{bmatrix}
1 & 3 & 7 & 5 & 9 & 4 & 8 & 6 \\
\end{bmatrix}
\]

Decision if to compare 5 to 8 is moved to subproblem.

2. If pivot too large (say 9 [rank 8]):

\[
\begin{bmatrix}
7 & 5 & 9 & 1 & 3 & 4 & 8 & 6 \\
\end{bmatrix}
\Rightarrow
\begin{bmatrix}
7 & 5 & 1 & 3 & 4 & 8 & 6 & 9 \\
\end{bmatrix}
\]

Decision if to compare 5 to 8 moved to subproblem.
A Slick Analysis of **QuickSort**

Question: What is $\Pr[R_{i,j}]$?

As such, probability of comparing 5 to 8 is $\Pr[R_{4,7}]$.

If pivot is 5 (rank 4). Bingo!

1. 7 5 9 1 3 4 8 6
 6 4 8 1 2 3 7 5

1. 7 5 9 1 3 4 8 6
 1 3 4 5 7 9 8 6
A Slick Analysis of QuickSort

Question: What is $\Pr[R_{i,j}]$?

As such, probability of comparing 5 to 8 is $\Pr[R_{4,7}]$.

1. If pivot is 5 (rank 4). Bingo!

2. If pivot is 8 (rank 7). Bingo!
A Slick Analysis of QuickSort

Question: What is $\Pr[R_{i,j}]$?

As such, probability of comparing 5 to 8 is $\Pr[R_{4,7}]$.

1. If pivot is 5 (rank 4). Bingo!

 ![Diagram 1](image1.png)

 7 5 9 1 3 4 8 6

 \Rightarrow

 1 3 4 5 7 9 8 6

2. If pivot is 8 (rank 7). Bingo!

 ![Diagram 2](image2.png)

 7 5 9 1 3 4 8 6

 \Rightarrow

 7 5 1 3 4 6 8 9

3. If pivot in between the two numbers (say 6 [rank 5]):

 ![Diagram 3](image3.png)

 7 5 9 1 3 4 8 6

 \Rightarrow

 5 1 3 4 6 7 8 9

5 and 8 will never be compared to each other.
A Slick Analysis of QuickSort

Question: What is $\Pr[R_{i,j}]$?

Conclusion:

$R_{i,j}$ happens \iff

1. ith or jth ranked element is the first pivot out of the elements of rank $i, i+1, i+2, \ldots, j$

How to analyze this? Thinking acrobatics!

1. Assign every element in array random priority (say in $[0, 1]$).
2. Choose pivot to be element with lowest priority in subproblem.
3. Equivalent to picking pivot uniformly at random (as QuickSort do).
A Slick Analysis of QuickSort

Question: What is $\Pr[R_{i,j}]$?

Conclusion: $R_{i,j}$ happens iff:

- ith or jth ranked element is the first pivot out of the elements of rank $i, i + 1, i + 2, \ldots, j$.

How to analyze this? Thinking acrobatics!

1. Assign every element in array random priority (say in $[0, 1]$).
2. Choose pivot to be element with lowest priority in subproblem.
3. Equivalent to picking pivot uniformly at random (as QuickSort do).
A Slick Analysis of **QuickSort**

Question: What is $\text{Pr}[R_{i,j}]$?

Conclusion:

$R_{i,j}$ happens \iff

ith or jth ranked element is the first pivot out of the elements of rank $i, i + 1, i + 2, \ldots, j$

How to analyze this? Thinking acrobatics!

1. Assign every element in array random priority (say in $[0, 1]$).
2. Choose pivot to be element with lowest priority in subproblem.
3. Equivalent to picking pivot uniformly at random (as **QuickSort** do).
A Slick Analysis of QuickSort

Question: What is $\Pr[R_{i,j}]$?

Conclusion: $R_{i,j}$ happens \iff:

ith or jth ranked element is the first pivot out of the elements of rank $i, i + 1, i + 2, \ldots, j$

How to analyze this? Thinking acrobatics!

1. Assign every element in array random priority (say in $[0, 1]$).
2. Choose pivot to be element with lowest priority in subproblem.
3. Equivalent to picking pivot uniformly at random (as QuickSort do).
Choosing a pivot using priorities

1. Assign every element in array is a random priority (in \([0, 1]\)).
2. pivot = the element with lowest priority in subproblem.

\(R_{i,j} \) happens if either \(i \) or \(j \) have lowest priority out of elements in rank \(i \ldots j \),

There are \(k = j - i + 1 \) relevant elements.

\[
\Pr[R_{i,j}] = \frac{2}{k} = \frac{2}{j - i + 1}.
\]
A Slick Analysis of **QuickSort**

Question: What is $\Pr[R_{i,j}]$?

1. **Choosing a pivot using priorities**
 - Assign every element in array is a random priority (in $[0, 1]$).
 - pivot $= \text{the element with lowest priority in subproblem}.$

2. $R_{i,j}$ happens if either i or j have lowest priority out of elements in rank $i \ldots j$.

3. There are $k = j - i + 1$ relevant elements.

4. $\Pr[R_{i,j}] = \frac{2}{k} = \frac{2}{j - i + 1}.$
A Slick Analysis of **QuickSort**

Question: What is $\Pr[R_{i,j}]$?

1. **Choosing a pivot using priorities**
 1. Assign every element in array is a random priority (in $[0, 1]$).
 2. $\text{pivot} = \text{the element with lowest priority in subproblem}$.

2. $R_{i,j}$ happens if either i or j have lowest priority out of elements in rank $i \ldots j$,

3. There are $k = j - i + 1$ relevant elements.

4. $\Pr[R_{i,j}] = \frac{2}{k} = \frac{2}{j - i + 1}$.
A Slick Analysis of QuickSort

Question: What is $\Pr[R_{i,j}]$?

1. **Choosing a pivot using priorities**
 1. Assign every element in array is a random priority (in $[0, 1]$).
 2. $\text{pivot} = \text{the element with lowest priority in subproblem}$.

2. $R_{i,j}$ happens if either i or j have lowest priority out of elements in rank $i \ldots j$,

3. There are $k = j - i + 1$ relevant elements.

4. $\Pr[R_{i,j}] = \frac{2}{k} = \frac{2}{j - i + 1}$.
A Slick Analysis of QuickSort

Question: What is $\Pr[R_{ij}]$?

Lemma

$$\Pr[R_{ij}] = \frac{2}{j-i+1}.$$

Proof

1. $a_1, \ldots, a_i, \ldots, a_j, \ldots, a_n$: elements of A in sorted order. Let $S = \{a_i, a_{i+1}, \ldots, a_j\}$

2. **Observation:** If pivot is chosen outside S then all of S either in left or right recursive subproblem.

3. **Observation:** a_i and a_j separated when a pivot is chosen from S for the first time. Once separated never to meet again. $\implies a_i$ and a_j will not be compared.
A Slick Analysis of QuickSort

Question: What is $\Pr[R_{ij}]$?

Lemma

$$\Pr[R_{ij}] = \frac{2}{j-i+1}.$$

Proof

1. $a_1, \ldots, a_i, \ldots, a_j, \ldots, a_n$: elements of A in sorted order. Let $S = \{a_i, a_{i+1}, \ldots, a_j\}$

2. **Observation:** If pivot is chosen outside S then all of S either in left or right recursive subproblem.

3. **Observation:** a_i and a_j separated when a pivot is chosen from S for the first time. Once separated never to meet again. $\implies a_i$ and a_j will not be compared.
A Slick Analysis of QuickSort

Question: What is \(\Pr[R_{ij}] \)?

Lemma

\[
\Pr[R_{ij}] = \frac{2}{j-i+1}.
\]

Proof

1. \(a_1, \ldots, a_i, \ldots, a_j, \ldots, a_n \): elements of \(A \) in sorted order. Let \(S = \{a_i, a_{i+1}, \ldots, a_j\} \)

2. **Observation:** If pivot is chosen outside \(S \) then all of \(S \) either in left or right recursive subproblem.

3. **Observation:** \(a_i \) and \(a_j \) separated when a pivot is chosen from \(S \) for the first time. Once separated never to meet again. \(\implies \) \(a_i \) and \(a_j \) will not be compared.
A Slick Analysis of QuickSort

Question: What is \(\Pr[R_{ij}] \)?

Lemma

\[
\Pr[R_{ij}] = \frac{2}{j-i+1}.
\]

Proof

1. \(a_1, \ldots, a_i, \ldots, a_j, \ldots, a_n \): elements of \(A \) in sorted order. Let \(S = \{a_i, a_{i+1}, \ldots, a_j\} \)

2. Observation: If pivot is chosen outside \(S \) then all of \(S \) either in left or right recursive subproblem.

3. Observation: \(a_i \) and \(a_j \) separated when a pivot is chosen from \(S \) for the first time. Once separated never to meet again. \(\implies \) \(a_i \) and \(a_j \) will not be compared.
A Slick Analysis of QuickSort

Question: What is $\Pr[R_{ij}]$?

Lemma

$$\Pr[R_{ij}] = \frac{2}{j-i+1}.$$

Proof

1. $a_1, \ldots, a_i, \ldots, a_j, \ldots, a_n$: elements of A in sorted order. Let $S = \{a_i, a_{i+1}, \ldots, a_j\}$

2. **Observation:** If pivot is chosen outside S then all of S either in left or right recursive subproblem.

3. **Observation:** a_i and a_j separated when a pivot is chosen from S for the first time. Once separated never to meet again. $\implies a_i$ and a_j will not be compared.
A Slick Analysis of QuickSort

Question: What is \(\Pr[R_{ij}] \)?

Lemma

\[
\Pr[R_{ij}] = \frac{2}{j-i+1}.
\]

Proof

1. \(a_1, \ldots, a_i, \ldots, a_j, \ldots, a_n \): elements of \(A \) in sorted order. Let \(S = \{a_i, a_{i+1}, \ldots, a_j\} \)

2. **Observation:** If pivot is chosen outside \(S \) then all of \(S \) either in left or right recursive subproblem.

3. **Observation:** \(a_i \) and \(a_j \) separated when a pivot is chosen from \(S \) for the first time. Once separated never to meet again. \(\implies \) \(a_i \) and \(a_j \) will not be compared.
Lemma

\[\Pr[R_{ij}] = \frac{2}{j-i+1}. \]

Proof.

1. Let \(a_1, \ldots, a_i, \ldots, a_j, \ldots, a_n \) be sort of \(A \).
2. Let \(S = \{a_i, a_{i+1}, \ldots, a_j\} \)
3. Observation: \(a_i \) is compared with \(a_j \) \(\iff \) either \(a_i \) or \(a_j \) is chosen as a pivot from \(S \) at separation.
4. Observation: Given: Pivot chosen from \(S \).
The probability that it is \(a_i \) or \(a_j \) is exactly \(2/|S| = 2/(j-i+1) \) since the pivot is chosen uniformly at random from the array.
A Slick Analysis of QuickSort

Continued...

Lemma

\[
\Pr[R_{ij}] = \frac{2}{j-i+1}.
\]

Proof.

1. Let \(a_1, \ldots, a_i, \ldots, a_j, \ldots, a_n \) be sort of \(A \).
2. Let \(S = \{a_i, a_{i+1}, \ldots, a_j\} \)
3. **Observation:** \(a_i \) is compared with \(a_j \) \(\iff \) either \(a_i \) or \(a_j \) is chosen as a pivot from \(S \) at separation.
4. **Observation:** Given: Pivot chosen from \(S \). The probability that it is \(a_i \) or \(a_j \) is exactly \(\frac{2}{|S|} \) since the pivot is chosen uniformly at random from the array.
Lemma
\[\Pr[R_{ij}] = \frac{2}{j-i+1}. \]

Proof.
1. Let \(a_1, \ldots, a_i, \ldots, a_j, \ldots, a_n \) be sort of \(A \).
2. Let \(S = \{a_i, a_{i+1}, \ldots, a_j\} \)
3. **Observation:** \(a_i \) is compared with \(a_j \) \(\iff \) either \(a_i \) or \(a_j \) is chosen as a pivot from \(S \) at separation.
4. **Observation:** Given: Pivot chosen from \(S \).
 The probability that it is \(a_i \) or \(a_j \) is exactly \(2/|S| = 2/(j-i+1) \) since the pivot is chosen uniformly at random from the array.
A Slick Analysis of QuickSort

Continued...

Lemma

$$\Pr[R_{ij}] = \frac{2}{j-i+1}.$$

Proof.

1. Let $a_1, \ldots, a_i, \ldots, a_j, \ldots, a_n$ be sort of A.
2. Let $S = \{a_i, a_{i+1}, \ldots, a_j\}$
3. **Observation:** a_i is compared with a_j either a_i or a_j is chosen as a pivot from S at separation.
4. **Observation:** Given: Pivot chosen from S.
 The probability that it is a_i or a_j is exactly $2/|S| = 2/(j-i+1)$ since the pivot is chosen uniformly at random from the array.
Lemma

\[\Pr[R_{ij}] = \frac{2}{j-i+1}. \]

Proof.

1. Let \(a_1, \ldots, a_i, \ldots, a_j, \ldots, a_n \) be sort of \(A \).
2. Let \(S = \{a_i, a_{i+1}, \ldots, a_j\} \)
3. **Observation**: \(a_i \) is compared with \(a_j \) \(\iff \) either \(a_i \) or \(a_j \) is chosen as a pivot from \(S \) at separation.
4. **Observation**: Given: Pivot chosen from \(S \). The probability that it is \(a_i \) or \(a_j \) is exactly \(\frac{2}{|S|} = \frac{2}{(j - i + 1)} \) since the pivot is chosen uniformly at random from the array.
A Slick Analysis of \texttt{QuickSort}

Continued...

\[E[Q(A)] = \sum_{1 \leq i < j \leq n} E[X_{ij}] = \sum_{1 \leq i < j \leq n} \Pr[R_{ij}]. \]

Lemma

\[\Pr[R_{ij}] = \frac{2}{j - i + 1}. \]

\[E[Q(A)] = \sum_{1 \leq i < j \leq n} \frac{2}{j - i + 1} \]
A Slick Analysis of QuickSort

Continued...

Lemma

\[\Pr[R_{ij}] = \frac{2}{j - i + 1}. \]

\[
E\left[Q(A) \right] = \sum_{1 \leq i < j \leq n} \Pr[R_{ij}] = \sum_{1 \leq i < j \leq n} \frac{2}{j - i + 1}
\]
A Slick Analysis of **QuickSort**

Continued...

Lemma

\[\Pr[R_{ij}] = \frac{2}{j-i+1}. \]

\[\mathbb{E}[Q(A)] = \sum_{1 \leq i < j \leq n} \frac{2}{j-i+1} \]
Lemma

$$\Pr[R_{ij}] = \frac{2}{j-i+1}.$$

$$\mathbb{E} \left[Q(A) \right] = \sum_{1 \leq i < j \leq n} \frac{2}{j-i+1}$$

$$= \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{2}{j-i+1}$$
A Slick Analysis of **QuickSort**

Continued...

Lemma

\[\Pr[R_{ij}] = \frac{2}{j - i + 1}. \]

\[
E\left[Q(A) \right] = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{2}{j - i + 1}
\]
Lemma

\[\Pr[R_{ij}] = \frac{2}{j-i+1}. \]

\[\mathbb{E}[Q(A)] = 2 \sum_{i=1}^{n-1} \sum_{i<j}^{n} \frac{1}{j-i+1} \]
A Slick Analysis of **QuickSort**

Continued...

Lemma

\[
\Pr[R_{ij}] = \frac{2}{j-i+1}.
\]

\[
E[Q(A)] = 2 \sum_{i=1}^{n-1} \sum_{i<j}^{n} \frac{1}{j-i+1}
\]
A Slick Analysis of QuickSort

Continued...

Lemma

\[\Pr[R_{ij}] = \frac{2}{j-i+1}. \]

\[\mathbb{E}[Q(A)] = 2 \sum_{i=1}^{n-1} \sum_{i<j}^{n} \frac{1}{j-i+1} \leq 2 \sum_{i=1}^{n-1} \sum_{\Delta=2}^{n-i+1} \frac{1}{\Delta} \]
A Slick Analysis of QuickSort

Continued...

Lemma

\[\Pr[R_{ij}] = \frac{2}{j - i + 1}. \]

\[
E\left[Q(A) \right] = 2 \sum_{i=1}^{n-1} \sum_{i<j} \frac{1}{j - i + 1} \leq 2 \sum_{i=1}^{n-1} \sum_{\Delta=2}^{n-i+1} \frac{1}{\Delta} \]

\[
\leq 2 \sum_{i=1}^{n-1} (H_{n-i+1} - 1) \leq 2 \sum_{1 \leq i < n} H_n
\]
A Slick Analysis of **QuickSort**

Continued...

Lemma

\[
\Pr[R_{ij}] = \frac{2}{j-i+1}.
\]

\[
\mathbb{E}[Q(A)] = 2 \sum_{i=1}^{n-1} \sum_{i<j}^{n} \frac{1}{j-i+1} \leq 2 \sum_{i=1}^{n-1} \sum_{\Delta=2}^{n-i+1} \frac{1}{\Delta}
\]

\[
\leq 2 \sum_{i=1}^{n-1} (H_{n-i+1} - 1) \leq 2 \sum_{1 \leq i < n}^{n} H_{n}
\]

\[
\leq 2nH_{n} = O(n \log n)
\]
Part II

Quick sort with high probability
Yet another analysis of QuickSort

You should never trust a man who has only one way to spell a word

1. Consider element \(e \) in the array.

2. \(S_1, S_2, \ldots, S_k \): subproblems \(e \) participates in during QuickSort execution:

3. **Definition**
 \(e \) is lucky in the \(j \)th iteration if \(|S_j| \leq (3/4) |S_{j-1}| \).

4. **Key observation**: The event that \(e \) is lucky in \(j \)th iteration...

5. ... is independent of the event that \(e \) is lucky in \(k \)th iteration, (if \(j \neq k \))

6. \(X_j = 1 \iff e \) is lucky in the \(j \)th iteration.
Consider element e in the array.

S_1, S_2, \ldots, S_k: subproblems e participates in during QuickSort execution:

Definition

e is lucky in the jth iteration if $|S_j| \leq (3/4)|S_{j-1}|$.

Key observation: The event that e is lucky in jth iteration...

... is independent of the event that e is lucky in kth iteration, (If $j \neq k$)

$X_j = 1 \iff e$ is lucky in the jth iteration.
Yet another analysis of QuickSort
You should never trust a man who has only one way to spell a word

1. Consider element e in the array.
2. S_1, S_2, \ldots, S_k: subproblems e participates in during QuickSort execution:

Definition

e is lucky in the jth iteration if $|S_j| \leq (3/4) |S_{j-1}|$.

4. Key observation: The event that e is lucky in jth iteration...
5. ... is independent of the event that e is lucky in kth iteration, (If $j \neq k$)
6. $X_j = 1 \iff e$ is lucky in the jth iteration.
Yet another analysis of QuickSort
You should never trust a man who has only one way to spell a word

1 Consider element \(e \) in the array.

2 \(S_1, S_2, \ldots, S_k \): subproblems \(e \) participates in during QuickSort execution:

3 **Definition**

\[e \text{ is lucky in the } j\text{th iteration if } |S_j| \leq \frac{3}{4} |S_{j-1}|. \]

4 **Key observation**: The event that \(e \) is lucky in \(j \)th iteration...

5 ... is independent of the event that \(e \) is lucky in \(k \)th iteration, (If \(j \neq k \))

6 \(X_j = 1 \iff e \text{ is lucky in the } j\text{th iteration.} \)
Yet another analysis of QuickSort
You should never trust a man who has only one way to spell a word

1. Consider element e in the array.

2. S_1, S_2, \ldots, S_k: subproblems e participates in during QuickSort execution:

3. **Definition**

 e is lucky in the jth iteration if $|S_j| \leq (3/4)|S_{j-1}|$.

4. **Key observation**: The event that e is lucky in jth iteration...

5. ... is independent of the event that e is lucky in kth iteration, (If $j \neq k$)

6. $X_j = 1 \iff e$ is lucky in the jth iteration.
Yet another analysis of QuickSort

You should never trust a man who has only one way to spell a word

1. Consider element e in the array.
2. S_1, S_2, \ldots, S_k: subproblems e participates in during QuickSort execution:

 Definition

 e is lucky in the jth iteration if $|S_j| \leq \frac{3}{4} |S_{j-1}|$.

4. **Key observation**: The event that e is lucky in jth iteration...
5. ... is independent of the event that e is lucky in kth iteration, (If $j \neq k$)
6. $X_j = 1 \iff e$ is lucky in the jth iteration.
Claim

\[\Pr[X_j = 1] = 1/2. \]

Proof.

1. \(X_j \) determined by \(j \) recursive subproblem.
2. Subproblem has \(n_{j-1} = |X_{j-1}| \) elements.
3. \(j \)'th pivot rank \(\in [n_{j-1}/4, (3/4)n_{j-1}] \implies e \) lucky in \(j \)'th iter.
4. Prob. \(e \) is lucky \(\geq \frac{|[n_{j-1}/4, (3/4)n_{j-1}]|}{n_{j-1}} = 1/2. \)

Observation

If \(X_1 + X_2 + \ldots X_k = \lceil \log_{4/3} n \rceil \) then \(e \) subproblem is of size one.

Done!
Yet another analysis of QuickSort

Continued...

Claim

\[\Pr[X_j = 1] = 1/2. \]

Proof.

1. \(X_j \) determined by \(j \) recursive subproblem.
2. Subproblem has \(n_{j-1} = |X_{j-1}| \) elements.
3. \(j \)th pivot rank \(\in [n_{j-1}/4, (3/4)n_{j-1}] \) \(\implies \) e lucky in \(j \)th iter.
4. Prob. e is lucky \(\geq [n_{j-1}/4, (3/4)n_{j-1}]/n_{j-1} = 1/2. \)

Observation

If \(X_1 + X_2 + \ldots X_k = \lceil \log_{4/3} n \rceil \) then e subproblem is of size one. Done!
Yet another analysis of QuickSort

Continued...

Claim

\[\Pr[X_j = 1] = \frac{1}{2}. \]

Proof.

1. \(X_j \) determined by \(j \) recursive subproblem.
2. Subproblem has \(n_{j-1} = |X_{j-1}| \) elements.
3. \(j \)th pivot rank \(\in [n_{j-1}/4, (3/4)n_{j-1}] \) \(\implies \) \(e \) lucky in \(j \)th iter.
4. Prob. \(e \) is lucky \(\geq |[n_{j-1}/4, (3/4)n_{j-1}]| / n_{j-1} = 1/2. \)

Observation

If \(X_1 + X_2 + \ldots X_k = \lceil \log_{4/3} n \rceil \) then \(e \) subproblem is of size one.

Done!
Yet another analysis of QuickSort

Continued...

Claim

\[\Pr[X_j = 1] = 1/2. \]

Proof.

1. \(X_j \) determined by \(j \) recursive subproblem.
2. Subproblem has \(n_{j-1} = |X_{j-1}| \) elements.
3. \(j \)th pivot rank \(\in \left[n_{j-1}/4, (3/4)n_{j-1} \right] \implies e \) lucky in \(j \)th iter.
4. Prob. \(e \) is lucky \(\geq \frac{|\left[n_{j-1}/4, (3/4)n_{j-1} \right]|}{n_{j-1}} = 1/2. \)

Observation

If \(X_1 + X_2 + \ldots + X_k = \left\lfloor \log_{4/3} n \right\rfloor \) then \(e \) subproblem is of size one.

Done!
Claim

\[\Pr[X_j = 1] = 1/2. \]

Proof.

1. \(X_j \) determined by \(j \) recursive subproblem.
2. Subproblem has \(n_{j-1} = |X_{j-1}| \) elements.
3. \(j \)th pivot rank \(\in [n_{j-1}/4, (3/4)n_{j-1}] \iff \) \(e \) lucky in \(j \)th iter.
4. Prob. \(e \) is lucky \(\geq \frac{|n_{j-1}/4, (3/4)n_{j-1}|}{n_{j-1}} = 1/2. \)

Observation

If \(X_1 + X_2 + \ldots + X_k = \lceil \log_{4/3} n \rceil \) then \(e \) subproblem is of size one.

Done!
Yet another analysis of QuickSort
Continued...

Claim

\[\Pr[X_j = 1] = \frac{1}{2}. \]

Proof.

1. \(X_j \) determined by \(j \) recursive subproblem.
2. Subproblem has \(n_{j-1} = |X_{j-1}| \) elements.
3. \(j \)th pivot rank \(\in [n_{j-1}/4, (3/4)n_{j-1}] \implies e \) lucky in \(j \)th iter.
4. Prob. \(e \) is lucky \(\geq \frac{|[n_{j-1}/4, (3/4)n_{j-1}]|}{n_{j-1}} = \frac{1}{2}. \)

Observation

If \(X_1 + X_2 + \ldots X_k = \lceil \log_{4/3} n \rceil \) then \(e \) subproblem is of size one. Done!
Yet another analysis of QuickSort

Continued...

Claim

\[\Pr[X_j = 1] = 1/2. \]

Proof.

1. \(X_j \) determined by \(j \) recursive subproblem.
2. Subproblem has \(n_{j-1} = |X_{j-1}| \) elements.
3. \(j \)th pivot rank \(\in [n_{j-1}/4, (3/4)n_{j-1}] \implies e \) lucky in \(j \)th iter.
4. Prob. \(e \) is lucky \(\geq |[n_{j-1}/4, (3/4)n_{j-1}]| / n_{j-1} = 1/2. \)

Observation

If \(X_1 + X_2 + \ldots X_k = \lceil \log_{4/3} n \rceil \) then \(e \) subproblem is of size one. Done!
Yet another analysis of QuickSort

Continued...

Observation

Probability \(e \) participates in \(\geq k = 40 \lceil \log_{4/3} n \rceil \) subproblems. Is equal to

\[
\Pr \left[X_1 + X_2 + \ldots + X_k \leq \lceil \log_{4/3} n \rceil \right] \\
\leq \Pr \left[X_1 + X_2 + \ldots + X_k \leq k/4 \right] \\
\leq 2 \cdot 0.68^{k/4} \leq 1/n^5.
\]

Conclusion

QuickSort takes \(O(n \log n) \) time with high probability.
Because...

Theorem

Let X_n be the number heads when flipping a coin independently n times. Then

$$\Pr \left[X_n \leq \frac{n}{4} \right] \leq 2 \cdot 0.68^{n/4} \quad \text{and} \quad \Pr \left[X_n \geq \frac{3n}{4} \right] \leq 2 \cdot 0.68^{n/4}$$
Part III

Randomized selection
Randomized Quick Selection

Input Unsorted array A of n integers

Goal Find the jth smallest number in A (rank j number)

Randomized Quick Selection

1. Pick a pivot element *uniformly at random* from the array
2. Split array into 3 subarrays: those smaller than pivot, those larger than pivot, and the pivot itself.
3. Return pivot if rank of pivot is j.
4. Otherwise recurse on one of the arrays depending on j and their sizes.
Algorithm for Randomized Selection

Assume for simplicity that A has distinct elements.

QuickSelect(A, j):

- Pick pivot x uniformly at random from A
- Partition A into A_{less}, x, and A_{greater} using x as pivot
- if ($|A_{\text{less}}| = j - 1$) then
 - return x
- if ($|A_{\text{less}}| \geq j$) then
 - return **QuickSelect**(A_{less}, j)
- else
 - return **QuickSelect**(A_{greater}, $j - |A_{\text{less}}| - 1$)
QuickSelect analysis

1. S_1, S_2, \ldots, S_k be the subproblems considered by the algorithm. Here $|S_1| = n$.

2. S_i would be successful if $|S_i| \leq (3/4) |S_{i-1}|$

3. $Y_1 =$ number of recursive calls till first successful iteration. Clearly, total work till this happens is $O(Y_1 n)$.

4. $n_i =$ size of the subproblem immediately after the $(i-1)$th successful iteration.

5. $Y_i =$ number of recursive calls after the $(i-1)$th successful call, till the ith successful iteration.

6. Running time is $O(\sum_i n_i Y_i)$.
QuickSelect analysis

1. \(S_1, S_2, \ldots, S_k\) be the subproblems considered by the algorithm. Here \(|S_1| = n|.

2. \(S_i\) would be \textbf{successful} if \(|S_i| \leq (3/4)|S_{i-1}|\)

3. \(Y_1 = \) number of recursive calls till first successful iteration. Clearly, total work till this happens is \(O(Y_1 n)\).

4. \(n_i = \) size of the subproblem immediately after the \((i - 1)\)th successful iteration.

5. \(Y_i = \) number of recursive calls after the \((i - 1)\)th successful call, till the \(i\)th successful iteration.

6. Running time is \(O(\sum_i n_i Y_i)\).
QuickSelect analysis

1. S_1, S_2, \ldots, S_k be the subproblems considered by the algorithm. Here $|S_1| = n$.

2. S_i would be successful if $|S_i| \leq (3/4) |S_{i-1}|$

3. $Y_1 = \text{number of recursive calls till first successful iteration.}$
 Clearly, total work till this happens is $O(Y_1 n)$.

4. $n_i = \text{size of the subproblem immediately after the } (i - 1)\text{th successful iteration.}$

5. $Y_i = \text{number of recursive calls after the } (i - 1)\text{th successful call, till the } i\text{th successful iteration.}$

6. Running time is $O(\sum_i n_i Y_i)$.
QuickSelect analysis

1. S_1, S_2, \ldots, S_k be the subproblems considered by the algorithm. Here $|S_1| = n$.

2. S_i would be successful if $|S_i| \leq (3/4)|S_{i-1}|$.

3. $Y_1 = \text{number of recursive calls till first successful iteration.}$
 Clearly, total work till this happens is $O(Y_1 n)$.

4. $n_i = \text{size of the subproblem immediately after the } (i-1)\text{th successful iteration.}$

5. $Y_i = \text{number of recursive calls after the } (i-1)\text{th successful call, till the } i\text{th successful successful iteration.}$

6. Running time is $O(\sum_i n_i Y_i)$.
QuickSelect analysis

1. \(S_1, S_2, \ldots, S_k \) be the subproblems considered by the algorithm. Here \(|S_1| = n \).

2. \(S_i \) would be successful if \(|S_i| \leq (3/4) |S_{i-1}| \).

3. \(Y_1 \) = number of recursive calls till first successful iteration. Clearly, total work till this happens is \(O(Y_1 n) \).

4. \(n_i \) = size of the subproblem immediately after the \((i - 1) \)th successful iteration.

5. \(Y_i \) = number of recursive calls after the \((i - 1) \)th successful call, till the \(i \)th successful iteration.

6. Running time is \(O(\sum_i n_i Y_i) \).
QuickSelect analysis

1. S_1, S_2, \ldots, S_k be the subproblems considered by the algorithm. Here $|S_1| = n$.

2. S_i would be **successful** if $|S_i| \leq (3/4) |S_{i-1}|$.

3. $Y_1 = \text{number of recursive calls till first successful iteration.} $ Clearly, total work till this happens is $O(Y_1 n)$.

4. $n_i = \text{size of the subproblem immediately after the } (i - 1)\text{th successful iteration.}$

5. $Y_i = \text{number of recursive calls after the } (i - 1)\text{th successful call, till the } i\text{th successful iteration.}$

6. Running time is $O(\sum_i n_i Y_i)$.
QuickSelect analysis

Example

\(S_i \) = subarray used in \(i \)th recursive call

\(|S_i|\) = size of this subarray

Red indicates successful iteration.

<table>
<thead>
<tr>
<th>Inst’</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(</td>
<td>S_i</td>
<td>)</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Succ’</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(n_i)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
QuickSelect analysis

Example

- S_i = subarray used in ith recursive call
- $|S_i|$ = size of this subarray
- Red indicates successful iteration.

<table>
<thead>
<tr>
<th>Inst’</th>
<th>S_1</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$</td>
<td>S_i</td>
<td>$</td>
<td>100</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>Succ’</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$n_i =$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
QuickSelect analysis

Example

$S_i =$ subarray used in ith recursive call

$|S_i| =$ size of this subarray

Red indicates successful iteration.

<table>
<thead>
<tr>
<th>Inst’</th>
<th>S_1</th>
<th>S_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>$</td>
<td>S_i</td>
<td>$</td>
</tr>
</tbody>
</table>

Succ’

$n_i =$
QuickSelect analysis

Example

\(S_i \) = subarray used in \(i \)th recursive call
\(|S_i|\) = size of this subarray

Red indicates successful iteration.

<table>
<thead>
<tr>
<th>Inst’</th>
<th>(S_1)</th>
<th>(S_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(</td>
<td>S_i</td>
<td>)</td>
</tr>
<tr>
<td>Succ’</td>
<td>(Y_1 = 2)</td>
<td></td>
</tr>
<tr>
<td>(n_i =)</td>
<td>(n_1 = 100)</td>
<td></td>
</tr>
</tbody>
</table>
QuickSelect analysis

Example

$S_i = \text{subarray used in } i\text{th recursive call}$

$|S_i| = \text{size of this subarray}$

Red indicates successful iteration.

<table>
<thead>
<tr>
<th>Inst’</th>
<th>S_1</th>
<th>S_2</th>
<th>S_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>$</td>
<td>S_i</td>
<td>$</td>
<td>100</td>
</tr>
<tr>
<td>Succ’</td>
<td>$Y_1 = 2$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$n_i = $</td>
<td>$n_1 = 100$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
QuickSelect analysis

Example

\[S_i = \text{subarray used in } i\text{th recursive call} \]

\[|S_i| = \text{size of this subarray} \]

Red indicates successful iteration.

<table>
<thead>
<tr>
<th>Inst’</th>
<th>(S_1)</th>
<th>(S_2)</th>
<th>(S_3)</th>
<th>(S_4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(</td>
<td>S_i</td>
<td>)</td>
<td>100</td>
<td>70</td>
</tr>
<tr>
<td>Succ’</td>
<td>(Y_1 = 2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(n_i =)</td>
<td>(n_1 = 100)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
QuickSelect analysis

Example

S_i = subarray used in ith recursive call

$|S_i|$ = size of this subarray

Red indicates successful iteration.

<table>
<thead>
<tr>
<th>Inst’</th>
<th>S_1</th>
<th>S_2</th>
<th>S_3</th>
<th>S_4</th>
<th>S_5</th>
</tr>
</thead>
<tbody>
<tr>
<td>$</td>
<td>S_i</td>
<td>$</td>
<td>100</td>
<td>70</td>
<td>60</td>
</tr>
<tr>
<td>Succ’</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_i =</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
QuickSelect analysis

Example

\(S_i = \) subarray used in \(i \)th recursive call

\(|S_i| = \) size of this subarray

Red indicates successful iteration.

<table>
<thead>
<tr>
<th>Inst’</th>
<th>(S_1)</th>
<th>(S_2)</th>
<th>(S_3)</th>
<th>(S_4)</th>
<th>(S_5)</th>
<th>(S_6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(</td>
<td>S_i</td>
<td>)</td>
<td>100</td>
<td>70</td>
<td>60</td>
<td>50</td>
</tr>
<tr>
<td>Succ’</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| \(n_i = \) | \(n_1 = 100 \) }
QuickSelect Analysis

Example

S_i = subarray used in ith recursive call
$|S_i|$ = size of this subarray
Red indicates successful iteration.

<table>
<thead>
<tr>
<th>Inst’</th>
<th>S_1</th>
<th>S_2</th>
<th>S_3</th>
<th>S_4</th>
<th>S_5</th>
<th>S_6</th>
</tr>
</thead>
<tbody>
<tr>
<td>$</td>
<td>S_i</td>
<td>$</td>
<td>100</td>
<td>70</td>
<td>60</td>
<td>50</td>
</tr>
<tr>
<td>Succ’</td>
<td>Y₁ = 2</td>
<td></td>
<td></td>
<td></td>
<td>Y₂ = 4</td>
<td></td>
</tr>
<tr>
<td>n_i =</td>
<td>$n_1 = 100$</td>
<td></td>
<td>$n_2 = 60$</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
QuickSelect analysis

Example

\(S_i = \) subarray used in \(i \)th recursive call

\(|S_i| = \) size of this subarray

Red indicates successful iteration.

<table>
<thead>
<tr>
<th>Inst'</th>
<th>(S_1)</th>
<th>(S_2)</th>
<th>(S_3)</th>
<th>(S_4)</th>
<th>(S_5)</th>
<th>(S_6)</th>
<th>(S_7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(</td>
<td>S_i</td>
<td>)</td>
<td>100</td>
<td>70</td>
<td>60</td>
<td>50</td>
<td>40</td>
</tr>
<tr>
<td>Succ'</td>
<td>(Y_1 = 2)</td>
<td>(Y_2 = 4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(n_i = \)

| \(n_1 = 100 \) | \(n_2 = 60 \) |
QuickSelect analysis

Example

$S_i = \text{subarray used in } i\text{th recursive call}$

$|S_i| = \text{size of this subarray}$

Red indicates successful iteration.

<table>
<thead>
<tr>
<th>Inst’</th>
<th>S_1</th>
<th>S_2</th>
<th>S_3</th>
<th>S_4</th>
<th>S_5</th>
<th>S_6</th>
<th>S_7</th>
<th>S_8</th>
</tr>
</thead>
<tbody>
<tr>
<td>$</td>
<td>S_i</td>
<td>$</td>
<td>100</td>
<td>70</td>
<td>60</td>
<td>50</td>
<td>40</td>
<td>30</td>
</tr>
<tr>
<td>Succ’</td>
<td>$Y_1 = 2$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$n_i =$</td>
<td>$n_1 = 100$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$n_2 = 60$</td>
</tr>
</tbody>
</table>
QuickSelect analysis

Example

S_i = subarray used in ith recursive call
$|S_i|$ = size of this subarray
Red indicates successful iteration.

<table>
<thead>
<tr>
<th>Inst’</th>
<th>S_1</th>
<th>S_2</th>
<th>S_3</th>
<th>S_4</th>
<th>S_5</th>
<th>S_6</th>
<th>S_7</th>
<th>S_8</th>
</tr>
</thead>
<tbody>
<tr>
<td>$</td>
<td>S_i</td>
<td>$</td>
<td>100</td>
<td>70</td>
<td>60</td>
<td>50</td>
<td>40</td>
<td>30</td>
</tr>
<tr>
<td>Succ’</td>
<td>$Y_1=2$</td>
<td></td>
<td></td>
<td>$Y_2=4$</td>
<td></td>
<td></td>
<td>$Y_3=2$</td>
<td></td>
</tr>
<tr>
<td>$n_i =$</td>
<td>$n_1 = 100$</td>
<td></td>
<td></td>
<td>$n_2 = 60$</td>
<td></td>
<td></td>
<td>$n_3 = 25$</td>
<td></td>
</tr>
</tbody>
</table>
QuickSelect analysis

Example

\(S_i = \) subarray used in \(i \)th recursive call

\(|S_i| = \) size of this subarray

Red indicates successful iteration.

<table>
<thead>
<tr>
<th>Inst'</th>
<th>(S_1)</th>
<th>(S_2)</th>
<th>(S_3)</th>
<th>(S_4)</th>
<th>(S_5)</th>
<th>(S_6)</th>
<th>(S_7)</th>
<th>(S_8)</th>
<th>(S_9)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(</td>
<td>S_i</td>
<td>)</td>
<td>100</td>
<td>70</td>
<td>60</td>
<td>50</td>
<td>40</td>
<td>30</td>
<td>25</td>
</tr>
<tr>
<td>Succ'</td>
<td>(Y_1 = 2)</td>
<td>(Y_2 = 4)</td>
<td>(Y_3 = 2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(n_i =)</td>
<td>(n_1 = 100)</td>
<td>(n_2 = 60)</td>
<td>(n_3 = 25)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
QuickSelect analysis

Example

S_i = subarray used in ith recursive call

$|S_i|$ = size of this subarray

Red indicates successful iteration.

<table>
<thead>
<tr>
<th>Inst’</th>
<th>S_1</th>
<th>S_2</th>
<th>S_3</th>
<th>S_4</th>
<th>S_5</th>
<th>S_6</th>
<th>S_7</th>
<th>S_8</th>
<th>S_9</th>
</tr>
</thead>
<tbody>
<tr>
<td>$</td>
<td>S_i</td>
<td>$</td>
<td>100</td>
<td>70</td>
<td>60</td>
<td>50</td>
<td>40</td>
<td>30</td>
<td>25</td>
</tr>
<tr>
<td>Succ’</td>
<td>$Y_1 = 2$</td>
<td></td>
<td>$Y_2 = 4$</td>
<td></td>
<td>$Y_3 = 2$</td>
<td></td>
<td>$Y_4 = 1$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$n_i =$</td>
<td>$n_1 = 100$</td>
<td>$n_2 = 60$</td>
<td></td>
<td>$n_3 = 25$</td>
<td></td>
<td>$n_4 = 2$</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
QuickSelect analysis

Example

\(S_i \) = subarray used in \(i \)th recursive call
\(|S_i| \) = size of this subarray
Red indicates successful iteration.

<table>
<thead>
<tr>
<th>Inst’</th>
<th>(S_1)</th>
<th>(S_2)</th>
<th>(S_3)</th>
<th>(S_4)</th>
<th>(S_5)</th>
<th>(S_6)</th>
<th>(S_7)</th>
<th>(S_8)</th>
<th>(S_9)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(</td>
<td>S_i</td>
<td>)</td>
<td>100</td>
<td>70</td>
<td>60</td>
<td>50</td>
<td>40</td>
<td>30</td>
<td>25</td>
</tr>
<tr>
<td>Succ’</td>
<td>(Y_1 = 2)</td>
<td>(Y_2 = 4)</td>
<td>(Y_3 = 2)</td>
<td>(Y_4 = 1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(n_i =)</td>
<td>(n_1 = 100)</td>
<td>(n_2 = 60)</td>
<td>(n_3 = 25)</td>
<td>(n_4 = 2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. All the subproblems after \((i - 1)\)th successful iteration till \(i\)th successful iteration have size \(\leq n_i \).
QuickSelect analysis

Example

$S_i =$ subarray used in ith recursive call
$|S_i| =$ size of this subarray
Red indicates successful iteration.

<table>
<thead>
<tr>
<th>Inst'</th>
<th>S_1</th>
<th>S_2</th>
<th>S_3</th>
<th>S_4</th>
<th>S_5</th>
<th>S_6</th>
<th>S_7</th>
<th>S_8</th>
<th>S_9</th>
</tr>
</thead>
<tbody>
<tr>
<td>$</td>
<td>S_i</td>
<td></td>
<td>100</td>
<td>70</td>
<td>60</td>
<td>50</td>
<td>40</td>
<td>30</td>
<td>25</td>
</tr>
<tr>
<td>Succ'</td>
<td>Y_1 = 2</td>
<td></td>
<td>Y_2 = 4</td>
<td></td>
<td>Y_3 = 2</td>
<td></td>
<td>Y_4 = 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$n_i =$</td>
<td>$n_1 = 100$</td>
<td>$n_2 = 60$</td>
<td>$n_3 = 25$</td>
<td>$n_4 = 2$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. All the subproblems after $(i - 1)$th successful iteration till ith successful iteration have size $\leq n_i$.

2. Total work: $O(\sum_i n_i Y_i)$.
QuickSelect analysis

1. Total work: \(O(\sum_i n_i Y_i) \).
2. \(n_i \leq (3/4)n_{i-1} \leq (3/4)^{i-1}n \).
3. \(Y_i \) is a random variable with geometric distribution
 Probability of \(Y_i = k \) is \(1/2^i \).
4. \(E[Y_i] = 2 \).
5. As such, expected work is proportional to

\[
E\left[\sum_i n_i Y_i \right]
\]
QuickSelect analysis

1. Total work: $O(\sum_i n_i Y_i)$.
2. $n_i \leq (3/4)n_{i-1} \leq (3/4)^{i-1}n$.
3. Y_i is a random variable with geometric distribution. Probability of $Y_i = k$ is $1/2^i$.
5. As such, expected work is proportional to

$$E\left[\sum_i n_i Y_i\right]$$
QuickSelect analysis

1. Total work: \(O(\sum_i n_i Y_i) \).
2. \(n_i \leq (3/4)n_{i-1} \leq (3/4)^{i-1}n \).
3. \(Y_i \) is a random variable with geometric distribution. Probability of \(Y_i = k \) is \(1/2^i \).
4. \(E[Y_i] = 2 \).
5. As such, expected work is proportional to

\[
E\left[\sum_i n_i Y_i \right]
\]
QuickSelect analysis

1. Total work: $O(\sum_i n_i Y_i)$.

2. $n_i \leq (3/4)n_{i-1} \leq (3/4)^{i-1}n$.

3. Y_i is a random variable with geometric distribution
 Probability of $Y_i = k$ is $1/2^i$.

5. As such, expected work is proportional to

 $$E\left[\sum_i n_i Y_i \right]$$
QuickSelect analysis

1. Total work: \(O(\sum_i n_i Y_i) \).
2. \(n_i \leq (3/4)n_{i-1} \leq (3/4)^{i-1}n \).
3. \(Y_i \) is a random variable with geometric distribution
 Probability of \(Y_i = k \) is \(1/2^i \).
4. \(E[Y_i] = 2 \).
5. As such, expected work is proportional to

\[
E \left[\sum_i n_i Y_i \right]
\]
QuickSelect analysis

1. Total work: $O(\sum_i n_i Y_i)$.
2. $n_i \leq (3/4)n_{i-1} \leq (3/4)^{i-1}n$.
3. Y_i is a random variable with geometric distribution. Probability of $Y_i = k$ is $1/2^i$.
5. As such, expected work is proportional to

$$E\left[\sum_i n_i Y_i\right]$$
QuickSelect analysis

1. Total work: $O(\sum_i n_i Y_i)$.
2. $n_i \leq (3/4)n_{i-1} \leq (3/4)^{i-1} n$.
3. Y_i is a random variable with geometric distribution. Probability of $Y_i = k$ is $1/2^i$.
5. As such, expected work is proportional to

$$E\left[\sum_i n_i Y_i\right]$$
QuickSelect analysis

1. Total work: $O(\sum_i n_i Y_i)$.
2. $n_i \leq (3/4)n_{i-1} \leq (3/4)^{i-1}n$.
3. Y_i is a random variable with geometric distribution
 Probability of $Y_i = k$ is $1/2^i$.
5. As such, expected work is proportional to

\[
E\left[\sum_i n_i Y_i\right] = \sum_i E\left[n_i Y_i\right]
\]
QuickSelect analysis

1. Total work: $O(\sum_i n_i Y_i)$.
2. $n_i \leq (3/4) n_{i-1} \leq (3/4)^{i-1} n$.
3. Y_i is a random variable with geometric distribution. Probability of $Y_i = k$ is $1/2^i$.
5. As such, expected work is proportional to

$$E\left[\sum_i n_i Y_i\right] = \sum_i E[n_i Y_i] \leq \sum_i E[(3/4)^{i-1} n Y_i]$$
QuickSelect analysis

1. Total work: $O(\sum_i n_i Y_i)$.
2. $n_i \leq (3/4) n_{i-1} \leq (3/4)^{i-1} n$.
3. Y_i is a random variable with geometric distribution. Probability of $Y_i = k$ is $1/2^i$.
5. As such, expected work is proportional to

$$E\left[\sum_i n_i Y_i\right] = \sum_i E[n_i Y_i] \leq \sum_i E[(3/4)^{i-1} n Y_i] = n \sum_i (3/4)^{i-1} E[Y_i]$$
QuickSelect analysis

1. Total work: $O(\sum_i n_i Y_i)$.

2. $n_i \leq (3/4)n_{i-1} \leq (3/4)^{i-1}n$.

3. Y_i is a random variable with geometric distribution
 Probability of $Y_i = k$ is $1/2^i$.

5. As such, expected work is proportional to

$$E\left[\sum_i n_i Y_i\right] = \sum_i E[n_i Y_i] \leq \sum_i E[(3/4)^{i-1} n Y_i]$$

$$= n \sum_i (3/4)^{i-1} E[Y_i] = n \sum_{i=1} E(3/4)^{i-1} 2$$
QuickSelect analysis

1. Total work: $O(\sum_i n_i Y_i)$.
2. $n_i \leq (3/4)n_{i-1} \leq (3/4)^{i-1} n$.
3. Y_i is a random variable with geometric distribution. Probability of $Y_i = k$ is $1/2^i$.
5. As such, expected work is proportional to

$$E\left[\sum_i n_i Y_i\right] = \sum_i E[n_i Y_i] \leq \sum_i E[(3/4)^{i-1} n Y_i]$$

$$= n \sum_i (3/4)^{i-1} E[Y_i] = n \sum_{i=1} \sum_i (3/4)^{i-1} 2 \leq 8n.$$
QuickSelect analysis

Theorem

The expected running time of QuickSelect is $O(n)$.
QuickSelect analysis via recurrence

Analysis via Recurrence

1. Given array A of size n let $Q(A)$ be number of comparisons of randomized selection on A for selecting rank j element.

2. Note that $Q(A)$ is a random variable.

3. Let A_{less}^i and A_{greater}^i be the left and right arrays obtained if pivot is rank i element of A.

4. Algorithm recurses on A_{less}^i if $j < i$ and recurses on A_{greater}^i if $j > i$ and terminates if $j = i$.

$$Q(A) = n + \sum_{i=1}^{j-1} \Pr[\text{pivot has rank } i] Q(A_{\text{greater}}^i) + \sum_{i=j+1}^{n} \Pr[\text{pivot has rank } i] Q(A_{\text{less}}^i)$$
QuickSelect analysis via recurrence

Analysis via Recurrence

1. Given array \(A \) of size \(n \) let \(Q(A) \) be number of comparisons of randomized selection on \(A \) for selecting rank \(j \) element.

2. Note that \(Q(A) \) is a random variable

3. Let \(A^i_{\text{less}} \) and \(A^i_{\text{greater}} \) be the left and right arrays obtained if pivot is rank \(i \) element of \(A \).

4. Algorithm recurses on \(A^i_{\text{less}} \) if \(j < i \) and recurses on \(A^i_{\text{greater}} \) if \(j > i \) and terminates if \(j = i \).

\[
Q(A) = n + \sum_{i=1}^{j-1} \Pr[\text{pivot has rank } i] Q(A^i_{\text{greater}})
\]

\[
+ \sum_{i=j+1}^{n} \Pr[\text{pivot has rank } i] Q(A^i_{\text{less}})
\]

Sariel (UIUC)
Analyzing the Recurrence

As in QuickSort we obtain the following recurrence where $T(n)$ is the worst-case expected time.

$$T(n) \leq n + \frac{1}{n} \left(\sum_{i=1}^{j-1} T(n - i) + \sum_{i=j}^{n} T(i - 1) \right).$$

Theorem

$T(n) = O(n)$.

Proof.

(Guess and) Verify by induction (see next slide).
Analyzing the recurrence

Theorem

\[T(n) = O(n). \]

Prove by induction that \(T(n) \leq \alpha n \) for some constant \(\alpha \geq 1 \) to be fixed later.

Base case: \(n = 1 \), we have \(T(1) = 0 \) since no comparisons needed and hence \(T(1) \leq \alpha \).

Induction step: Assume \(T(k) \leq \alpha k \) for \(1 \leq k < n \) and prove it for \(T(n) \). We have by the recurrence:

\[
T(n) \leq n + \frac{1}{n} \left(\sum_{i=1}^{j-1} T(n - i) + \sum_{i=j}^{n} T(i - 1) \right) \\
\leq n + \frac{\alpha}{n} \left(\sum_{i=1}^{j-1} (n - i) + \sum_{i=j}^{n} (i - 1) \right) \quad \text{by applying induction}
\]
Analyzing the recurrence

\[T(n) \leq n + \frac{\alpha}{n} \left(\sum_{i=1}^{j-1} (n - i) + \sum_{i=j}^{n} (i - 1) \right) \]

\[\leq n + \frac{\alpha}{n} \frac{(j - 1)(2n - j)}{2} + \frac{(n - j + 1)(n + j - 2)}{2} \]

\[\leq n + \frac{\alpha}{2n} \left(n^2 + 2nj - 2j^2 - 3n + 4j - 2 \right) \]

above expression maximized when \(j = (n + 1)/2 \): calculus

\[\leq n + \frac{\alpha}{2n} \left(\frac{3n^2}{2} - n \right) \]

substituting \((n + 1)/2 \) for \(j \)

\[\leq n + \frac{3\alpha n}{4} \]

\[\leq \alpha n \quad \text{for any constant } \alpha \geq 4 \]
Comments on analyzing the recurrence

1. Algebra looks messy but intuition suggest that the median is the hardest case and hence can plug $j = n/2$ to simplify without calculus.

2. Analyzing recurrences comes with practice and after a while one can see things more intuitively.

John Von Neumann:
Young man, in mathematics you don’t understand things. You just get used to them.