OLD CS 473: Fundamental Algorithms, Spring
2015

Randomized Algorithms:
QuickSort and QuickSelect

Lecture 15
March 12, 2015

Sariel (UIUC) OLD CS473 1 Spring 2015 1/36

Part |

Slick analysis of QuickSort

Sariel (UIUC) OLD CS473 2 Spring 2015 2/36

A Slick Analysis of QuickSort

Q Let Q(A) be number of comparisons done on input array A:
@ Rjj: event that rank i element is compared with rank j element,
for1<i<j<n
@ Xjj is the indicator random variable for R;;. That is, Xj; = 1 if
rank i is compared with rank j element, otherwise 0.

9 Q(A) = Zl§i<j§n Xij.
© By linearity of expectation,

E[Q(A)]=E Yoo Xl = > E[x,-j}
I<i<j<n | 1<i<j<n
= Y Pr_R,-j].
1<i<j<n

Sariel (UIUC) OLD CS473 3 Spring 2015 3 /36

A Slick Analysis of QuickSort

Rij = rank i element is compared with rank j element.

Question: What is Pr[R;]?

[7[5[9]1]3]4]8]6]
‘7|5|9|1|3|4|8|6‘Withranks: 6 4 81 2 3 75
As such, probability of comparing 5 to 8 is Pr[Ry 7].

Q |If pivot too small (say 3 [rank 2]). Partition and call recursively:

75911 [3141816))_, [[AI[8][7I5[914I8]6]
Decision if to compare 5 to 8 is moved to subproblem.

@ If pivot too large (say 9 [rank 8]):
(7151911]3[4[8]6]__ |[7]5]1[3[4]8]6][9]

Decision if to compare 5 to 8 moved to subproblem.

Sariel (UIUC) OLD CS473 4 Spring 2015 4 /36

B ELEE sﬁQuu(}is S¢ probabi“ty £ eom. A Slick Analysis of QuickSort
6 4 8 1 2 3 paring 5 to 8 is Pr[R47].
Q If pivot is b (rank 4). Bingo! Conclusion:
7|§|9 113741816 R; j happens <= :
[_ | | | | | ‘ = ‘1 |3 |4“7|9|8|6‘ ith or jth ranked element is the first pivot out of the
@ If pivot is 8 (rank 7). Bingo! elements of rank
— iyi+1,i+2,...,j
(715]91113[41816]| _ [[7[5][1[3][4]6][8][9] :
@ If pivot in between the two numbers (say 6 [rank 5]): How to analyze this? Thinking acrobatics!
o © Assign every element in array random priority (say in [0, 1]).
71519]1113]|4|8|6
‘ | | | | | | I—’ = ‘ 3 | 1 | 3 |4 ‘@‘ 7 | 8 | 9 ‘ @ Choose pivot to be element with lowest priority in subproblem.
5 and 8 will never be compared to each other. © Equivalent to picking pivot uniformly at random
(as QuickSort do).

Sariel (UIUC) OLD CS473 5 Spring 2015 5/ 36 Sariel (UIUC) OLD CS473 6 Spring 2015 6 /36

A Slick Analysis of QuickSort A Slick Analysis of QuickSort
Question: What is Pr[R;]?

Lemma
@ Choosing a pivot using priorities Pr[R,-j} = J_%
@ Assign every element in array is a random priority (in [0, 1]). -
@ pivot = the element with lowest priority in subproblem.
p priority p Proof

Q@ = R;i; happens if either i or j have lowest priority out of

Q 2,...,8,...,a;,...,a,: elements of A in sorted order. Let
elements in rank i ..., 1y s Aiy s djy s dn

@ Th k= j— i +1 relevant element 2 = el iovon
ere are 2_ J—i 9 relevant elements. @ Observation: If pivot is chosen outside S then all of S either in

Q Pr [R,-,j} == — . left or right recursive subproblem.
ko j—i+l © Observation: a; and a; separated when a pivot is chosen from
S for the first time. Once separated never to meet again. =—>

a; and a; will not be compared.

4

Sariel (UIUC) OLD Cs473 7 Spring 2015 7/36 Sariel (UIUC) OLD Cs473 8 Spring 2015 8 /36

A Slick Analysis of QuickSort

Lemma
_ 2
Proof.

Q lLetay,...,ai,...,4aj,...,a, be sort of A.
Let S = {a,-,a,-+1,...,aj}

2]

© Observation: a; is compared with a; <> either a; or a; is
chosen as a pivot from S at separation.

o

Observation: Given: Pivot chosen from S.

The probability that it is a; or a; is exactly

2/|S| =2/(j — i + 1) since the pivot is chosen uniformly at
random from the array.

]

Sariel (UIUC) OLD CS473 9 Spring 2015 9 /36
Part Il
Quick sort with high probability
Sariel (UIUC) OLD CS473 11 Spring 2015 11 /36

A Slick Analysis of QuickSort

E[Q(A)}: Y OEXl=). PrRy].

1<i<j<n 1<i<j<n
Lemma
2
PI’[R,_,] = Zirl- J
E[Q(A)] = ¥ Pr[R,.,} = ¥ 2
j—i+1
1<i<j<n 1<i<j<
o el —it1
n—1
<2 (Hp—iy1—1) < 2) H,
i=1 1<i<n
Sariel (UIUC) -OLD CS473 10 Spring 2015 10 / 36

Yet another analysis of QuickSort

@ Consider element e in the array.

Q@ 51,S5,..., S5k subproblems e participates in during
QuickSort execution:

@ Definition
e is lucky in the jth iteration if |S;| < (3/4) |S;j-1]. J

© Key observation: The event that e is lucky in jth iteration...

© ... is independent of the event that e is lucky in kth iteration,
(If j # k)

Q@ X; =1 <= eis lucky in the jth iteration.

Sariel (UIUC) OLD CS473 12 Spring 2015 12 / 36

Yet another analysis of QuickSort

Claim
Pr[X; =1] =1/2.

Proof.
© X; determined by j recursive subproblem.
@ Subproblem has nj_; = | Xj_1| elements.
@ jth pivot rank € [n;_1/4, (3/4)nj—_1] = e lucky in jth iter.
Qo Prob. e is Iucky Z |[nj_1/4, (3/4)nj_1]| /nj_l = 1/2 [

v

Observation

If X1 + Xz + ... Xk = [log, 3 n| then e subproblem is of size one.
Done!

y

Sariel (UIUC) OLD CS473 13 Spring 2015 13 /36

Yet another analysis of QuickSort

Observation
Probability e participates in > k = 40[log, 3 n] subproblems. Is
equal to

PriXi+Xo +...+ Xk < [logy 3 n]
S PI’[X1+X2+...+Xk S k/4]
<2.0.68* < 1/n".

Conclusion
QuickSort takes O(nlog n) time with high probability.

Sariel (UIUC) OLD CS473 14 Spring 2015 14 / 36

Randomized Quick Selection

Input Unsorted array A of n integers
Goal Find the jth smallest number in A (rank j number)

Randomized Quick Selection
© Pick a pivot element uniformly at random from the array

@ Split array into 3 subarrays: those smaller than pivot, those
larger than pivot, and the pivot itself.

© Return pivot if rank of pivot is j.

@ Otherwise recurse on one of the arrays depending on j and their
sizes.

Sariel (UIUC) OLD CS473 15 Spring 2015 15 / 36

Algorithm for Randomized Selection

Assume for simplicity that A has distinct elements.

QuickSelect (A, j):
Pick pivot x uniformly at random from A
Partition A into Ajess, X, and Agreater Using x as pivot
if (|Aress| =j — 1) then
return x
if (lAlessl Z.I) then
return QuickSelect (Ajess, J)
else
return QuickSelect (Agreater, J — |Aress| — 1D

Sariel (UIUC) OLD CS473 16 Spring 2015 16 / 36

QuickSelect analysis

Q 51,5,,...,5 be the subproblems considered by the algorithm.

Here |S1| = n.

@ S; would be successful if |S;| < (3/4) |Si-1]

© Y7 = number of recursive calls till first successful iteration.

Clearly, total work till this happens is O(Y1n).
© n; = size of the subproblem immediately after the (i — 1)th

successful iteration.

@ Y; = number of recursive calls after the (i — 1)th successful

call, till the ith successful iteration.
@ Running time is O(>; n; Y;).

Sariel (UIUC) OLD CS473

17

Spring 2015

17/ 36

QuickSelect analysis

Example
S; = subarray used in ith recursive call
|Si| = size of this subarray

Red indicates successful iteration.

Inst’ 51 53 54
|S;| (100 | 70 | 60 | 50
Succ’ Y1 =2
n; = m = 100 ‘

@ All the subproblems after (i — 1)th successful iteration till ith
successful iteration have size < nj.

@ Total work: O(>_; n;Ys).

Sariel (UIUC) OLD CS473 18 Spring 2015 18 / 36

QuickSelect analysis

@ Total work: O(>_; n;Ys).
Q n; S (3/4)”,'_1 S (3/4)i_1n.

© Y, is a random variable with geometric distribution

Probability of Y; = k is 1/2'.
Q E[Y]=2

© As such, expected work is proportional to

=ZE[”iYi]

i

E[Zniyi

< > E|(3/4)nYi)

=n (3/4) E[Y,-] =n (3/4)~'2 < 8n.
i i=1

Sariel (UIUC) OLD CS473

19

Spring 2015

19 / 36

QuickSelect analysis

Theorem
The expected running time of QuickSelect is O(n). J

Sariel (UIUC) OLD Cs473 20 Spring 2015 20 / 36

QuickSelect analysis via recurrence

@ Given array A of size n let Q(A) be number of comparisons of
randomized selection on A for selecting rank j element.

@ Note that Q(A) is a random variable
Q Let AL and A/ be the left and right arrays obtained if

less 7 “greater
pivot is rank i element of A.

o Algor_ithm recurses on Al’:ess if.j < i and recurses on A;reater if
J > i and terminates if j = 1I.

j—1

Q(A) = n+ Z Pr[pivot has rank i] Q(Agreater)

i=1
+ Z Pr[pivot has rank i] Q(A[_.)
i=j+1

Sariel (UIUC) OLD CS473 pal Spring 2015 21 / 36

Analyzing the recurrence

Theorem
T(n) = O(n). J

Prove by induction that T(n) < an for some constant & > 1 to be
fixed later.

Base case: n =1, we have T(1) = 0 since no comparisons needed
and hence T(1) < a.

Induction step: Assume T (k) < ak for 1 < k < n and prove it
for T(n). We have by the recurrence:

T(n) < nt (X Tn—i)+ Y TG~ 1))
i=1 j

i=jn

Jj—1 n
< n+ E(Z(n — i)+ > (i —1)) by applying induction
n

Sariel (UIUC) OLD CS473 23 Spring 2015 23 /36

Analyzing the Recurrence

As in QuickSort we obtain the following recurrence where T (n) is
the worst-case expected time.

T(n) <n+ %(i T(n—1i)+ Z T(i —1)).

Theorem

T(n) = O(n).

Proof.

(Guess and) Verify by induction (see next slide). O
Sariel (UIUC) OLD CS473 22 Spring 2015 22 /36

Analyzing the recurrence

N~

ji—1 n
o . .
T(n) < n+ S —i)+ D6 - 1)
i=1 i=j
o
<t (G- D@0 —)/2+ (1= + D0+~ 2)/2
o . . .
< n+2—(n2+2nj—2_/2—3n+4j —2)
n
above expression maximized when j = (n + 1)/2: calculus
a, . - .
< n+ 2—(3n /2 — n) substituting (n + 1) /2 for j
n
< n+3an/4
< a«an for any constant a > 4
Sariel (UIUC) OLD CS473 24 Spring 2015 24 / 36

Comments on analyzing the recurrence

© Algebra looks messy but intuition suggest that the median is the
hardest case and hence can plug j = n/2 to simplify without
calculus

@ Analyzing recurrences comes with practice and after a while one
can see things more intuitively

John Von Neumann:
Young man, in mathematics you don’t understand things. You just
get used to them.

Sariel (UIUC) OLD CS473 25 Spring 2015 25 / 36

http://en.wikipedia.org/wiki/John_von_Neumann

	Randomized Algorithms: QuickSort and QuickSelect
	Slick analysis of QuickSort
	A Slick Analysis of QuickSort
	A Slick Analysis of QuickSort
	A Slick Analysis of QuickSort
	A Slick Analysis of QuickSort
	A Slick Analysis of QuickSort

	Quick sort with high probability
	Yet another analysis of QuickSort
	Yet another analysis of QuickSort
	Yet another analysis of QuickSort

	Randomized Selection
	QuickSelect analysis via recurrence

