Chapter 13

Greedy Algorithms for Minimum Spanning Trees

OLD CS 473: Fundamental Algorithms, Spring 2015
March 5, 2015

13.1 Greedy Algorithms: Minimum Spanning Tree

13.2 Minimum Spanning Tree

13.2.1 The Problem
13.2.1.1 Minimum Spanning Tree

Input Connected graph $G = (V, E)$ with edge costs

Goal Find $T \subseteq E$ such that (V, T) is connected and total cost of all edges in T is smallest

(A) T is the minimum spanning tree (MST) of G
13.2.1.2 Applications

(A) Network Design
 (A) Designing networks with minimum cost but maximum connectivity
(B) Approximation algorithms
 (A) Can be used to bound the optimality of algorithms to approximate Traveling Sales-
 man Problem, Steiner Trees, etc.
(C) Cluster Analysis

13.2.2 The Algorithms

13.2.2.1 Greedy Template

Initially E is the set of all edges in G
T is empty (* T will store edges of a MST *)
while E is not empty do
 choose $i \in E$
 if (i satisfies condition)
 add i to T
 return the set T

Main Task: In what order should edges be processed? When should we add edge to
spanning tree?

13.2.2.2 Kruskal’s Algorithm

Process edges in the order of their costs (starting from the least) and add edges to T as long
as they don’t form a cycle.

\[
\begin{array}{c}
1 & 20 & 2 \\
23 & 1 & 4 & 15 \\
6 & 36 & 9 & 7 \\
28 & 5 & 17 & 4 \\
5 & 17 & 3 \\
\end{array}
\]

\[
\begin{array}{c}
1 & 20 & 2 \\
23 & 1 & 4 & 15 \\
6 & 36 & 9 & 7 \\
28 & 5 & 17 & 4 \\
5 & 17 & 3 \\
\end{array}
\]

\[
\begin{array}{c}
1 & 20 & 2 \\
23 & 1 & 4 & 15 \\
6 & 36 & 9 & 7 \\
28 & 5 & 17 & 4 \\
5 & 17 & 3 \\
\end{array}
\]
MST of G:
13.2.2.3 Prim’s Algorithm

T maintained by algorithm will be a tree. Start with a node in T. In each iteration, pick edge with least attachment cost to T.

Order of edges considered:
13.2.2.4 Reverse Delete Algorithm

Initially E is the set of all edges in G

T is E (* T will store edges of a MST *)

while E is not empty do

choose $i \in E$ of largest cost

if removing i does not disconnect T then

remove i from T

return the set T

Returns a minimum spanning tree.

13.2.3 Correctness

13.2.3.1 Correctness of MST Algorithms

(A) Many different MST algorithms

(B) All of them rely on some basic properties of MSTs, in particular the **Cut Property** to be seen shortly.

13.2.4 Assumption

13.2.4.1 And for now . . .

Assumption 13.2.1. Edge costs are distinct, that is no two edge costs are equal.

13.2.4.2 Cuts

Definition 13.2.2. (A) $G = (V, E)$: graph. A **cut** is a partition of the vertices of the graph into two sets $(S, V \setminus S)$.

(B) Edges having an endpoint on both sides are the **edges of the cut**.

(C) A cut edge is **crossing** the cut.
13.2.4.3 Safe and Unsafe Edges

Definition 13.2.3. An edge \(e = (u, v) \) is a safe edge if there is some partition of \(V \) into \(S \) and \(V \setminus S \) and \(e \) is the unique minimum cost edge crossing \(S \) (one end in \(S \) and the other in \(V \setminus S \)).

Definition 13.2.4. An edge \(e = (u, v) \) is an unsafe edge if there is some cycle \(C \) such that \(e \) is the unique maximum cost edge in \(C \).

Proposition 13.2.5. If edge costs are distinct then every edge is either safe or unsafe.

Proof: Exercise.

13.2.5 Safe edge

13.2.5.1 Example...

(A) Every cut identifies one safe edge...

(B) ...the cheapest edge in the cut.

(C) Note: An edge \(e \) may be a safe edge for many cuts!

13.2.6 Unsafe edge

13.2.6.1 Example...

(A) Every cycle identifies one unsafe edge...

(B) ...the most expensive edge in the cycle.

13.2.6.2 Example

And all safe edges are in the MST in this case...
13.2.6.3 Key Observation: Cut Property

Lemma 13.2.6. If \(e \) is a safe edge then every minimum spanning tree contains \(e \).

Proof:
(A) Suppose (for contradiction) \(e \) is not in MST \(T \).
(B) Since \(e \) is safe there is an \(S \subset V \) such that \(e \) is the unique min cost edge crossing \(S \).
(C) Since \(T \) is connected, there must be some edge \(f \) with one end in \(S \) and the other in \(V \setminus S \).
(D) Since \(c_f > c_e \), \(T' = (T \setminus \{f\}) \cup \{e\} \) is a spanning tree of lower cost!
(E) Error: \(T' \) may not be a spanning tree!!

13.2.7 Error in Proof: Example

13.2.7.1 Problematic example. \(S = \{1, 2, 7\} \), \(e = (7, 3) \), \(f = (1, 6) \). \(T - f + e \) is not a spanning tree.
(A) (A) Consider adding the edge f.
(B) (B) It is safe because it is the cheapest edge in the cut.
(C) (C) Let’s throw out the edge e currently in the spanning tree which is more expensive than f and is in the same cut. Put it f instead...
(D) (D) New graph of selected edges is not a tree anymore. BUG.

13.2.7.2 Proof of Cut Property

Proof:

(A) Suppose $e = (v, w)$ is not in MST T and e is min weight edge in cut $(S, V \setminus S)$. Assume $v \in S$.
(B) T is spanning tree: there is a unique path P from v to w in T
(C) 4- Let w' be the first vertex in P belonging to $V \setminus S$; let v' be the vertex just before it on P, and let $e' = (v', w')$
(D) $T' = (T \setminus \{e'\}) \cup \{e\}$ is spanning tree of lower cost. (Why?)
13.2.7.3 Proof of Cut Property (contd)

Observation 13.2.7. $T' = (T \setminus \{e'\}) \cup \{e\}$ is a spanning tree.

Proof: T' is connected.
 Removed $e' = (v', w')$ from T but v' and w' are connected by the path $P - f + e$ in T'.
 Hence T' is connected if T is.

 T' is a tree
 T' is connected and has $n - 1$ edges (since T had $n - 1$ edges) and hence T' is a tree.

13.2.7.4 Safe Edges form a Tree

Lemma 13.2.8. Let G be a connected graph with distinct edge costs, then the set of safe edges form a connected graph.

Proof:
(A) Suppose not. Let S be a connected component in the graph induced by the safe edges.
(B) Consider the edges crossing S, there must be a safe edge among them since edge costs are distinct and so we must have picked it.

13.2.7.5 Safe Edges form an MST

Corollary 13.2.9. Let G be a connected graph with distinct edge costs, then set of safe edges form the unique MST of G.

Consequence: Every correct MST algorithm when G has unique edge costs includes exactly the safe edges.

13.2.7.6 Cycle Property

Lemma 13.2.10. If e is an unsafe edge then no MST of G contains e.

Note: Cut and Cycle properties hold even when edge costs are not distinct. Safe and unsafe definitions do not rely on distinct cost assumption.
13.2.7.7 Correctness of Prim’s Algorithm

Prim’s Algorithm Pick edge with minimum attachment cost to current tree, and add to current tree.

Proof:[Proof of correctness]
(A) If e is added to tree, then e is safe and belongs to every MST.
 (A) Let S be the vertices connected by edges in T when e is added.
 (B) e is edge of lowest cost with one end in S and the other in $V \setminus S$ and hence e is safe.
(B) Set of edges output is a spanning tree
 (A) Set of edges output forms a connected graph: by induction, S is connected in each iteration and eventually $S = V$.
 (B) Only safe edges added and they do not have a cycle.

13.2.7.8 Correctness of Kruskal’s Algorithm

Kruskal’s Algorithm Pick edge of lowest cost and add if it does not form a cycle with existing edges.

Proof:[Proof of correctness]
(A) If $e = (u, v)$ is added to tree, then e is safe.
 (A) When algorithm adds e let S and S' be the connected components containing u and v respectively.
 (B) e is the lowest cost edge crossing S (and also S').
 (C) If there is an edge e' crossing S and has lower cost than e, then e' would come before e in the sorted order and would be added by the algorithm to T.
(B) Set of edges output is a spanning tree: exercise.

13.2.7.9 Correctness of Reverse Delete Algorithm

Reverse Delete Algorithm Consider edges in decreasing cost and remove an edge if it does not disconnect the graph.

Proof:[Proof of correctness] Argue that only unsafe edges are removed (see text book).

13.2.7.10 When edge costs are not distinct

Heuristic argument: Make edge costs distinct by adding a small tiny and different cost to each edge.

Formal argument: Order edges lexicographically to break ties
(A) $e_i \prec e_j$ if either $c(e_i) < c(e_j)$ or $(c(e_i) = c(e_j)$ and $i < j$)
(B) Lexicographic ordering extends to sets of edges. If $A, B \subseteq E$, $A \neq B$ then $A \prec B$ if either $c(A) < c(B)$ or $(c(A) = c(B)$ and $A \setminus B$ has a lower indexed edge than $B \setminus A$.
(C) Can order all spanning trees according to lexicographic order of their edge sets. Hence there is a unique MST.

Prim’s, Kruskal, and Reverse Delete Algorithms are optimal with respect to lexicographic ordering.

13.2.7.11 Edge Costs: Positive and Negative

(A) Algorithms and proofs don’t assume that edge costs are non-negative! MST algorithms work for arbitrary edge costs.

(B) Another way to see this: make edge costs non-negative by adding to each edge a large enough positive number. Why does this work for MSTs but not for shortest paths?

(C) Can compute maximum weight spanning tree by negating edge costs and then computing an MST.

13.3 Data Structures for MST: Priority Queues and Union-Find

13.4 Data Structures

13.4.1 Implementing Prim’s Algorithm

13.4.2 Implementing Prim’s Algorithm

13.4.2.1 Implementing Prim’s Algorithm

```
Prim_ComputeMST
E is the set of all edges in G
S = {1}
T is empty (* T will store edges of a MST *)
<2>while S ≠ V do
    <3>pick e = (v, w) ∈ E such that
        v ∈ S and w ∈ V − S
        e has minimum cost
    T = T ∪ e
    S = S ∪ w
    return the set T
```

Analysis

(A) Number of iterations = O(n), where n is number of vertices

(B) Picking e is O(m) where m is the number of edges

(C) Total time O(nm)
13.4.3 Implementing Prim’s Algorithm
13.4.3.1 More Efficient Implementation

\[
\text{Prim}_{\text{ComputeMST}}
\]

\[
E \text{ is the set of all edges in } G \\
S = \{1\} \\
T \text{ is empty } (* T \text{ will store edges of a MST } *) \\
\text{for } v \notin S, \ a(v) = \min_{w \in S} c(w, v) \\
\text{for } v \notin S, \ e(v) = w \text{ such that } w \in S \text{ and } c(w, v) \text{ is minimum} \\
\text{while } S \neq V \text{ do} \\
\quad \text{pick } v \text{ with minimum } a(v) \\
\quad T = T \cup \{ (e(v), v) \} \\
\quad S = S \cup \{ v \} \\
\quad \text{update arrays } a \text{ and } e \\
\text{return the set } T
\]

Maintain vertices in \(V \setminus S \) in a priority queue with key \(a(v) \).

13.4.4 Priority Queues
13.4.4.1 Priority Queues

Data structure to store a set \(S \) of \(n \) elements where each element \(v \in S \) has an associated real/integer key \(k(v) \) such that the following operations

(A) makeQ: create an empty queue
(B) findMin: find the minimum key in \(S \)
(C) extractMin: Remove \(v \in S \) with smallest key and return it
(D) add(\(v, k(v) \)): Add new element \(v \) with key \(k(v) \) to \(S \)
(E) Delete(\(v \)): Remove element \(v \) from \(S \)
(F) decreaseKey(\(v, k'(v) \)): decrease key of \(v \) from \(k(v) \) (current key) to \(k'(v) \) (new key).
 Assumption: \(k'(v) \leq k(v) \)
(G) meld: merge two separate priority queues into one

13.4.4.2 Prim’s using priority queues

\[
\text{E is the set of all edges in } G \\
S = \{1\} \\
T \text{ is empty } (* T \text{ will store edges of a MST } *) \\
\text{for } v \notin S, \ a(v) = \min_{w \in S} c(w, v) \\
\text{for } v \notin S, \ e(v) = w \text{ such that } w \in S \text{ and } c(w, v) \text{ is minimum} \\
\text{while } S \neq V \text{ do} \\
\quad <2> \text{pick } v \text{ with minimum } a(v) \\
\quad T = T \cup \{ (e(v), v) \} \\
\quad S = S \cup \{ v \} \\
\quad <3> \text{update arrays } a \text{ and } e \\
\text{return the set } T
\]

Maintain vertices in \(V \setminus S \) in a priority queue with key \(a(v) \)
13.4.4.3 Running time of Prim’s Algorithm

\[O(n) \text{ extractMin operations and } O(m) \text{ decreaseKey operations} \]

(A) Requires \(O(n)\) \text{ extractMin} operations
(B) Requires \(O(m)\) \text{ decreaseKey} operations

13.4.5 Implementing Kruskal’s Algorithm

13.4.5.1 Kruskal’s Algorithm

\[
\text{Kruskal}_\text{ComputeMST} \\
\text{Initially } E \text{ is the set of all edges in } G \\
T \text{ is empty } (* T \text{ will store edges of a MST *}) \\
\text{while } E \text{ is not empty do} \\
\quad \text{<2-3>choose } e \in E \text{ of minimum cost} \\
\quad \text{<4-5>if } (T \cup \{e\} \text{ does not have cycles}) \\
\quad \quad \text{add } e \text{ to } T \\
\text{return the set } T
\]

(A) Presort edges based on cost. Choosing minimum can be done in \(O(1)\) time
(B) Do BFS/DFS on \(T \cup \{e\}\). Takes \(O(n)\) time
(C) Total time \(O(m \log m) + O(mn) = O(mn)\)

13.4.5.2 Implementing Kruskal’s Algorithm Efficiently

\[
\text{Kruskal}_\text{ComputeMST} \\
\text{Sort edges in } E \text{ based on cost} \\
T \text{ is empty } (* T \text{ will store edges of a MST *}) \\
\text{each vertex } u \text{ is placed in a set by itself} \\
\text{while } E \text{ is not empty do} \\
\quad \text{pick } e = (u,v) \in E \text{ of minimum cost} \\
\quad \text{<2>if } u \text{ and } v \text{ belong to different sets} \\
\quad \quad \text{add } e \text{ to } T \\
\quad \text{<2>merge the sets containing } u \text{ and } v \\
\text{return the set } T
\]

Need a data structure to check if two elements belong to same set and to merge two sets.

13.4.6 Union-Find Data Structure

13.4.6.1 Union-Find Data Structure

Data Structure Store disjoint sets of elements that supports the following operations
(A) **makeUnionFind**(S) returns a data structure where each element of S is in a separate set
(B) **find**(u) returns the *name* of set containing element u. Thus, u and v belong to the same set if and only if **find**(u) = **find**(v)
(C) **union**(A, B) merges two sets A and B. Here A and B are the names of the sets. Typically the name of a set is some element in the set.

13.4.6.2 Implementing Union-Find using Arrays and Lists

Using lists
(A) Each set stored as list with a name associated with the list.
(B) For each element u ∈ S a pointer to the its set. Array for pointers: component[u] is pointer for u.
(C) **makeUnionFind** (S) takes O(n) time and space.

13.4.6.3 Example

```
s   s  t
  t
u   u  w  y
v   v  x
w
x
y
z
```

13.4.6.4 Implementing Union-Find using Arrays and Lists

(A) **find**(u) reads the entry component[u]: O(1) time
(B) **union**(A,B) involves updating the entries component[u] for all elements u in A and B: O(|A| + |B|) which is O(n)
13.4.6.5 Improving the List Implementation for Union

New Implementation As before use component\[u\] to store set of u.
Change to union(A,B):
(A) with each set, keep track of its size
(B) assume \(|A| \leq |B|\) for now
(C) Merge the list of A into that of B: \(O(1)\) time (linked lists)
(D) Update component\[u\] only for elements in the smaller set A
(E) Total \(O(|A|)\) time. Worst case is still \(O(n)\).

find still takes \(O(1)\) time

13.4.6.6 Example

\[
\begin{array}{ccc}
\text{s} & \text{t} & \text{u} \\
\text{t} & & \\
\text{u} & \text{w} & \text{y} \\
\text{v} & \text{x} & \\
\text{w} & \text{v} & \text{x} \\
\text{x} & \text{y} & \\
\text{y} & \text{z} & \\
\text{z} & & \\
\end{array}
\]

The smaller set (list) is appended to the largest set (list)

13.4.6.7 Improving the List Implementation for Union

Question Is the improved implementation provably better or is it simply a nice heuristic?

Theorem 13.4.1. Any sequence of \(k\) union operations, starting from makeUnionFind(S) on set S of size \(n\), takes at most \(O(k \log k)\).

Corollary 13.4.2. Kruskal’s algorithm can be implemented in \(O(m \log m)\) time.

Sorting takes \(O(m \log m)\) time, \(O(m)\) finds take \(O(m)\) time and \(O(n)\) unions take \(O(n \log n)\) time.

13.4.6.8 Amortized Analysis

Why does theorem work?

Key Observation union(A,B) takes \(O(|A|)\) time where \(|A| \leq |B|\). Size of new set is \(\geq 2|A|\). Cannot double too many times.

13.4.6.9 Proof of Theorem

Proof:

(A) Any union operation involves at most 2 of the original one-element sets; thus at least \(n - 2k\) elements have never been involved in a union
Also, maximum size of any set (after \(k \) unions) is \(2^k \).

union\((A, B)\) takes \(O(|A|) \) time where \(|A| \leq |B|\).

(D) Charge each element in \(A \) constant time to pay for \(O(|A|) \) time.

(E) How much does any element get charged?

(F) If \(\text{component}[v] \) is updated, set containing \(v \) doubles in size.

(G) \(\text{component}[v] \) is updated at most \(\log 2k \) times.

(H) Total number of updates is \(2^k \log 2k = O(k \log k) \)

13.4.6.10 Improving Worst Case Time

Better data structure: Maintain elements in a forest of \(\textit{in-trees} \); all elements in one tree belong to a set with root’s name.

(A) \(\text{find}(u) \): Traverse from \(u \) to the root.

(B) \(\text{union}(A, B) \): Make root of \(A \) (smaller set) point to root of \(B \). Takes \(O(1) \) time.

13.4.6.11 Details of Implementation

Each element \(u \in S \) has a pointer \(\text{parent}(u) \) to its ancestor.

```makeUnionFind(S)
for each u in S do
    parent(u) = u
end for
```

```find(u)
while (parent(u) ≠ u) do
    u = parent(u)
return u
end while
```

```union(component(u), component(v))
    (* parent(u) = u & parent(v) = v *)
    if (|component(u)| ≤ |component(v)|) then
        parent(u) = v
    else
        parent(v) = u
    set new component size to |component(u)| + |component(v)|
```

13.4.6.12 Analysis

Theorem 13.4.3. The forest based implementation for a set of size \(n \), has the following complexity for the various operations: \(\text{makeUnionFind} \) takes \(O(n) \), \(\text{union} \) takes \(O(1) \), and \(\text{find} \) takes \(O(\log n) \).

Proof:

(A) \(\text{find}(u) \) depends on the height of tree containing \(u \).

(B) Height of \(u \) increases by at most 1 only when the set containing \(u \) changes its name.

(C) If height of \(u \) increases then size of the set containing \(u \) (at least) doubles.

(D) Maximum set size is \(n \); so height of any tree is at most \(O(\log n) \).
13.4.6.13 Further Improvements: Path Compression

Observation 13.4.4. Consecutive calls of $\text{find}(u)$ take $O(\log n)$ time each, but they traverse the same sequence of pointers.

Idea: Path Compression Make all nodes encountered in the $\text{find}(u)$ point to root.

13.4.6.14 Path Compression: Example

13.4.6.15 Path Compression

```
\begin{verbatim}
\text{find} (u) : \\
    \text{if} (\text{parent} (u) \neq u) \text{ then} \\
    \text{parent} (u) = \text{find} (\text{parent} (u)) \\
    \text{return} \text{parent} (u)
\end{verbatim}
```

Question Does Path Compression help?

Yes!

Theorem 13.4.5. With Path Compression, k operations (find and/or union) take $O(k \alpha (k, \min \{k, n\}))$ time where α is the inverse Ackermann function.

13.4.6.16 Ackermann and Inverse Ackermann Functions

Ackermann function $A(m, n)$ defined for $m, n \geq 0$ recursively

$$A(m, n) = \begin{cases}
 n + 1 & \text{if } m = 0 \\
 A(m - 1, 1) & \text{if } m > 0 \text{ and } n = 0 \\
 A(m - 1, A(m, n - 1)) & \text{if } m > 0 \text{ and } n > 0
\end{cases}$$

$A(3, n) = 2^{n+3} - 3$

$A(4, 3) = 2^{65536} - 3$

$\alpha(m, n)$ is inverse Ackermann function defined as

$$\alpha(m, n) = \min \{i \mid A(i, \lfloor m/n \rfloor) \geq \log_2 n\}$$

For all practical purposes $\alpha(m, n) \leq 5$
13.4.6.17 Lower Bound for Union-Find Data Structure

Amazing result:

Theorem 13.4.6 (Tarjan). For Union-Find, any data structure in the pointer model requires \(\Omega(m \alpha(m, n)) \) time for \(m \) operations.

13.4.6.18 Running time of Kruskal’s Algorithm

Using Union-Find data structure:
(A) \(O(m) \) find operations (two for each edge)
(B) \(O(n) \) union operations (one for each edge added to \(T \))
(C) Total time: \(O(m \log m) \) for sorting plus \(O(m \alpha(n)) \) for union-find operations. Thus \(O(m \log m) \) time despite the improved Union-Find data structure.

13.4.6.19 Best Known Asymptotic Running Times for MST

Prim’s algorithm using Fibonacci heaps: \(O(n \log n + m) \).
If \(m \) is \(O(n) \) then running time is \(\Omega(n \log n) \).

Question Is there a linear time \((O(m + n)) \) time) algorithm for MST?
(A) \(O(m \log^* m) \) time [Fredman and Tarjan 1987].
(B) \(O(m + n) \) time using bit operations in RAM model [Fredman and Willard 1994].
(C) \(O(m + n) \) expected time (randomized algorithm) [Karger et al. 1995].
(D) \(O((n + m) \alpha(m, n)) \) time [Chazelle 2000].
(E) Still open: Is there an \(O(n + m) \) time deterministic algorithm in the comparison model?
Bibliography

