Greedy Algorithms

Lecture 12
March 3, 2015

Problem Types

- **Decision Problem**: Is the input a YES or NO input?
 Example: Given graph G, nodes s, t, is there a path from s to t in G?

- **Search Problem**: Find a solution if input is a YES input.
 Example: Given graph G, nodes s, t, find an s-t path.

- **Optimization Problem**: Find a best solution among all solutions for the input.
 Example: Given graph G, nodes s, t, find a shortest s-t path.

Terminology

- A problem Π consists of an infinite collection of inputs $\{I_1, I_2, \ldots\}$. Each input is referred to as an instance.

- The size of an instance I is the number of bits in its representation.

- I: instance. $\text{sol}(I)$: set of feasible solutions to I.

- Implicit assumption: given I, $y \in \Sigma^*$, one can check (efficiently!) if $y \in \text{sol}(I)$.

- \implies Problem is in NP. (More on this later in the course.)

- Optimization problems: \forall solution $s \in \text{sol}(I)$ has associated value.

- Implicit assumption: given s, can compute value efficiently.
Problem Types

Given instance I...

1. **Decision Problem**: Output whether $\text{sol}(I) = \emptyset$ or not.
2. **Search Problem**: Compute solution $s \in \text{sol}(I)$ if $\text{sol}(I) \neq \emptyset$.
3. **Optimization Problem**: Given I,
 - Minimization problem. Find solution $s \in \text{sol}(I)$ of \min value.
 - Maximization problem. Find solution $s \in \text{sol}(I)$ of \max value.
 - **Notation**: $\text{opt}(I)$: denote the value of an optimum solution or some fixed optimum solution.

What is a Greedy Algorithm?

No real consensus on a universal definition.

Greedy algorithms:
- Do the right thing. Locally.
- Make decisions incrementally in small steps *no backtracking*.
- Decision at each step based on improving *local or current* state in myopic fashion. ... without considering the *global* situation.
- **myopia**: lack of understanding or foresight.
- Decisions often based on some fixed and simple *priority* rules.

Pros and Cons of Greedy Algorithms

Pros:
- Usually (too) easy to design greedy algorithms
- Easy to implement and often run fast since they are simple
- Several important cases where they are effective/optimal
- Lead to first-cut heuristic when problem not well understood

Cons:
- **Very often** greedy algorithms don’t work.
- Easy to lull oneself into believing they work
- Many greedy algorithms possible for a problem and no structured way to find effective ones.

CS 473: Every greedy algorithm needs a proof of correctness
Greedy Algorithm Types

- Crude classification:
 - Non-adaptive: fix ordering of decisions a priori and stick with it.
 - Adaptive: make decisions adaptively but greedily/locally at each step.

- Plan:
 - See several examples
 - Pick up some proof techniques

Vertex Cover

Given a graph \(G = (V, E) \), a set of vertices \(S \) is:

- A vertex cover if every \(e \in E \) has at least one endpoint in \(S \).

Vertex Cover

![Graph Example](image)

Natural algorithms for computing vertex cover?

Interval Scheduling

Problem (Interval Scheduling)

- **Input:** A set of jobs with start and finish times to be scheduled on a resource (example: classes and class rooms).
- **Goal:** Schedule as many jobs as possible
 - Two jobs with overlapping intervals cannot both be scheduled!

Greedy Template

- \(R \) is the set of all requests
- \(X \) is empty (* \(X \) will store all the jobs that will be scheduled *)

while \(R \) is not empty do
 choose \(i \in R \)
 add \(i \) to \(X \)
 remove from \(R \) all requests that overlap with \(i \)

return the set \(X \)

Main task: Decide the order in which to process requests in \(R \)
Earliest Start Time
Process jobs in the order of their starting times, beginning with those that start earliest.

Smallest Processing Time
Process jobs in the order of processing time, starting with jobs that require the shortest processing.

Fewest Conflicts
Process jobs in the order of their finishing times, beginning with those that finish earliest.

Earliest Finish Time
Process jobs in the order of finishing times, beginning with those that finish earliest.
Optimal Greedy Algorithm

\[R \] is the set of all requests
\[X \] is empty (* \(X \) will store all the jobs that will be scheduled *)

while \(R \) is not empty
 choose \(i \in R \) such that finishing time of \(i \) is least
 add \(i \) to \(X \)
 remove from \(R \) all requests that overlap with \(i \)

return \(X \)

Theorem

The greedy algorithm that picks jobs in the order of their finishing times is optimal.

Proving Optimality

- Correctness: Clearly the algorithm returns a set of jobs that does not have any conflicts
- For a set of requests \(R \), let \(O \) be an optimal set and let \(X \) be the set returned by the greedy algorithm. Then \(O = X \)? Not likely!

Proof of Optimality: Key Lemma

Lemma

Let \(i_1 \) be first interval picked by Greedy. There exists an optimum solution that contains \(i_1 \).

Proof.

Let \(O \) be an arbitrary optimum solution. If \(i_1 \in O \) we are done.

Claim: If \(i_1 \notin O \) then there is exactly one interval \(j_1 \in O \) that conflicts with \(i_1 \). (proof later)

- Form a new set \(O' \) by removing \(j_1 \) from \(O \) and adding \(i_1 \), that is \(O' = (O - \{ j_1 \}) \cup \{ i_1 \} \).
- From claim, \(O' \) is a feasible solution (no conflicts).
- Since \(|O'| = |O| \), \(O' \) is also an optimum solution and it contains \(i_1 \).

Proof of Claim

Claim

If \(i_1 \notin O \) then there is exactly one interval \(j_1 \in O \) that conflicts with \(i_1 \).

Proof.

- Suppose \(j_1, j_2 \in O \) such that \(j_1 \neq j_2 \) and both \(j_1 \) and \(j_2 \) conflict with \(i_1 \).
- Since \(i_1 \) has earliest finish time, \(j_1 \) and \(i_1 \) overlap at \(f(i_1) \).
- For same reason \(j_2 \) also overlaps with \(i_1 \) at \(f(i_1) \).
- Implies that \(j_1, j_2 \) overlap at \(f(i_1) \) contradicting the feasibility of \(O \).

See figure in next slide.
Proof of Optimality of Earliest Finish Time First

Proof by Induction on number of intervals.

Base Case: \(n = 1 \). Trivial since Greedy picks one interval.

Induction Step: Assume theorem holds for \(i < n \).
Let \(I \) be an instance with \(n \) intervals
\(I' \): \(I \) with \(i_1 \) and all intervals that overlap with \(i_1 \) removed
\(G(I), G(I') \): Solution produced by Greedy on \(I \) and \(I' \)
From Lemma, there is an optimum solution \(O \) to \(I \) and \(i_1 \in O \).
Let \(O' = O - \{i_1\} \). \(O' \) is a solution to \(I' \).

\[
|G(I)| = 1 + |G(I')| \quad \text{ (from Greedy description)}
\leq 1 + |O'| \quad \text{ (By induction, } G(I') \text{ is optimum for } I')
= |O|
\]

Comments

1. Interesting Exercise: smallest interval first picks at least half the optimum number of intervals.
2. All requests need not be known at the beginning. Such online algorithms are a subject of research.
Scheduling all Requests

Input: A set of lectures, with start and end times
Goal: Find the minimum number of classrooms, needed to schedule all the lectures such two lectures do not occur at the same time in the same room.

Greedy Algorithm

Initially R is the set of all requests

$d = 0$ (* number of classrooms *)

while R is not empty do

choose $i \in R$ such that start time of i is earliest

if i can be scheduled in some class-room $k \leq d$

schedule lecture i in class-room k

else

allocate a new class-room $d + 1$

and schedule lecture i in $d + 1$

$d = d + 1$

What order should we process requests in? According to start times (breaking ties arbitrarily)

Depth of Lectures

Definition

- For a set of lectures R, k are said to be in conflict if there is some time t such that there are k lectures going on at time t.
- The depth of a set of lectures R is the maximum number of lectures in conflict at any time.
Depth and Number of Class-rooms

Lemma
For any set R of lectures, the number of class-rooms required is at least the depth of R.

Proof.
All lectures that are in conflict must be scheduled in different rooms.

Number of Class-rooms used by Greedy Algorithm

Lemma
Let d be the depth of the set of lectures R. The number of class-rooms used by the greedy algorithm is d.

Proof.
1. Suppose the greedy algorithm uses more that d rooms. Let j be the first lecture that is scheduled in room $d + 1$.
2. Since we process lectures according to start times, there are d lectures that start (at or) before j and which conflict with j.
3. Thus, at the start time of j, there are at least $d + 1$ lectures in conflict, which contradicts the fact that the depth is d.

Correctness

Observation
The greedy algorithm does not schedule two overlapping lectures in the same room.

Theorem
The greedy algorithm is correct and uses the optimal number of class-rooms.
Implementation and Running Time

Initially \(R \) is the set of all requests
\[
d = 0 \quad (* \text{number of classrooms} *)
\]
\[d = d + 1\]

while \(R \) is not empty

choose \(i \in R \) such that start time of \(i \) is earliest

if \(i \) can be scheduled in some classroom \(k \leq d \)

schedule lecture \(i \) in classroom \(k \)

else

allocate a new classroom \(d + 1 \) and schedule lecture \(i \) in \(d + 1 \)

Presort according to start times. Picking lecture with earliest start time can be done in \(O(1) \) time.

Keep track of the finish time of last lecture in each room.

Checking conflict takes \(O(d) \) time. With priority queues, checking conflict takes \(O(\log d) \) time.

Total time
\[
O(n \log n + nd) = O(n \log n + n \log d) = O(n \log n)
\]

Scheduling to Minimize Lateness

- Given jobs with deadlines and processing times to be scheduled on a single resource.
- If a job \(i \) starts at time \(s_i \) then it will finish at time \(f_i = s_i + t_i \), where \(t_i \) is its processing time. \(d_i \): deadline.
- The lateness of a job is \(l_i = \max(0, f_i - d_i) \).
- Schedule all jobs such that \(L = \max l_i \) is minimized.

A Simpler Feasibility Problem

- Given jobs with deadlines and processing times to be scheduled on a single resource.
- If a job \(i \) starts at time \(s_i \) then it will finish at time \(f_i = s_i + t_i \), where \(t_i \) is its processing time.
- Schedule all jobs such that each of them completes before its deadline (in other words \(L = \max_i l_i = 0 \)).

Greedy Template

Initially \(R \) is the set of all requests
\[
curr_time = 0
\]
\[d = d + 1\]

while \(R \) is not empty do

choose \(i \in R \)

\[
curr_time = curr_time + t_i
\]

if \(curr_time > d_i \) then

return ‘‘no feasible schedule’’

return ‘‘found feasible schedule’’

Definition

A schedule is feasible if all jobs finish before their deadline.

Main task: Decide the order in which to process jobs in \(R \)
Three Algorithms

- Shortest job first — sort according to t_i.
- Shortest slack first — sort according to $d_i - t_i$.
- EDF = Earliest deadline first — sort according to d_i.

Counter examples for first two: exercise

Earliest Deadline First

Theorem
Greedy with EDF rule for picking requests correctly decides if there is a feasible schedule.

Proof via an exchange argument.

Idle time: time during which machine is not working.

Lemma
If there is a feasible schedule then there is one with no idle time before all jobs are finished.

Main Lemma

Lemma
If there is a feasible schedule, then there is one with no inversions.

Proof Sketch.
Let S be a schedule with minimum number of inversions.
- If S has 0 inversions, done.
- Suppose S has one or more inversions. By claim there are two adjacent jobs i and j that define an inversion.
- Swap positions of i and j.
- New schedule is still feasible. (Why?)
- New schedule has one fewer inversion — contradiction!
Back to Minimizing Lateness

Goal: schedule to minimize \(L = \max_i l_i \).

How can we use algorithm for simpler feasibility problem?

Given a lateness bound \(L \), can we check if there is a schedule such that \(\max_i l_i \leq L \)?

Yes! Set \(d'_i = d_i + L \) for each job \(i \). Use feasibility algorithm with new deadlines.

How can we find *minimum* \(L \)? Binary search!

Binary search for finding minimum lateness

\[
L = L_{\text{min}} = 0 \\
L_{\text{max}} = \sum_i t_i \quad \text{// why is this sufficient?}
\]

While \(L_{\text{min}} < L_{\text{max}} \) do

\[
L = \lfloor (L_{\text{max}} + L_{\text{min}})/2 \rfloor \\
\]

check if there is a feasible schedule with lateness \(L \)

if ‘yes’ then \(L_{\text{max}} = L \)

else \(L_{\text{min}} = L + 1 \)

end while

return \(L \)

Running time: \(O(n \log n \cdot \log T) \) where \(T = \sum_i t_i \)

- \(O(n \log n) \) for feasibility test (sort by deadlines)
- \(O(\log T) \) calls to feasibility test in binary search

Do we need binary search?

What happens in each call?

EDF algorithm with deadlines \(d'_i = d_i + L \).

Greedy with **EDF** schedules the jobs in the same order for all \(L \)!!

Maybe there is a direct greedy algorithm for minimizing maximum lateness?

Greedy Algorithm for Minimizing Lateness

Initially \(R \) is the set of all requests

\[
curr\.time = 0 \\
curr\.late = 0
\]

while \(R \) is not empty

choose \(i \in R \) with earliest deadline

\[
curr\.time = curr\.time + t_i \\
late = curr\.time - d_i \\
curr\.late = \max(late, curr\.late)
\]

return \(curr\.late \)

Exercise: argue directly that above algorithm is correct

Can be easily implemented in \(O(n \log n) \) time after sorting jobs.
Greedy Analysis: Overview

1. **Greedy’s first step leads to an optimum solution.** Show that there is an optimum solution leading from the first step of Greedy and then use induction. Example, Interval Scheduling.

2. **Greedy algorithm stays ahead.** Show that after each step the solution of the greedy algorithm is at least as good as the solution of any other algorithm. Example, Interval scheduling.

3. **Structural property of solution.** Observe some structural bound of every solution to the problem, and show that greedy algorithm achieves this bound. Example, Interval Partitioning.

4. **Exchange argument.** Gradually transform any optimal solution to the one produced by the greedy algorithm, without hurting its optimality. Example, Minimizing lateness.

Takeaway Points

- **Greedy algorithms come naturally but often are incorrect.** A proof of correctness is an absolute necessity.

- **Exchange arguments are often the key proof ingredient.** Focus on why the first step of the algorithm is correct: need to show that there is an optimum/correct solution with the first step of the algorithm.

- **Thinking about correctness is also a good way to figure out which of the many greedy strategies is likely to work.**