Dynamic Programming

Lecture 09
February 17, 2015

Sequences

Definition

Sequence: an ordered list a_1, a_2, \ldots, a_n. Length of a sequence is number of elements in the list.

Definition

a_{i_1}, \ldots, a_{i_k} is a subsequence of a_1, \ldots, a_n if $1 \leq i_1 < i_2 < \ldots < i_k \leq n$.

Definition

A sequence is increasing if $a_1 < a_2 < \ldots < a_n$. It is non-decreasing if $a_1 \leq a_2 \leq \ldots \leq a_n$. Similarly decreasing and non-increasing.
Longest Increasing Subsequence Problem

Input A sequence of numbers \(a_1, a_2, \ldots, a_n\)

Goal Find an increasing subsequence \(a_{i_1}, a_{i_2}, \ldots, a_{i_k}\) of maximum length

Example
- Sequence: 6, 3, 5, 2, 7, 8, 1
- Increasing subsequences: 6, 7, 8 and 3, 5, 7, 8 and 2, 7 etc
- Longest increasing subsequence: 3, 5, 7, 8

Naïve Enumeration

Assume \(a_1, a_2, \ldots, a_n\) is contained in an array \(A\)

\[
\text{algLISNaive}(A[1..n]): \\
\text{max} = 0 \\
\text{for each subsequence } B \text{ of } A \text{ do} \\
\quad \text{if } B \text{ is increasing and } |B| > \text{max} \text{ then} \\
\quad \quad \text{max} = |B|
\]

Output \(\text{max}\)

Running time: \(O(n2^n)\).

\(2^n\) subsequences of a sequence of length \(n\) and \(O(n)\) time to check if a given sequence is increasing.

Recursive Approach: Take 1

LIS: Longest increasing subsequence

Can we find a recursive algorithm for LIS?

\[
\text{LIS}(A[1..n]): \\
\quad \text{Case 1: } \text{Does not contain } A[n] \text{ in which case} \\
\quad \quad \text{LIS}(A[1..n]) = \text{LIS}(A[1..(n-1)]) \\
\quad \text{Case 2: } \text{contains } A[n] \text{ in which case } \text{LIS}(A[1..n]) \text{ is not so clear.}
\]

Observation

If \(A[n]\) is in the longest increasing subsequence then all the elements before it must be smaller.
Recursive Approach: Take 2

LIS([1..n]):
- **Case 1:** Does not contain \(A[n]\) in which case \(LIS([1..n]) = LIS([1..(n - 1)])\)
- **Case 2:** contains \(A[n]\) in which case \(LIS([1..n])\) is not so clear.

Observation
- **Case 2:** find a subsequence in \([1..(n - 1)]\) that is restricted to numbers less than \(A[n]\).
- **Generalization** \(LIS_{smaller}([1..n], x)\): longest increasing subsequence in \(A\), all numbers in sequence is \(\leq x\).

Recursive Algorithm: Take 2

Observation
The number of different subproblems generated by \(LIS_{smaller}([1..n], x)\) is \(O(n^2)\).

Memoization the recursive algorithm leads to an \(O(n^2)\) running time!

Question: What are the recursive subproblem generated by \(LIS_{smaller}([1..n], x)\)?
- For \(0 \leq i < n\) \(LIS_{smaller}([1..i], y)\) where \(y\) is either \(x\) or one of \(A[i + 1], \ldots, A[n]\).

Observation
Previous recursion also generates only \(O(n^2)\) subproblems. Slightly harder to see.

Recursive Approach: Take 2

\(LIS_smaller(A[1..n], x)\): length of longest increasing subsequence in \(A[1..n]\) with all numbers in subsequence less than \(x\)

```plaintext
LIS\_smaller(A[1..n], x):
  if (n = 0) then return 0
  m = LIS\_smaller(A[1..(n - 1)], x)
  if (A[n] < x) then
    m = max(m, 1 + LIS\_smaller(A[1..(n - 1)], A[n]))
  Output m

LIS(A[1..n]):
  return LIS\_smaller(A[1..n], \(\infty\))
```

Recursion for running time: \(T(n) \leq 2T(n - 1) + O(1)\).

Question: Is there any advantage?

Recursive Algorithm: Take 3

Definition
\(LIS_Ending(A[1..n])\): length of longest increasing sub-sequence that ends in \(A[n]\).

Question: can we obtain a recursive expression?

\[LIS_Ending(A[1..n]) = \max_{i: A[i] < A[n]} (1 + LIS_Ending(A[1..i]))\]
Recursive Algorithm: Take 3

LIS-ending_alg(\(A[1..n]\)):
 if (\(n = 0\)) return 0
 \(m = 1\)
 for \(i = 1\) to \(n - 1\) do
 if (\(A[i] < A[n]\)) then
 \(m = \max(m, 1 + LIS-ending_alg(A[1..i]))\)
 return \(m\)

LIS(\(A[1..n]\)):
 return \(\max_{i=1}^{n} LIS-ending_alg(A[1..i])\)

Question:
How many distinct subproblems generated by \(LIS-ending_alg(A[1..n])\)? \(n\).

Iterative Algorithm via Memoization

Compute the values \(LIS-ending_alg(A[1..i])\) iteratively in a bottom up fashion.

LIS-ending_alg(\(A[1..n]\)):
 Array \(L[1..n]\) (* \(L[i] = \text{value of } LIS-ending_alg(A[1..i])\) *)
 for \(i = 1\) to \(n\) do
 \(L[i] = 1\)
 for \(j = 1\) to \(i - 1\) do
 if (\(A[j] < A[i]\)) do
 \(L[i] = \max(L[i], 1 + L[j])\)
 \(m = \max(m, L[i])\)
 return \(m\)

LIS(\(A[1..n]\)):
 \(L = LIS-ending_alg(A[1..n])\)
 return the maximum value in \(L\)

Correctness: Via induction following the recursion
Running time: \(O(n^2)\), Space: \(\Theta(n)\)

Example

Example 1:
- Sequence: 6, 3, 5, 2, 7, 8, 1
- Longest increasing subsequence: 3, 5, 7, 8

- \(L[i]\) is value of longest increasing subsequence ending in \(A[i]\)
- Recursive algorithm computes \(L[i]\) from \(L[1]\) to \(L[i-1]\)
- Iterative algorithm builds up the values from \(L[1]\) to \(L[n]\)
Memoizing

LIS($A[1..n]$):
\[A[n + 1] = \infty \quad (* \text{add a sentinel at the end} \quad *) \]
Array $L[(n + 1), (n + 1)]$ (* two-dimensional array*)
(* $L[i, j]$ for $j \geq i$ stores the value $\text{LIS_smaller}(A[1..i], A[j])$ *)
for $j = 1$ to $n + 1$
\[L[0, j] = 0 \]
for $i = 1$ to $n + 1$
for $j = i$ to $n + 1$
\[L[i, j] = L[i - 1, j] \]
if ($A[i] < A[j]$) then
\[L[i, j] = \max(L[i, j], 1 + L[i - 1, i]) \]
return $L[n, (n + 1)]$

Correctness: Via induction following the recursion (take 2)
Running time: $O(n^2)$, **Space:** $\Theta(n^2)$

Longest increasing subsequence

Another way to get quadratic time algorithm

Input sequence: $6, 3, 5, 2, 7, 8, 1, 9$.

Longest increasing subsequence: $3, 5, 7, 8, 9$.

Dynamic Programming

1. Find a “smart” recursion for the problem in which the number of distinct subproblems is small; polynomial in the original problem size.
2. Estimate the number of subproblems, the time to evaluate each subproblem and the space needed to store the value. This gives an upper bound on the total running time if we use automatic memoization.
3. Eliminate recursion and find an iterative algorithm to compute the problems bottom up by storing the intermediate values in an appropriate data structure; need to find the right way or order the subproblem evaluation. This leads to an explicit algorithm.
4. Optimize the resulting algorithm further.
Part II

Weighted Interval Scheduling

Weighted Interval Scheduling

Input: A set of jobs with start times, finish times and weights (or profits).

Goal: Schedule jobs so that total weight of jobs is maximized.

- Two jobs with overlapping intervals cannot both be scheduled!

Interval Scheduling

Greedy Solution

Input: A set of jobs with start and finish times to be scheduled on a resource; special case where all jobs have weight 1.

Goal: Schedule as many jobs as possible.

- Greedy strategy of considering jobs according to finish times produces optimal schedule (to be seen later).

Greedy Strategies

- Earliest finish time first
- Largest weight/profit first
- Largest weight to length ratio first
- Shortest length first

None of the above strategies lead to an optimum solution.

Moral: Greedy strategies often don’t work!
Reduction to...
Max Weight Independent Set Problem

Given weighted interval scheduling instance I create an instance of max weight independent set on a graph $G(I)$ as follows.
1. For each interval i create a vertex v_i with weight w_i.
2. Add an edge between v_i and v_j if i and j overlap.

Claim: max weight independent set in $G(I)$ has weight equal to max weight set of intervals in I that do not overlap.

Conventions

Definition
- Let the requests be sorted according to finish time, i.e., $i < j$ implies $f_i \leq f_j$.
- Define $p(j)$ to be the largest i (less than j) such that job i and job j are not in conflict.

Example

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>v_1 = 2</td>
<td>v_2 = 4</td>
<td>v_3 = 4</td>
<td>v_4 = 7</td>
<td>v_5 = 2</td>
<td>v_6 = 1</td>
</tr>
</tbody>
</table>

Towards a Recursive Solution

Observation
Consider an optimal schedule O.

Case $n \in O$: None of the jobs between n and $p(n)$ can be scheduled. Moreover O must contain an optimal schedule for the first $p(n)$ jobs.

Case $n \notin O$: O is an optimal schedule for the first $n - 1$ jobs.
A Recursive Algorithm

Let O_i be value of an optimal schedule for the first i jobs.

$$\text{Schedule}(n):$$

- if $n = 0$ then return 0
- if $n = 1$ then return $w(v_1)$
- $O_{p(n)} \leftarrow \text{Schedule}(p(n))$
- $O_{n-1} \leftarrow \text{Schedule}(n-1)$
- if $(O_{p(n)} + w(v_n)) < O_{n-1}$ then
 - $O_n = O_{n-1}$
- else
 - $O_n = O_{p(n)} + w(v_n)$
- return O_n

Time Analysis

Running time is $T(n) = T(p(n)) + T(n-1) + O(1)$ which is...

Bad Example

Running time on this instance is

$$T(n) = T(n-1) + T(n-2) + O(1) = \Theta(\phi^n)$$

where $\phi \approx 1.618$ is the golden ratio.

Analysis of the Problem

Figure: Label of node indicates size of sub-problem. Tree of sub-problems grows very quickly

Memo(r)ization

Observation

- Number of different sub-problems in recursive algorithm is $O(n)$; they are $O_1, O_2, \ldots, O_{n-1}$
- Exponential time is due to recomputation of solutions to sub-problems

Solution

Store optimal solution to different sub-problems, and perform recursive call only if not already computed.
Recursive Solution with Memoization

```
schdlMem(j)
    if j = 0 then return 0
    if M[j] is defined then (* sub-problem already solved *)
        return M[j]
    if M[j] is not defined then
        M[j] = max(w(vj) + schdlMem(p(j)), schdlMem(j - 1))
    return M[j]
```

Time Analysis
- Each invocation, \(O(1) \) time plus: either return a computed value, or generate 2 recursive calls and fill one \(M[\cdot] \)
- Initially no entry of \(M[\cdot] \) is filled; at the end all entries of \(M[\cdot] \) are filled
- So total time is \(O(n) \) (Assuming input is presorted...)

Automatic Memoization

Fact
Many functional languages (like LISP) automatically do memoization for recursive function calls!

Back to Weighted Interval Scheduling

Iterative Solution

```
M[0] = 0
for i = 1 to n do
    M[i] = max(w(vi) + M[p(i)], M[i - 1])
```

\(M \): table of subproblems
- Implicitly dynamic programming fills the values of \(M \).
- Recursion determines order in which table is filled up.
- Think of decomposing problem first (recursion) and then worry about setting up table — this comes naturally from recursion.

Example

```
| 30 | 70 | 3 |
---|----|--|
30 1 80 4
20 2 10 5
```

\(p(5) = 2, p(4) = 1, p(3) = 1, p(2) = 0, p(1) = 0 \)
Computing Solutions + First Attempt

- Memoization + Recursion/Iteration allows one to compute the optimal value. What about the actual schedule?

\[
M[0] = 0 \\
S[0] \text{ is empty schedule} \\
\text{for } i = 1 \text{ to } n \text{ do} \\
\quad M[i] = \max \left(w(v_i) + M[p(i)], \ M[i-1] \right) \\
\quad \text{if } w(v_i) + M[p(i)] < M[i-1] \text{ then} \\
\quad \quad S[i] = S[i-1] \\
\quad \text{else} \\
\quad \quad S[i] = S[p(i)] \cup \{i\}
\]

- Naively updating \(S[] \) takes \(O(n) \) time
- Total running time is \(O(n^2) \)
- Using pointers and linked lists running time can be improved to \(O(n) \).

Computing Implicit Solutions

A generic strategy for computing solutions in dynamic programming:

- Keep track of the decision in computing the optimum value of a sub-problem. decision space depends on recursion
- Once the optimum values are computed, go back and use the decision values to compute an optimum solution.

Question: What is the decision in computing \(M[i] \)?
A: Whether to include \(i \) or not.

\[
M[0] = 0 \\
\text{for } i = 1 \text{ to } n \text{ do} \\
\quad M[i] = \max \left(w(v_i) + M[p(i)], \ M[i-1] \right) \\
\quad \text{if } w(v_i) + M[p(i)] > M[i-1] \text{ then} \\
\quad \quad \text{Decision}[i] = 1 \quad \text{(1: } i \text{ included in solution } M[i] \text{)} \\
\quad \text{else} \\
\quad \quad \text{Decision}[i] = 0 \quad \text{(0: } i \text{ not included in solution } M[i] \text{)}
\]

\[
S = \emptyset, \quad i = n \\
\text{while } (i > 0) \text{ do} \\
\quad \text{if } \langle \text{Decision}[i] = 1 \rangle \text{ then} \\
\quad \quad S = S \cup \{i\} \\
\quad \quad i = p(i) \\
\quad \text{else} \\
\quad \quad i = i - 1 \\
\text{return } S
\]