Breadth First Search, Dijkstra’s Algorithm for Shortest Paths

Lecture 4
January 29, 2015
Part I

Breadth First Search
Breadth First Search (BFS)

Overview

(A) **BFS** is obtained from **BasicSearch** by processing edges using a **queue** data structure.

(B) It processes the vertices in the graph in the order of their shortest distance from the vertex **s** (the start vertex).

As such...

1. **DFS** good for exploring graph structure
2. **BFS** good for exploring *distances*
Breadth First Search (BFS)

Overview

(A) BFS is obtained from BasicSearch by processing edges using a queue data structure.

(B) It processes the vertices in the graph in the order of their shortest distance from the vertex s (the start vertex).

As such...

1. DFS good for exploring graph structure
2. BFS good for exploring distances
Overview

(A) **BFS** is obtained from **BasicSearch** by processing edges using a **queue** data structure.

(B) It processes the vertices in the graph in the order of their shortest distance from the vertex **s** (the start vertex).

As such...

1. **DFS** good for exploring graph structure
2. **BFS** good for exploring *distances*
Overview

(A) **BFS** is obtained from **BasicSearch** by processing edges using a **queue** data structure.

(B) It processes the vertices in the graph in the order of their shortest distance from the vertex *s* (the start vertex).

As such...

1. **DFS** good for exploring graph structure
2. **BFS** good for exploring *distances*
xkcd take on DFS

PREPARING FOR A DATE:
WHAT SITUATIONS MIGHT I PREPARE FOR?
1) MEDICAL EMERGENCY
2) DANCING
3) FOOD TOO EXPENSIVE
4) IQueryable Country

OKAY, WHAT KINDS OF EMERGENCIES CAN HAPPEN?
1) SNAKEBITE
2) LIGHTNING STROKE
3) FALL FROM CHAIR

HMM, WHICH SNAKES ARE DANGEROUS? LET'S SEE...
1) CORN SNAKE
2) GARTER SNAKE
3) COPPERHEAD

THE RESEARCH COMPARING SNAKE VENOMS IS SCATTERED AND INCONSISTENT. I'LL MAKE A SPREADSHEET TO ORGANIZE IT!

IM HERE TO PICK YOU UP. YOU'RE NOT DRESSED?

BY UD, THE INLAND TAIPAN HAS THE DEADIEST VENOM OF ANY SNAKE!

I'M REALLY NEED TO STOP USING DEPTH-FIRST SEARCHES.
Queue Data Structure

Queues

queue: list of elements which supports the operations:

1. **enqueue**: Adds an element to the end of the list
2. **dequeue**: Removes an element from the front of the list

Elements are extracted in **first-in first-out (FIFO)** order, i.e., elements are picked in the order in which they were inserted.
BFS Algorithm

Given (undirected or directed) graph $G = (V, E)$ and node $s \in V$

$\text{BFS}(s)$

Mark all vertices as unvisited
Initialize search tree T to be empty
Mark vertex s as visited
set Q to be the empty queue

$\text{enq}(s)$

while Q is nonempty do

$\quad u = \text{deq}(Q)$

\quad for each vertex $v \in \text{Adj}(u)$

$\quad \quad$ if v is not visited then

$\quad \quad \quad$ add edge (u, v) to T

$\quad \quad$ Mark v as visited and $\text{enq}(v)$

Proposition

$\text{BFS}(s)$ runs in $O(n + m)$ time.
BFS: An Example in Undirected Graphs

BFS tree is the set of black edges.

1. [1]
2. [2,3]
3. [3,4,5]
4. [4,5,7,8]
5. [5,7,8]
6. [7,8,6]
7. [8,6]
8. [6]
9. []
BFS: An Example in Undirected Graphs

BFS tree is the set of black edges.
BFS: An Example in Undirected Graphs

1. [1]
2. [2,3]
3. [3,4,5]
4. [4,5,7,8]
5. [5,7,8]
6. [7,8,6]
7. [8,6]
8. [6]
9. []

BFS tree is the set of black edges.
BFS: An Example in Undirected Graphs

1. [1]
2. [2,3]
3. [3,4,5]
4. [4,5,7,8]
5. [5,7,8]
6. [7,8,6]
7. [8,6]
8. [6]
9. []

BFS tree is the set of black edges.
BFS: An Example in Undirected Graphs

1. [1]
2. [2,3]
3. [3,4,5]
4. [4,5,7,8]
5. [5,7,8]
6. [7,8,6]
7. [8,6]
8. [6]
9. []

BFS tree is the set of black edges.
BFS: An Example in Undirected Graphs

BFS tree is the set of black edges.

1. [1]
2. [2,3]
3. [3,4,5]
4. [4,5,7,8]
5. [5,7,8]
6. [7,8,6]
7. [8,6]
8. [6]
9. []
BFS: An Example in Undirected Graphs

1. \([1]\)
2. \([2,3]\)
3. \([3,4,5]\)
4. \([4,5,7,8]\)
5. \([5,7,8]\)
6. \([7,8,6]\)
7. \([8,6]\)
8. \([6]\)
9. \([]\)

BFS tree is the set of black edges.
BFS: An Example in Undirected Graphs

1. [1]
2. [2,3]
3. [3,4,5]
4. [4,5,7,8]
5. [5,7,8]
6. [7,8,6]
7. [8,6]
8. [6]
9. []

BFS tree is the set of black edges.
BFS: An Example in Undirected Graphs

BFS tree is the set of black edges.
BFS: An Example in Undirected Graphs

BFS tree is the set of black edges.

1. [1]
2. [2,3]
3. [3,4,5]
4. [4,5,7,8]
5. [5,7,8]
6. [7,8,6]
7. [8,6]
8. [6]
9. []
BFS: An Example in Directed Graphs

A directed graph (also called a digraph) is $G = (V, E)$, where V is a set of vertices or nodes, $E \subseteq V \times V$ is a set of ordered pairs of vertices called edges.
BFS with Distance

BFS(s)

Mark all vertices as unvisited and for each \(v \) set \(\text{dist}(v) = 1 \)

Initialize search tree \(T \) to be empty

Mark vertex \(s \) as visited and set \(\text{dist}(s) = 0 \)

set \(Q \) to be the empty queue

\(\text{enq}(s) \)

while \(Q \) is nonempty do

\(u = \text{deq}(Q) \)

for each vertex \(v \in \text{Adj}(u) \) do

if \(v \) is not visited do

add edge \((u, v) \) to \(T \)

Mark \(v \) as visited, \(\text{enq}(v) \)

and set \(\text{dist}(v) = \text{dist}(u) + 1 \)
Proposition

The following properties hold upon termination of \textsc{BFS}(s):

1. $V(\text{BFS tree comp.}) =$ set vertices in connected component s.
2. If $\text{dist}(u) < \text{dist}(v)$ then u is visited before v.
3. $\forall u \in V$, $\text{dist}(u) =$ the length of shortest path from s to u.
4. If $u, v \in$ connected component of s, and $e = uv$ is an edge of G, then either $e \in \text{BFS tree}$, or $|\text{dist}(u) - \text{dist}(v)| \leq 1$.

Proof.

Exercise.
Properties of BFS: Undirected Graphs

Proposition

The following properties hold upon termination of BFS(s)

1. $V(\text{BFS tree comp.}) = \text{set vertices in connected component } s$.
2. If $\text{dist}(u) < \text{dist}(v)$ then u is visited before v.
3. $\forall u \in V, \text{dist}(u) = \text{the length of shortest path from } s \text{ to } u$.
4. If $u, v \in \text{connected component of } s$, and $e = uv$ is an edge of G, then either $e \in \text{BFS tree}$, or $|\text{dist}(u) - \text{dist}(v)| \leq 1$.

Proof.

Exercise.
Properties of BFS: Undirected Graphs

Proposition

The following properties hold upon termination of $\text{BFS}(s)$

1. $\mathcal{V}(\text{BFS tree comp.}) = \text{set vertices in connected component } s$.
2. If $\text{dist}(u) < \text{dist}(v)$ then u is visited before v.
3. $\forall u \in \mathcal{V}, \text{dist}(u) = \text{the length of shortest path from } s \text{ to } u$.
4. If $u, v \in \text{connected component of } s$, and $e = uv$ is an edge of G, then either $e \in \text{BFS tree}$, or $|\text{dist}(u) - \text{dist}(v)| \leq 1$.

Proof.

Exercise.
Properties of BFS: Undirected Graphs

Proposition

The following properties hold upon termination of $\text{BFS}(s)$:

1. $V(\text{BFS tree comp.}) =$ set vertices in connected component s.
2. If $\text{dist}(u) < \text{dist}(v)$ then u is visited before v.
3. $\forall u \in V, \text{dist}(u) =$ the length of shortest path from s to u.
4. If $u, v \in$ connected component of s, and $e = uv$ is an edge of G, then either $e \in \text{BFS tree}$, or $|\text{dist}(u) - \text{dist}(v)| \leq 1$.

Proof.

Exercise.
Properties of BFS: Undirected Graphs

Proposition

The following properties hold upon termination of $\text{BFS}(s)$

1. $\forall (\text{BFS tree comp.}) = \text{set vertices in connected component } s$.
2. If $\text{dist}(u) < \text{dist}(v)$ then u is visited before v.
3. $\forall u \in V, \text{dist}(u) = \text{the length of shortest path from } s \text{ to } u$.
4. If $u, v \in \text{connected component of } s$, and $e = uv$ is an edge of G, then either $e \in \text{BFS tree}$, or $|\text{dist}(u) - \text{dist}(v)| \leq 1$.

Proof.

Exercise.
Properties of BFS: Directed Graphs

Proposition

The following properties hold upon termination of \(T \leftarrow \text{BFS}(s) \):

1. For search tree \(T \). \(V(T) = \) set of vertices reachable from \(s \)
2. If \(\text{dist}(u) < \text{dist}(v) \) then \(u \) is visited before \(v \)
3. \(\forall u \in V(T): \text{dist}(u) = \) length of shortest path from \(s \) to \(u \)
4. If \(u \) is reachable from \(s \), \(e = (u \to v) \in E(G) \).
 Then either (i) \(e \) is an edge in the search tree,
 or (ii) \(\text{dist}(v) - \text{dist}(u) \leq 1 \).

Not necessarily the case that \(\text{dist}(u) - \text{dist}(v) \leq 1 \).

Proof.

Exercise.
Properties of BFS: Directed Graphs

Proposition

The following properties hold upon termination of $T \leftarrow \text{BFS}(s)$:

1. For search tree T, $V(T) =$ set of vertices reachable from s
2. If $\text{dist}(u) < \text{dist}(v)$ then u is visited before v
3. $\forall u \in V(T)$: $\text{dist}(u) =$ length of shortest path from s to u
4. If u is reachable from s, $e = (u \rightarrow v) \in E(G)$. Then either (i) e is an edge in the search tree, or (ii) $\text{dist}(v) - \text{dist}(u) \leq 1$.

Proof.
Exercise.

Sariel (UIUC) OLD CS473 11 / 49 Spring 2015
Properties of BFS: Directed Graphs

Proposition

The following properties hold upon termination of $T \leftarrow \text{BFS}(s)$:

1. For search tree T. $V(T) =$ set of vertices reachable from s

2. If $\text{dist}(u) < \text{dist}(v)$ then u is visited before v

3. $\forall u \in V(T)$: $\text{dist}(u) =$ length of shortest path from s to u

4. If u is reachable from s, $e = (u \rightarrow v) \in E(G)$.
 Then either (i) e is an edge in the search tree,
 or (ii) $\text{dist}(v) - \text{dist}(u) \leq 1$.

 Not necessarily the case that $\text{dist}(u) - \text{dist}(v) \leq 1$.

Proof.

Exercise.
Properties of BFS: Directed Graphs

Proposition

The following properties hold upon termination of $T \leftarrow \text{BFS}(s)$:

1. For search tree T. $V(T) = \text{set of vertices reachable from } s$
2. If $\text{dist}(u) < \text{dist}(v)$ then u is visited before v
3. $\forall u \in V(T): \text{dist}(u) = \text{length of shortest path from } s \text{ to } u$
4. If u is reachable from s, $e = (u \rightarrow v) \in E(G)$.
 Then either (i) e is an edge in the search tree,
 or (ii) $\text{dist}(v) - \text{dist}(u) \leq 1$.

Not necessarily the case that $\text{dist}(u) - \text{dist}(v) \leq 1$.

Proof.

Exercise.
Properties of BFS: Directed Graphs

Proposition

The following properties hold upon termination of $T \leftarrow \text{BFS}(s)$:

1. For search tree T. $V(T) =$ set of vertices reachable from s
2. If $\text{dist}(u) < \text{dist}(v)$ then u is visited before v
3. $\forall u \in V(T): \text{dist}(u) =$ length of shortest path from s to u
4. If u is reachable from s, $e = (u \rightarrow v) \in E(G)$. Then either (i) e is an edge in the search tree, or (ii) $\text{dist}(v) - \text{dist}(u) \leq 1$. Not necessarily the case that $\text{dist}(u) - \text{dist}(v) \leq 1$.

Proof.

Exercise.
BFS with Layers

BFSLayers(*s*):

Mark all vertices as unvisited and initialize *T* to be empty

Mark *s* as visited and set *L*₀ = {*s*}

i = 0

while *L*_{*i*} is not empty do

initialize *L*_{*i*+1} to be an empty list

for each *u* in *L*_{*i*} do

for each edge (*u*, *v*) ∈ Adj(*u*) do

if *v* is not visited

mark *v* as visited

add (*u*, *v*) to tree *T*

add *v* to *L*_{*i*+1}

i = *i* + 1

Running time: *O*(n + m)
BFS with Layers

BFSLayers(*s*):
Mark all vertices as unvisited and initialize *T* to be empty
Mark *s* as visited and set *L*₀ = {s}
i = 0

while *L*_{*i*} is not empty do
 initialize *L*_{*i*+1} to be an empty list
 for each *u* in *L*_{*i*} do
 for each edge (*u*, *v*) ∈ Adj(*u*) do
 if *v* is not visited
 mark *v* as visited
 add (*u*, *v*) to tree *T*
 add *v* to *L*_{*i*+1}

 i = *i* + 1

Running time: *O(n + m)*
Example

\begin{center}
\begin{tikzpicture}
 \node[circle,fill=blue!20] (1) at (0,1) {1};
 \node[circle,fill=blue!20] (2) at (1,-1) {2};
 \node[circle,fill=blue!20] (3) at (0,0) {3};
 \node[circle,fill=blue!20] (4) at (-1,-1) {4};
 \node[circle,fill=blue!20] (5) at (0,-2) {5};
 \node[circle,fill=blue!20] (6) at (-1,-2) {6};
 \node[circle,fill=blue!20] (7) at (1,1) {7};
 \node[circle,fill=blue!20] (8) at (2,0) {8};

 \draw (1) -- (2);
 \draw (1) -- (3);
 \draw (2) -- (3);
 \draw (2) -- (4);
 \draw (3) -- (4);
 \draw (3) -- (5);
 \draw (4) -- (5);
 \draw (5) -- (6);
 \draw (7) -- (8);
\end{tikzpicture}
\end{center}
Example

L_0

1
2
3
4
5
6
7
8

Sariel (UIUC)
Example

L_0

L_1

1 2 3 4 5 6 7 8

Sariel (UIUC)
Example

\[L_0 \]

\[L_1 \]

\[L_2 \]
Example
Proposition

The following properties hold on termination of $\text{BFSLayers}(s)$.

1. $\text{BFSLayers}(s)$ outputs a BFS tree
2. L_i is the set of vertices at distance exactly i from s
3. If G is undirected, each edge $e = uv$ is one of three types:
 1. tree edge between two consecutive layers
 2. non-tree forward/backward edge between two consecutive layers
 3. non-tree cross-edge with both u, v in same layer
 4. \iff Every edge in the graph is either between two vertices that are either (i) in the same layer, or (ii) in two consecutive layers.
Example: Tree/cross/forward (backward) edges
Proposition

The following properties hold on termination of $\text{BFSLayers}(s)$, if G is directed.

For each edge $e = (u \rightarrow v)$ is one of four types:

1. A **tree** edge between consecutive layers, $u \in L_i, v \in L_{i+1}$ for some $i \geq 0$
2. A **non-tree forward** edge between consecutive layers
3. A **non-tree backward** edge
4. A **cross-edge** with both u, v in same layer
Part II

Bipartite Graphs and an application of BFS
Definition (Bipartite Graph)

Undirected graph $G = (V, E)$ is a bipartite graph if V can be partitioned into X and Y s.t. all edges in E are between X and Y.
Question

When is a graph bipartite?

Proposition

Every tree is a bipartite graph.

Proof.

Root tree T at some node r. Let L_i be all nodes at level i, that is, L_i is all nodes at distance i from root r. Now define X to be all nodes at even levels and Y to be all nodes at odd level. Only edges in T are between levels.

Proposition

An odd length cycle is not bipartite.
Question
When is a graph bipartite?

Proposition
Every tree is a bipartite graph.

Proof.
Root tree T at some node r. Let L_i be all nodes at level i, that is, L_i is all nodes at distance i from root r. Now define X to be all nodes at even levels and Y to be all nodes at odd level. Only edges in T are between levels.

Proposition
An odd length cycle is not bipartite.
Question
When is a graph bipartite?

Proposition
Every tree is a bipartite graph.

Proof.
Root tree T at some node r. Let L_i be all nodes at level i, that is, L_i is all nodes at distance i from root r. Now define X to be all nodes at even levels and Y to be all nodes at odd level. Only edges in T are between levels.

Proposition
An odd length cycle is not bipartite.
Question

When is a graph bipartite?

Proposition

Every tree is a bipartite graph.

Proof.

Root tree T at some node r. Let L_i be all nodes at level i, that is, L_i is all nodes at distance i from root r. Now define X to be all nodes at even levels and Y to be all nodes at odd level. Only edges in T are between levels.

Proposition

An odd length cycle is not bipartite.
Proposition

An odd length cycle is not bipartite.

Proof.

Let $C = u_1, u_2, \ldots, u_{2k+1}, u_1$ be an odd cycle. Suppose C is a bipartite graph and let X, Y be the partition. Without loss of generality $u_1 \in X$. Implies $u_2 \in Y$. Implies $u_3 \in X$. Inductively, $u_i \in X$ if i is odd $u_i \in Y$ if i is even. But $\{u_1, u_{2k+1}\}$ is an edge and both belong to X!
Subgraphs

Definition

Given a graph $G = (V, E)$ a **subgraph** of G is another graph $H = (V', E')$ where $V' \subseteq V$ and $E' \subseteq E$.

Proposition

If an undirected G is bipartite then any subgraph H of G is also bipartite.

Proposition

An undirected graph G is not bipartite if G has an odd cycle C as a subgraph.

Proof.

If G is bipartite then since C is a subgraph, C is also bipartite (by the proposition). However, G is not bipartite.
Subgraphs

Definition

Given a graph \(G = (V, E) \) a subgraph of \(G \) is another graph \(H = (V', E') \) where \(V' \subseteq V \) and \(E' \subseteq E \).

Proposition

If an undirected \(G \) is bipartite then any subgraph \(H \) of \(G \) is also bipartite.

Proposition

An undirected graph \(G \) is not bipartite if \(G \) has an odd cycle \(C \) as a subgraph.

Proof.

If \(G \) is bipartite then since \(C \) is a subgraph, \(C \) is also bipartite (by the proposition). However, \(G \) is not bipartite.
Subgraphs

Definition

Given a graph \(G = (V, E) \) a subgraph of \(G \) is another graph \(H = (V', E') \) where \(V' \subseteq V \) and \(E' \subseteq E \).

Proposition

If an undirected \(G \) is bipartite then any subgraph \(H \) of \(G \) is also bipartite.

Proposition

An undirected graph \(G \) is not bipartite if \(G \) has an odd cycle \(C \) as a subgraph.

Proof.

If \(G \) is bipartite then since \(C \) is a subgraph, \(C \) is also bipartite (by above proposition). However, \(G \) is not bipartite.
Subgraphs

Definition
Given a graph \(G = (V, E) \) a subgraph of \(G \) is another graph \(H = (V', E') \) where \(V' \subseteq V \) and \(E' \subseteq E \).

Proposition
If an undirected \(G \) is bipartite then any subgraph \(H \) of \(G \) is also bipartite.

Proposition
An undirected graph \(G \) is not bipartite if \(G \) has an odd cycle \(C \) as a subgraph.

Proof.
If \(G \) is bipartite then since \(C \) is a subgraph, \(C \) is also bipartite (by above proposition). However, \(C \) is not bipartite!
Theorem

An undirected graph G is bipartite \iff it has no odd length cycle as subgraph.

Proof.

Only If: G has an odd cycle implies G is not bipartite.

If: G has no odd length cycle. Assume without loss of generality that G is connected.

1. Pick u arbitrarily and do $\text{BFS}(u)$
2. $X = \bigcup_{i \text{ is even}} L_i$ and $Y = \bigcup_{i \text{ is odd}} L_i$
3. **Claim:** X and Y is a valid partition if G has no odd length cycle.
Theorem

An undirected graph G is bipartite \iff it has no odd length cycle as subgraph.

Proof.

Only If: G has an odd cycle implies G is not bipartite.

If: G has no odd length cycle. Assume without loss of generality that G is connected.

1. Pick u arbitrarily and do $\text{BFS}(u)$
2. $X = \bigcup_{i \text{ is even}} L_i$ and $Y = \bigcup_{i \text{ is odd}} L_i$
3. Claim: X and Y is a valid partition if G has no odd length cycle.
Claim

In BFS\((u)\) if \(a, b \in L\) and \(ab \in E(G)\) then there is an odd length cycle containing \(ab\).

Proof.

Let \(v\) be least common ancestor of \(a, b\) in BFS tree \(T\).

- \(v\) is in some level \(j < i\) (could be \(u\) itself).
- Path from \(v \rightarrow a\) in \(T\) is of length \(j - i\).
- Path from \(v \rightarrow b\) in \(T\) is of length \(j - i\).

These two paths plus \((a, b)\) forms an odd cycle of length \(2(j - i) + 1\).
Proof of Claim

Claim
In \text{BFS}(u) if \(a, b \in L\) and \(ab \in E(G)\) then there is an odd length cycle containing \(ab\).

Proof.
Let \(v\) be least common ancestor of \(a, b\) in BFS tree \(T\). \(v\) is in some level \(j < i\) (could be \(u\) itself).
Path from \(v \leadsto a\) in \(T\) is of length \(j - i\).
Path from \(v \leadsto b\) in \(T\) is of length \(j - i\).
These two paths plus \((a, b)\) forms an odd cycle of length \(2(j - i) + 1\).
Proof of Claim: Figure
Corollary

There is an $O(n + m)$ time algorithm to check if G is bipartite and output an odd cycle if it is not.
Part III

Shortest Paths and Dijkstra’s Algorithm
Shortest Path Problems

Input A (undirected or directed) graph $G = (V, E)$ with edge lengths (or costs). For edge $e = (u \rightarrow v)$,

$$\ell(e) = \ell(u \rightarrow v)$$

is its length.

1. Given nodes s, t find shortest path from s to t.
2. Given node s find shortest path from s to all other nodes.
3. Find shortest paths for all pairs of nodes.

Many applications!
Shortest Path Problems

Input A (undirected or directed) graph $G = (V, E)$ with edge lengths (or costs). For edge $e = (u \rightarrow v)$, $\ell(e) = \ell(u \rightarrow v)$ is its length.

1. Given nodes s, t find shortest path from s to t.
2. Given node s find shortest path from s to all other nodes.
3. Find shortest paths for all pairs of nodes.

Many applications!
Single-Source Shortest Path Problems

1. **Input**: A (undirected or directed) graph $G = (V, E)$ with non-negative edge lengths. For edge $e = (u \rightarrow v)$, $\ell(e) = \ell(u \rightarrow v)$ is its length.

2. Given nodes s, t find shortest path from s to t.

3. Given node s find shortest path from s to all other nodes.

Restrict attention to directed graphs

Undirected graph problem can be reduced to directed graph problem - how?

1. Given undirected graph G, create a new directed graph G' by replacing each edge $\{u, v\}$ in G by $(u \rightarrow v)$ and (v, u) in G'.

2. set $\ell(u \rightarrow v) = \ell(v, u) = \ell(\{u, v\})$

3. Exercise: show reduction works
Single-Source Shortest Path Problems

1. **Input:** A (undirected or directed) graph \(G = (V, E) \) with non-negative edge lengths. For edge \(e = (u \rightarrow v) \), \(\ell(e) = \ell(u \rightarrow v) \) is its length.

2. Given nodes \(s, t \) find shortest path from \(s \) to \(t \).

3. Given node \(s \) find shortest path from \(s \) to all other nodes.

Restrict attention to directed graphs

Undirected graph problem can be reduced to directed graph problem - how?

1. Given undirected graph \(G \), create a new directed graph \(G' \) by replacing each edge \(\{u, v\} \) in \(G \) by \((u \rightarrow v) \) and \((v, u) \) in \(G' \).

2. Set \(\ell(u \rightarrow v) = \ell(v, u) = \ell(\{u, v\}) \)

3. Exercise: show reduction works
Single-Source Shortest Paths:
Non-Negative Edge Lengths

Single-Source Shortest Path Problems

1. **Input:** A (undirected or directed) graph \(G = (V, E) \) with non-negative edge lengths. For edge \(e = (u \rightarrow v) \), \(\ell(e) = \ell(u \rightarrow v) \) is its length.

2. Given nodes \(s, t \) find shortest path from \(s \) to \(t \).

3. Given node \(s \) find shortest path from \(s \) to all other nodes.

1. Restrict attention to directed graphs
2. Undirected graph problem can be reduced to directed graph problem - how?
 1. Given undirected graph \(G \), create a new directed graph \(G' \) by replacing each edge \(\{u, v\} \) in \(G \) by \((u \rightarrow v)\) and \((v, u)\) in \(G' \).
 2. set \(\ell(u \rightarrow v) = \ell(v, u) = \ell(\{u, v\}) \)
 3. Exercise: show reduction works
Special case: All edge lengths are 1.
1. Run $\text{BFS}(s)$ to get shortest path distances from s to all other nodes.
2. $O(m + n)$ time algorithm.

Special case: Suppose $\ell(e)$ is an integer for all e? Can we use BFS? Reduce to unit edge-length problem by placing $\ell(e) - 1$ dummy nodes on e.

Let $L = \max_e \ell(e)$. New graph has $O(mL)$ edges and $O(mL + n)$ nodes. BFS takes $O(mL + n)$ time. Not efficient if L is large.
Special case: All edge lengths are 1.

1. Run $\text{BFS}(s)$ to get shortest path distances from s to all other nodes.
2. $O(m + n)$ time algorithm.

Special case: Suppose $\ell(e)$ is an integer for all e? Can we use BFS? Reduce to unit edge-length problem by placing $\ell(e) - 1$ dummy nodes on e.

3. Let $L = \max_e \ell(e)$. New graph has $O(mL)$ edges and $O(mL + n)$ nodes. BFS takes $O(mL + n)$ time. Not efficient if L is large.
Single-Source Shortest Paths via BFS

1. **Special case:** All edge lengths are 1.
 - Run **BFS**(s) to get shortest path distances from s to all other nodes.
 - $O(m + n)$ time algorithm.

2. **Special case:** Suppose $\ell(e)$ is an integer for all e? Can we use **BFS**? Reduce to unit edge-length problem by placing $\ell(e) - 1$ dummy nodes on e.

3. Let $L = \max_e \ell(e)$. New graph has $O(mL)$ edges and $O(mL + n)$ nodes. **BFS** takes $O(mL + n)$ time. Not efficient if L is large.
Special case: All edge lengths are 1.

1. Run \(\text{BFS}(s) \) to get shortest path distances from \(s \) to all other nodes.
2. \(O(m + n) \) time algorithm.

Special case: Suppose \(\ell(e) \) is an integer for all \(e \)? Can we use BFS? Reduce to unit edge-length problem by placing \(\ell(e) - 1 \) dummy nodes on \(e \).

Let \(L = \max_e \ell(e) \). New graph has \(O(mL) \) edges and \(O(mL + n) \) nodes. BFS takes \(O(mL + n) \) time. Not efficient if \(L \) is large.
1 **Special case:** All edge lengths are 1.
 1 Run **BFS**(s) to get shortest path distances from s to all other nodes.
 2 $O(m + n)$ time algorithm.

2 **Special case:** Suppose $\ell(e)$ is an integer for all e? Can we use **BFS**? Reduce to unit edge-length problem by placing $\ell(e) - 1$ dummy nodes on e.

3 Let $L = \max_e \ell(e)$. New graph has $O(mL)$ edges and $O(mL + n)$ nodes. **BFS** takes $O(mL + n)$ time. Not efficient if L is large.
Single-Source Shortest Paths via BFS

1. **Special case:** All edge lengths are 1.
 - Run $\text{BFS}(s)$ to get shortest path distances from s to all other nodes.
 - $O(m + n)$ time algorithm.

2. **Special case:** Suppose $\ell(e)$ is an integer for all e? Can we use BFS? Reduce to unit edge-length problem by placing $\ell(e) - 1$ dummy nodes on e.

3. Let $L = \max_e \ell(e)$. New graph has $O(mL)$ edges and $O(mL + n)$ nodes. BFS takes $O(mL + n)$ time. Not efficient if L is large.
Towards an algorithm

Why does **BFS** work?

BFS(*s*) explores nodes in increasing distance from *s*

Lemma

Let *G* be a directed graph with non-negative edge lengths. Let **dist**(*s*, *v*) denote the shortest path length from *s* to *v*. If

\[s = v_0 \to v_1 \to v_2 \to \ldots \to v_k \]

is a shortest path from *s* to *v_k* then for 1 ≤ *i* < *k*:

1. \[s = v_0 \to v_1 \to v_2 \to \ldots \to v_i \] is a shortest path from *s* to *v_i*
2. \[\text{dist}(s, v_i) \leq \text{dist}(s, v_k) \].

Proof.

Suppose not. Then for some *i* < *k* there is a path *P'* from *s* to *v_i* of length strictly less than that of

\[s = v_0 \to v_1 \to \ldots \to v_i \].

Then
Towards an algorithm

Why does **BFS** work?

BFS(s) explores nodes in increasing distance from s

Lemma

Let G be a directed graph with non-negative edge lengths. Let $\text{dist}(s, v)$ denote the shortest path length from s to v. If $s = v_0 \rightarrow v_1 \rightarrow v_2 \rightarrow \ldots \rightarrow v_k$ is a shortest path from s to v_k then for $1 \leq i < k$:

1. $s = v_0 \rightarrow v_1 \rightarrow v_2 \rightarrow \ldots \rightarrow v_i$ is a shortest path from s to v_i
2. $\text{dist}(s, v_i) \leq \text{dist}(s, v_k)$.

Proof.

Suppose not. Then for some $i < k$ there is a path P' from s to v_i of length strictly less than that of $s = v_0 \rightarrow v_1 \rightarrow \ldots \rightarrow v_i$. Then
Towards an algorithm

Why does BFS work?

BFS(s) explores nodes in increasing distance from s

Lemma

Let G be a directed graph with non-negative edge lengths. Let $\text{dist}(s, v)$ denote the shortest path length from s to v. If $s = v_0 \rightarrow v_1 \rightarrow v_2 \rightarrow \ldots \rightarrow v_k$ is a shortest path from s to v_k then for $1 \leq i < k$:

1. $s = v_0 \rightarrow v_1 \rightarrow v_2 \rightarrow \ldots \rightarrow v_i$ is a shortest path from s to v_i
2. $\text{dist}(s, v_i) \leq \text{dist}(s, v_k)$.

Proof.

Suppose not. Then for some $i < k$ there is a path P' from s to v_i of length strictly less than that of $s = v_0 \rightarrow v_1 \rightarrow \ldots \rightarrow v_i$. Then...
Towards an algorithm

Lemma

Let G be a directed graph with non-negative edge lengths. Let $\text{dist}(s, v)$ denote the shortest path length from s to v. If $s = v_0 \to v_1 \to v_2 \to \ldots \to v_k$ is a shortest path from s to v_k then for $1 \leq i < k$:

1. $s = v_0 \to v_1 \to v_2 \to \ldots \to v_i$ is a shortest path from s to v_i
2. $\text{dist}(s, v_i) \leq \text{dist}(s, v_k)$.

Proof.

Suppose not. Then for some $i < k$ there is a path P' from s to v_i of length strictly less than that of $s = v_0 \to v_1 \to \ldots \to v_i$. Then P' concatenated with $v_i \to v_{i+1} \ldots \to v_k$ contains a strictly shorter path to v_k than $s = v_0 \to v_1 \ldots \to v_k$.

Sariel (UIUC)
OLD CS473 30
Spring 2015 30 / 49
A proof by picture

Shortest path from v_0 to v_6
A proof by picture

Shortest path from v_0 to v_6

Shorter path from v_0 to v_4

$s = v_0$
A proof by picture

$s = v_0$

A shorter path from v_0 to v_6. A contradiction.

Shortest path from v_0 to v_6
A Basic Strategy

Explore vertices in increasing order of distance from \(s \): (For simplicity assume that nodes are at different distances from \(s \) and that no edge has zero length)

Initialize for each node \(v \), \(\text{dist}(s, v) = \infty \)
Initialize \(S = \emptyset \),
for \(i = 1 \) to \(|V| \) do
 (* Invariant: \(S \) contains the \(i - 1 \) closest nodes to \(s \) *)
 Among nodes in \(V \setminus S \), find the node \(v \) that is the \(i \)th closest to \(s \)
 Update \(\text{dist}(s, v) \)
 \(S = S \cup \{v\} \)

How can we implement the step in the for loop?
A Basic Strategy

Explore vertices in increasing order of distance from s:
(For simplicity assume that nodes are at different distances from s
and that no edge has zero length)

Initialize for each node v, $\text{dist}(s, v) = \infty$
Initialize $S = \emptyset$,
for $i = 1$ to $|V|$ do
 (* Invariant: S contains the $i − 1$ closest nodes to s *)
 Among nodes in $V \setminus S$, find the node v that is the
 ith closest to s
 Update $\text{dist}(s, v)$
 $S = S \cup \{v\}$

How can we implement the step in the for loop?
Finding the ith closest node

1. S contains the $i-1$ closest nodes to s
2. Want to find the ith closest node from $V - S$.

What do we know about the ith closest node?

Claim

Let P be a shortest path from s to v where v is the ith closest node. Then, all intermediate nodes in P belong to S.

Proof.

If P had an intermediate node u not in S then u will be closer to s than v. Implies v is not the ith closest node to s - recall that S already has the $i-1$ closest nodes.
Finding the ith closest node

1. S contains the $i - 1$ closest nodes to s

2. Want to find the ith closest node from $V - S$.

What do we know about the ith closest node?

Claim

Let P be a shortest path from s to v where v is the ith closest node. Then, all intermediate nodes in P belong to S.

Proof.

If P had an intermediate node u not in S then u will be closer to s than v. Implies v is not the ith closest node to s - recall that S already has the $i - 1$ closest nodes.
Finding the \(i\)th closest node

1. \(S\) contains the \(i - 1\) closest nodes to \(s\)
2. Want to find the \(i\)th closest node from \(V - S\).

What do we know about the \(i\)th closest node?

Claim

Let \(P\) be a shortest path from \(s\) to \(v\) where \(v\) is the \(i\)th closest node. Then, all intermediate nodes in \(P\) belong to \(S\).

Proof.

If \(P\) had an intermediate node \(u\) not in \(S\) then \(u\) will be closer to \(s\) than \(v\). Implies \(v\) is not the \(i\)th closest node to \(s\) - recall that \(S\) already has the \(i - 1\) closest nodes.
Finding the ith closest node repeatedly

An example
Finding the i^{th} closest node repeatedly

An example
Finding the ith closest node repeatedly

An example
Finding the ith closest node

Corollary

*The ith closest node is adjacent to S.***
Finding the ith closest node

1. S contains the $i - 1$ closest nodes to s
2. Want to find the ith closest node from $V - S$.
3. For each $u \in V \setminus S$ let $P(s, u, S)$ be a shortest path from s to u using only nodes in S as intermediate vertices.
4. Let $d'(s, u)$ be the length of $P(s, u, S)$
5. Observations: for each $u \in V - S$,
 1. $\text{dist}(s, u) \leq d'(s, u)$ since we are constraining the paths
 2. $d'(s, u) = \min_{a \in S}(\text{dist}(s, a) + \ell(a, u))$ - Why?

Lemma

6. If v is the ith closest node to s, then $d'(s, v) = \text{dist}(s, v)$.
Finding the ith closest node

1. S contains the $i-1$ closest nodes to s
2. Want to find the ith closest node from $V - S$.
3. For each $u \in V \setminus S$ let $P(s, u, S)$ be a shortest path from s to u using only nodes in S as intermediate vertices.
4. Let $d'(s, u)$ be the length of $P(s, u, S)$
5. Observations: for each $u \in V - S$,
 1. $\text{dist}(s, u) \leq d'(s, u)$ since we are constraining the paths
 2. $d'(s, u) = \min_{a \in S} (\text{dist}(s, a) + \ell(a, u))$ - Why?

Lemma

6. If v is the ith closest node to s, then $d'(s, v) = \text{dist}(s, v)$.
Finding the ith closest node

1. S contains the $(i - 1)$ closest nodes to s.
2. Want to find the ith closest node from $V \setminus S$.
3. For each $u \in V \setminus S$ let $P(s, u, S)$ be a shortest path from s to u using only nodes in S as intermediate vertices.
4. Let $d'(s, u)$ be the length of $P(s, u, S)$.
5. Observations: for each $u \in V \setminus S$,
 \begin{enumerate}
 \item $\text{dist}(s, u) \leq d'(s, u)$ since we are constraining the paths
 \item $d'(s, u) = \min_{a \in S}(\text{dist}(s, a) + \ell(a, u))$ - Why?
 \end{enumerate}

Lemma

6. If v is the ith closest node to s, then $d'(s, v) = \text{dist}(s, v)$.

Sariel (UIUC) OLD CS473 36 Spring 2015 36 / 49
Finding the \(i\)th closest node

1. \(S\) contains the \(i - 1\) closest nodes to \(s\)
2. Want to find the \(i\)th closest node from \(V - S\).
3. For each \(u \in V \setminus S\) let \(P(s, u, S)\) be a shortest path from \(s\) to \(u\) using only nodes in \(S\) as intermediate vertices.
4. Let \(d'(s, u)\) be the length of \(P(s, u, S)\)
5. Observations: for each \(u \in V - S\),
 1. \(\text{dist}(s, u) \leq d'(s, u)\) since we are constraining the paths
 2. \(d'(s, u) = \min_{a \in S}(\text{dist}(s, a) + \ell(a, u))\) - Why?

Lemma

6. *If \(v\) is the \(i\)th closest node to \(s\), then \(\text{dist}'(s, v) = \text{dist}(s, v)\).*
Finding the \(i \)th closest node

1. \(S \) contains the \(i - 1 \) closest nodes to \(s \)
2. Want to find the \(i \)th closest node from \(V - S \).
3. For each \(u \in V \setminus S \) let \(P(s, u, S) \) be a shortest path from \(s \) to \(u \) using only nodes in \(S \) as intermediate vertices.
4. Let \(d'(s, u) \) be the length of \(P(s, u, S) \)
5. Observations: for each \(u \in V - S \),
 1. \(\text{dist}(s, u) \leq d'(s, u) \) since we are constraining the paths
 2. \(d'(s, u) = \min_{a \in S} (\text{dist}(s, a) + \ell(a, u)) \) - Why?

Lemma

6. If \(v \) is the \(i \)th closest node to \(s \), then \(d'(s, v) = \text{dist}(s, v) \).
Finding the \(i \)th closest node

1. \(S \) contains the \(i - 1 \) closest nodes to \(s \)

2. Want to find the \(i \)th closest node from \(V - S \).

3. For each \(u \in V \setminus S \) let \(P(s, u, S) \) be a shortest path from \(s \) to \(u \) using only nodes in \(S \) as intermediate vertices.

4. Let \(d'(s, u) \) be the length of \(P(s, u, S) \)

5. Observations: for each \(u \in V - S \),
 - \(\text{dist}(s, u) \leq d'(s, u) \) since we are constraining the paths
 - \(d'(s, u) = \min_{a \in S}(\text{dist}(s, a) + \ell(a, u)) \) - Why?

Lemma

6. If \(v \) is the \(i \)th closest node to \(s \), then
 \(d'(s, v) = \text{dist}(s, v) \).
Finding the \(i \)th closest node

Lemma

Given:
1. \(S \): Set of \(i - 1 \) closest nodes to \(s \).
2. \(d'(s, u) = \min_{x \in S} (\text{dist}(s, x) + \ell(x, u)) \)

If \(v \) is an \(i \)th closest node to \(s \), then \(d'(s, v) = \text{dist}(s, v) \).

Proof.

Let \(v \) be the \(i \)th closest node to \(s \). Then there is a shortest path \(P \) from \(s \) to \(v \) that contains only nodes in \(S \) as intermediate nodes (see previous claim). Therefore \(d'(s, v) = \text{dist}(s, v) \).
Finding the ith closest node

Lemma

If v is an ith closest node to s, then $d'(s, v) = \text{dist}(s, v)$.

Corollary

The ith closest node to s is the node $v \in V - S$ such that $d'(s, v) = \min_{u \in V - S} d'(s, u)$.

Proof.

For every node $u \in V - S$, $\text{dist}(s, u) \leq d'(s, u)$ and for the ith closest node v, $\text{dist}(s, v) = d'(s, v)$. Moreover, $\text{dist}(s, u) \geq \text{dist}(s, v)$ for each $u \in V - S$. \qed
Candidate algorithm for shortest path

Initialize for each node v: $\text{dist}(s, v) = \infty$
Initialize $S = \emptyset$, $d'(s, s) = 0$
for $i = 1$ to $|V|$ do

(* Invariant: S contains the $i-1$ closest nodes to s *)
(* Invariant: $d'(s,u)$ is shortest path distance from u to using only S as intermediate nodes*)
Let v be such that $d'(s, v) = \min_{u \in V - S} d'(s, u)$
$\text{dist}(s, v) = d'(s, v)$
$S = S \cup \{v\}$
for each node u in $V \setminus S$ do

$$d'(s, u) \leftarrow \min_{a \in S} \left(\text{dist}(s, a) + \ell(a, u) \right)$$

Correctness: By induction on i using previous lemmas.
Running time: $O(n \cdot (n + m))$ time.

1. n outer iterations. In each iteration, $d'(s, u)$ for each u by scanning all edges out of nodes in S; $O(m + n)$ time/iteration.
Candidate algorithm for shortest path

Initialize for each node v: $\text{dist}(s, v) = \infty$
Initialize $S = \emptyset$, $d'(s, s) = 0$

for $i = 1$ to $|V|$ do

(* Invariant: S contains the $i-1$ closest nodes to s *)
(* Invariant: $d'(s,u)$ is shortest path distance from u to s using only S as intermediate nodes*)

Let v be such that $d'(s, v) = \min_{u \in V \setminus S} d'(s, u)$
$\text{dist}(s, v) = d'(s, v)$
$S = S \cup \{v\}$

for each node u in $V \setminus S$ do

\[d'(s, u) \leftarrow \min_{a \in S} \left(\text{dist}(s, a) + \ell(a, u) \right) \]

Correctness: By induction on i using previous lemmas.

Running time: $O(n \cdot (n + m))$ time.

1 n outer iterations. In each iteration, $d'(s, u)$ for each u by scanning all edges out of nodes in S; $O(m + n)$ time/iteration.
Candidate algorithm for shortest path

Initialize for each node \(v \): \(\text{dist}(s, v) = \infty \)
Initialize \(S = \emptyset, \ d'(s, s) = 0 \)

for \(i = 1 \) to \(|V| \) do

(* Invariant: \(S \) contains the \(i-1 \) closest nodes to \(s \) *)
(* Invariant: \(d'(s, u) \) is shortest path distance from \(u \) to using only \(S \) as intermediate nodes*)

Let \(v \) be such that \(d'(s, v) = \min_{u \in V - S} d'(s, u) \)
\(\text{dist}(s, v) = d'(s, v) \)
\(S = S \cup \{v\} \)

for each node \(u \) in \(V \setminus S \) do

\(d'(s, u) \leftarrow \min_{a \in S} \left(\text{dist}(s, a) + \ell(a, u) \right) \)

Correctness: By induction on \(i \) using previous lemmas.

Running time: \(O(n \cdot (n + m)) \) time.

1. \(n \) outer iterations. In each iteration, \(d'(s, u) \) for each \(u \) by scanning all edges out of nodes in \(S \); \(O(m + n) \) time/iteration.
Candidate algorithm for shortest path

Initialize for each node v: $\text{dist}(s,v) = \infty$
Initialize $S = \emptyset$, $d'(s,s) = 0$
for $i = 1$ to $|V|$ do

(* Invariant: S contains the $i-1$ closest nodes to s *)
(* Invariant: $d'(s,u)$ is shortest path distance from u to using only S as intermediate nodes*)

Let v be such that $d'(s,v) = \min_{u \in V - S} d'(s,u)$
$\text{dist}(s,v) = d'(s,v)$
$S = S \cup \{v\}$
for each node u in $V \setminus S$ do

$d'(s,u) \leftarrow \min_{a \in S} \left(\text{dist}(s,a) + \ell(a,u) \right)$

Correctness: By induction on i using previous lemmas.
Running time: $O(n \cdot (n + m))$ time.

n outer iterations. In each iteration, $d'(s,u)$ for each u by scanning all edges out of nodes in S; $O(m + n)$ time/iteration.
Example
Example
Example
Example
Example

Sariel (UIUC) OLD CS473 40 Spring 2015 40 / 49
Example
Example
Example
Example
Example
Example

```
Example
```

```
Example
```
Example
Example
Example
Example
Example
Example
Improved Algorithm

1. Main work is to compute the \(d'(s, u) \) values in each iteration.
2. \(d'(s, u) \) changes from iteration \(i \) to \(i + 1 \) only because of the node \(v \) that is added to \(S \) in iteration \(i \).

Initialize for each node \(v \), \(\text{dist}(s, v) = d'(s, v) = \infty \)
Initialize \(S = \emptyset \), \(d'(s, s) = 0 \)
for \(i = 1 \) to \(|V|\) do
 // \(S \) contains the \(i - 1 \) closest nodes to \(s \),
 // and the values of \(d'(s, u) \) are current
 \(v \) be node realizing \(d'(s, v) = \min_{u \in V - S} d'(s, u) \)
 \(\text{dist}(s, v) = d'(s, v) \)
 \(S = S \cup \{ v \} \)
 Update \(d'(s, u) \) for each \(u \) in \(V - S \) as follows:
 \[
 d'(s, u) = \min \left(d'(s, u), \text{dist}(s, v) + \ell(v, u) \right)
 \]

Running time: \(O(m + n^2) \) time.

1. \(n \) outer iterations and in each iteration following steps
2. updating \(d'(s, u) \) after \(v \) added takes \(O(\deg(v)) \) time so total
Improved Algorithm

1. Main work is to compute the $d'(s, u)$ values in each iteration.

2. $d'(s, u)$ changes from iteration i to $i + 1$ only because of the node v that is added to S in iteration i.

Initialize for each node v, dist$(s, v) = d'(s, v) = \infty$

Initialize $S = \emptyset$, $d'(s, s) = 0$

for $i = 1$ to $|V|$ do

 // S contains the $i - 1$ closest nodes to s,
 // and the values of $d'(s, u)$ are current
 v be node realizing $d'(s, v) = \min_{u \in V - S} d'(s, u)$
 dist$(s, v) = d'(s, v)$
 $S = S \cup \{v\}$

 Update $d'(s, u)$ for each u in $V - S$ as follows:

 $$d'(s, u) = \min\left(d'(s, u), \text{dist}(s, v) + \ell(v, u)\right)$$

Running time: $O(m + n^2)$ time.

1. n outer iterations and in each iteration following steps
2. updating $d'(s, u)$ after v added takes $O(\text{deg}(v))$ time so total
Improved Algorithm

Initialize for each node v, $\text{dist}(s, v) = d'(s, v) = \infty$
Initialize $S = \emptyset$, $d'(s, s) = 0$

for $i = 1$ to $|V|$ do
 // S contains the $i - 1$ closest nodes to s,
 // and the values of $d'(s, u)$ are current
 v be node realizing $d'(s, v) = \min_{u \in V \setminus S} d'(s, u)$
 $\text{dist}(s, v) = d'(s, v)$
 $S = S \cup \{v\}$
 Update $d'(s, u)$ for each u in $V \setminus S$ as follows:
 \[
 d'(s, u) = \min\left(d'(s, u), \text{dist}(s, v) + \ell(v, u)\right)
 \]

Running time: $O(m + n^2)$ time.

1. n outer iterations and in each iteration following steps
2. updating $d'(s, u)$ after v added takes $O(\text{deg}(v))$ time so total work is $O(m)$ since a node enters S only once
3. Finding v from $d'(s, u)$ values is $O(n)$ time
Dijkstra’s Algorithm

1. eliminate $d'(s, u)$ and let $\text{dist}(s, u)$ maintain it
2. update dist values after adding v by scanning edges out of v

Initialize for each node v, $\text{dist}(s, v) = \infty$
Initialize $S = \emptyset$, $\text{dist}(s, s) = 0$
for $i = 1$ to $|V|$ do
 Let v be such that $\text{dist}(s, v) = \min_{u \in V-S} \text{dist}(s, u)$
 $S = S \cup \{v\}$
 for each u in $\text{Adj}(v)$ do
 $\text{dist}(s, u) = \min(\text{dist}(s, u), \text{dist}(s, v) + \ell(v, u))$

Priority Queues to maintain dist values for faster running time

1. Using heaps and standard priority queues: $O((m + n) \log n)$
2. Using Fibonacci heaps: $O(m + n \log n)$.
Dijkstra’s Algorithm

1. eliminate $d'(s, u)$ and let $\text{dist}(s, u)$ maintain it
2. update dist values after adding v by scanning edges out of v

Initialize for each node v, $\text{dist}(s, v) = \infty$
Initialize $S = \{\}$, $\text{dist}(s, s) = 0$
for $i = 1$ to $|V|$ do
 Let v be such that $\text{dist}(s, v) = \min_{u \in V - s} \text{dist}(s, u)$
 $S = S \cup \{v\}$
 for each u in $\text{Adj}(v)$ do
 $\text{dist}(s, u) = \min(\text{dist}(s, u), \text{dist}(s, v) + \ell(v, u))$

Priority Queues to maintain dist values for faster running time

1. Using heaps and standard priority queues: $O((m + n) \log n)$
2. Using Fibonacci heaps: $O(m + n \log n)$.
Dijkstra’s Algorithm

1. eliminate $d'(s, u)$ and let $\text{dist}(s, u)$ maintain it
2. update dist values after adding v by scanning edges out of v

Initialize for each node v, $\text{dist}(s, v) = \infty$
Initialize $S = \emptyset$, $\text{dist}(s, s) = 0$
for $i = 1$ to $|V|$ do
 Let v be such that $\text{dist}(s, v) = \min_{u \in V - S} \text{dist}(s, u)$
 $S = S \cup \{v\}$
 for each u in $\text{Adj}(v)$ do
 $\text{dist}(s, u) = \min(\text{dist}(s, u), \text{dist}(s, v) + \ell(v, u))$

Priority Queues to maintain dist values for faster running time

1. Using heaps and standard priority queues: $O((m + n) \log n)$
2. Using Fibonacci heaps: $O(m + n \log n)$.
Dijkstra’s Algorithm

1. eliminate \(d'(s, u) \) and let \(\text{dist}(s, u) \) maintain it
2. update \(\text{dist} \) values after adding \(v \) by scanning edges out of \(v \)

Initialize for each node \(v \), \(\text{dist}(s, v) = \infty \)
Initialize \(S = \{\} \), \(\text{dist}(s, s) = 0 \)
for \(i = 1 \) to \(|V| \) do
 Let \(v \) be such that \(\text{dist}(s, v) = \min_{u \in V - S} \text{dist}(s, u) \)
 \(S = S \cup \{v\} \)
 for each \(u \) in \(\text{Adj}(v) \) do
 \(\text{dist}(s, u) = \min(\text{dist}(s, u), \text{dist}(s, v) + \ell(v, u)) \)

Priority Queues to maintain \(\text{dist} \) values for faster running time
1. Using heaps and standard priority queues: \(O((m + n) \log n) \)
2. Using Fibonacci heaps: \(O(m + n \log n) \).
Example: Dijkstra algorithm in action
Priority Queues

Data structure to store a set S of n elements where each element $v \in S$ has an associated real/integer key $k(v)$ such that the following operations:

1. **makePQ**: create an empty queue.
2. **findFirst**: find the minimum key in S.
3. **extractMin**: Remove $v \in S$ with smallest key and return it.
4. **insert($v, k(v)$)**: Add new element v with key $k(v)$ to S.
5. **delete($v)$**: Remove element v from S.
6. **decreaseKey($v, k'(v)$)**: decrease key of v from $k(v)$ (current key) to $k'(v)$ (new key). Assumption: $k'(v) \leq k(v)$.
7. **meld**: merge two separate priority queues into one.

All operations can be performed in $O(\log n)$ time.

decreaseKey is implemented via delete and insert.
Priority Queues

Data structure to store a set S of n elements where each element $v \in S$ has an associated real/integer key $k(v)$ such that the following operations:

1. **makePQ**: create an empty queue.
2. **findMin**: find the minimum key in S.
3. **extractMin**: Remove $v \in S$ with smallest key and return it.
4. **insert**: Add new element v with key $k(v)$ to S.
5. **delete**: Remove element v from S.
6. **decreaseKey**: decrease key of v from $k(v)$ (current key) to $k'(v)$ (new key). Assumption: $k'(v) \leq k(v)$.
7. **meld**: merge two separate priority queues into one.

All operations can be performed in $O(\log n)$ time.

`decreaseKey` is implemented via `delete` and `insert`.

Sariel (UIUC)
Priority Queues

Data structure to store a set S of n elements where each element $v \in S$ has an associated real/integer key $k(v)$ such that the following operations:

1. **makePQ**: create an empty queue.
2. **findMin**: find the minimum key in S.
3. **extractMin**: Remove $v \in S$ with smallest key and return it.
4. **insert**$(v, k(v))$: Add new element v with key $k(v)$ to S.
5. **delete**(v): Remove element v from S.
6. **decreaseKey**$(v, k'(v))$: decrease key of v from $k(v)$ (current key) to $k'(v)$ (new key). Assumption: $k'(v) \leq k(v)$.
7. **meld**: merge two separate priority queues into one.

All operations can be performed in $O(\log n)$ time.
decreaseKey is implemented via **delete** and **insert**.
Dijkstra’s Algorithm using Priority Queues

\[Q \leftarrow \text{makePQ}() \]
\[\text{insert}(Q, (s, 0)) \]
\[\text{for each node } u \neq s \text{ do} \]
\[\quad \text{insert}(Q, (u, \infty)) \]
\[S \leftarrow \emptyset \]
\[\text{for } i = 1 \text{ to } |V| \text{ do} \]
\[\quad (v, \text{dist}(s, v)) = \text{extractMin}(Q) \]
\[S = S \cup \{v\} \]
\[\text{for each } u \text{ in } \text{Adj}(v) \text{ do} \]
\[\quad \text{decreaseKey}([])Q, (u, \min(\text{dist}(s, u), \text{dist}(s, v) + \ell(v, u))). \]

Priority Queue operations:

1. \(O(n) \) \textbf{insert} operations
2. \(O(n) \) \textbf{extractMin} operations
3. \(O(m) \) \textbf{decreaseKey} operations
Implementing Priority Queues via Heaps

Using Heaps

Store elements in a heap based on the key value

1. All operations can be done in $O(\log n)$ time

Dijkstra’s algorithm can be implemented in $O((n + m) \log n)$ time.
Implementing Priority Queues via Heaps

Using Heaps

<table>
<thead>
<tr>
<th></th>
<th>Store elements in a heap based on the key value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>All operations can be done in $O(\log n)$ time</td>
</tr>
</tbody>
</table>

Dijkstra’s algorithm can be implemented in $O((n + m) \log n)$ time.
Fibonacci Heaps

1. **extractMin, delete** in $O(\log n)$ time.
2. **insert** in $O(1)$ amortized time.
3. **decreaseKey** in $O(1)$ amortized time: ℓ decreaseKey operations for $\ell \geq n$ take together $O(\ell)$ time.
4. Relaxed Heaps: **decreaseKey** in $O(1)$ worst case time but at the expense of **meld** (not necessary for Dijkstra’s algorithm).

Dijkstra’s algorithm can be implemented in $O(n \log n + m)$ time. If $m = \Omega(n \log n)$, running time is linear in input size.

Data structures are complicated to analyze/implement. Recent work has obtained data structures that are easier to analyze and implement, and perform well in practice. Rank-Pairing Heaps (European Symposium on Algorithms, September 2009!)
Fibonacci Heaps

1. **extractMin, delete** in $O(\log n)$ time.
2. **insert** in $O(1)$ amortized time.
3. **decreaseKey** in $O(1)$ amortized time: ℓ decreaseKey operations for $\ell \geq n$ take together $O(\ell)$ time.
4. Relaxed Heaps: **decreaseKey** in $O(1)$ worst case time but at the expense of **meld** (not necessary for Dijkstra’s algorithm)

Dijkstra’s algorithm can be implemented in $O(n \log n + m)$ time. If $m = \Omega(n \log n)$, running time is linear in input size.

Data structures are complicated to analyze/implement. Recent work has obtained data structures that are easier to analyze and implement, and perform well in practice. Rank-Pairing Heaps (European Symposium on Algorithms, September 2009!)
Fibonacci Heaps

1. **extractMin, delete** in $O(\log n)$ time.
2. **insert** in $O(1)$ amortized time.
3. **decreaseKey** in $O(1)$ amortized time: ℓ decreaseKey operations for $\ell \geq n$ take together $O(\ell)$ time.
4. Relaxed Heaps: **decreaseKey** in $O(1)$ worst case time but at the expense of **meld** (not necessary for Dijkstra’s algorithm).

1. Dijkstra’s algorithm can be implemented in $O(n \log n + m)$ time. If $m = \Omega(n \log n)$, running time is linear in input size.
2. Data structures are complicated to analyze/implement. Recent work has obtained data structures that are easier to analyze and implement, and perform well in practice. Rank-Pairing Heaps (European Symposium on Algorithms, September 2009!)
Fibonacci Heaps

1. **extractMin**, **delete** in $O(\log n)$ time.
2. **insert** in $O(1)$ *amortized* time.
3. **decreaseKey** in $O(1)$ *amortized* time: ℓ **decreaseKey** operations for $\ell \geq n$ take together $O(\ell)$ time
4. Relaxed Heaps: **decreaseKey** in $O(1)$ worst case time but at the expense of **meld** (not necessary for Dijkstra’s algorithm)

1. Dijkstra’s algorithm can be implemented in $O(n \log n + m)$ time. If $m = \Omega(n \log n)$, running time is linear in input size.
2. Data structures are complicated to analyze/implement. Recent work has obtained data structures that are easier to analyze and implement, and perform well in practice. Rank-Pairing Heaps (European Symposium on Algorithms, September 2009!)
Dijkstra’s algorithm finds the shortest path distances from s to V.

Question: How do we find the paths themselves?

```
Q = makePQ()
insert(Q, (s, 0))
prev(s) = null
for each node u ≠ s do
    insert(Q, (u, ∞))
    prev(u) = null

S = ∅
for i = 1 to |V| do
    (v, dist(s, v)) = extractMin(Q)
    S = S ∪ {v}
    for each u in Adj(v) do
        if (dist(s, v) + ℓ(v, u) < dist(s, u)) then
            decreaseKey(Q, (u, dist(s, v) + ℓ(v, u)))
            prev(u) = v
```
Dijkstra’s algorithm finds the shortest path distances from s to \(V \).

Question: How do we find the paths themselves?

\[
\begin{align*}
Q &= \text{makePQ}() \\
\text{insert}(Q, (s, 0)) \\
\text{prev}(s) &\leftarrow \text{null} \\
\text{for each node } u \neq s \do &\text{insert}(Q, (u, \infty)) \\
\text{prev}(u) &\leftarrow \text{null} \\
S &= \emptyset \\
\text{for } i = 1 \text{ to } |V| \do &\text{extractMin}(Q) \\
S &= S \cup \{v\} \\
\text{for each } u \text{ in Adj}(v) \do &\text{if } (\text{dist}(s, v) + \ell(v, u) < \text{dist}(s, u)) \text{ then} \\
&\text{decreaseKey}(Q, (u, \text{dist}(s, v) + \ell(v, u))) \\
&\text{prev}(u) = v
\end{align*}
\]
Lemma

The edge set \((u, \text{prev}(u))\) *is the reverse of a shortest path tree rooted at* \(s\). *For each* \(u\), *the reverse of the path from* \(u\) *to* \(s\) *in the tree is a shortest path from* \(s\) *to* \(u\).

Proof Sketch.

1. The edge set \(\{(u, \text{prev}(u)) \mid u \in V\}\) induces a directed in-tree rooted at \(s\) (Why?)
2. Use induction on \(|S|\) to argue that the tree is a shortest path tree for nodes in \(V\).
Shortest paths to s

Dijkstra’s algorithm gives shortest paths from s to all nodes in V. How do we find shortest paths from all of V to s?

1. In undirected graphs shortest path from s to u is a shortest path from u to s so there is no need to distinguish.

2. In directed graphs, use Dijkstra’s algorithm in G^{rev}!
Dijkstra’s algorithm gives shortest paths from s to all nodes in V. How do we find shortest paths from all of V to s?

1. In undirected graphs shortest path from s to u is a shortest path from u to s so there is no need to distinguish.

2. In directed graphs, use Dijkstra’s algorithm in G^{rev}!