More on DFS in Directed Graphs, and Strong Connected Components, and DAGs

Lecture 3
January 27, 2015
Using DFS...

... to check for Acyclicity and compute Topological Ordering

Question

Given G, is it a **DAG**? If it is, generate a topological sort.

DFS based algorithm:

1. Compute $\text{DFS}(G)$
2. If there is a back edge then G is not a **DAG**.
3. Otherwise output nodes in decreasing post-visit order.

Correctness relies on the following:

Proposition

G is a **DAG** iff there is no back-edge in $\text{DFS}(G)$.

Proposition

If G is a **DAG** and $\text{post}(v) > \text{post}(u)$, then $(u \to v)$ is not in G.
Using DFS...
... to check for Acyclicity and compute Topological Ordering

Question

Given G, is it a DAG? If it is, generate a topological sort.

DFS based algorithm:

1. Compute $\text{DFS}(G)$
2. If there is a back edge then G is not a DAG.
3. Otherwise output nodes in decreasing post-visit order.

Correctness relies on the following:

Proposition

G is a DAG iff there is no back-edge in $\text{DFS}(G)$.

Proposition

If G is a DAG and $\text{post}(v) > \text{post}(u)$, then $(u \rightarrow v)$ is not in G.
Proposition

If G is a DAG and $\text{post}(u) < \text{post}(v)$, then (u, v) is not in G.

Proof

Assume $\text{post}(v) > \text{post}(u)$ and (u, v) is an edge in G. We derive a contradiction.

1. **Case 1**: $[\text{pre}(u), \text{post}(u)]$ is contained in $[\text{pre}(v), \text{post}(v)]$.
2. u explored during $\text{DFS}(v)$.
3. u descendant of v.
4. $(u, v) \in E(G) \implies$ cycle in G but G is a DAG.
Proposition

If G is a DAG and $\text{post}(u) < \text{post}(v)$, then (u, v) is not in G.

Proof

Assume $\text{post}(v) > \text{post}(u)$ and (u, v) is an edge in G. We derive a contradiction.

1. **Case 1:** $[\text{pre}(u), \text{post}(u)]$ is contained in $[\text{pre}(v), \text{post}(v)]$.
2. $\implies u$ explored during $\text{DFS}(v)$.
3. u descendant of v.
4. $(u, v) \in E(G) \implies$ cycle in G but G is a DAG.

DFS path

$v : [\text{pre}(v), \text{post}(v)]$

$u : [\text{pre}(u), \text{post}(u)]$
Proposition

If \(G \) *is a DAG and* \(\text{post}(u) < \text{post}(v) \), *then* \((u, v) \) *is not in* \(G \).*

Proof

Assume \(\text{post}(v) > \text{post}(u) \) *and* \((u, v) \) *is an edge in* \(G \). *We derive a contradiction.*

1. **Case 1:** \([\text{pre}(u), \text{post}(u)]\) *is contained in* \([\text{pre}(v), \text{post}(v)]\).
2. \(\implies u \) *explored during* \(\text{DFS}(v) \).
3. \(u \) *descendant of* \(v \).
4. \((u, v) \in E(G) \implies \) *cycle in* \(G \) *but* \(G \) *is a DAG.*

DFS path

\(v \): \([\text{pre}(v), \text{post}(v)]\)

\(u \): \([\text{pre}(u), \text{post}(u)]\)
Proposition

If G is a DAG and $\text{post}(u) < \text{post}(v)$, then (u, v) is not in G.

Proof

Assume $\text{post}(v) > \text{post}(u)$ and (u, v) is an edge in G. We derive a contradiction.

1. **Case 1:** $[\text{pre}(u), \text{post}(u)]$ is contained in $[\text{pre}(v), \text{post}(v)]$.
2. $\implies u$ explored during $\text{DFS}(v)$.
3. u descendant of v.
4. $(u, v) \in E(G) \implies$ cycle in G but G is a DAG.

DFS path

$v : [\text{pre}(v), \text{post}(v)]$

$u : [\text{pre}(u), \text{post}(u)]$
If G is a DAG and $\text{post}(u) < \text{post}(v)$, then (u, v) is not in G.

Proof continued...

Case 2: $[\text{pre}(u), \text{post}(u)]$ is disjoint from $[\text{pre}(v), \text{post}(v)]$.

1. By assumption: $\text{post}(u) < \text{post}(v)$.
2. $\implies \text{pre}(u) < \text{pre}(v)$
3. DFS visits u first and then v.
4. If $(u \rightarrow v) \in E(G)$...
5. \implies DFS explores v during the DFS of u.
6. $[\text{pre}(v), \text{post}(v)] \subseteq [\text{pre}(u), \text{post}(u)]$.
7. \implies contradiction.
Proof continued

Proposition

If \(G \) is a DAG and \(\text{post}(u) < \text{post}(v) \), then \((u, v)\) is not in \(G \).

Proof continued...

Case 2: \([\text{pre}(u), \text{post}(u)]\) is disjoint from \([\text{pre}(v), \text{post}(v)]\).

1. By assumption: \(\text{post}(u) < \text{post}(v) \).
2. \(\implies \) \(\text{pre}(u) < \text{pre}(v) \)
3. DFS visits \(u \) first and then \(v \).
4. If \((u \rightarrow v) \in E(G)\)...
5. \(\implies \) DFS explores \(v \) during the DFS of \(u \).
6. \([\text{pre}(v), \text{post}(v)] \subseteq [\text{pre}(u), \text{post}(u)]\).
7. \(\implies \) contradiction.
Proposition

If G is a DAG and $\text{post}(u) < \text{post}(v)$, then (u, v) is not in G.

Proof continued...

Case 2: $[\text{pre}(u), \text{post}(u)]$ is disjoint from $[\text{pre}(v), \text{post}(v)]$.

1. By assumption: $\text{post}(u) < \text{post}(v)$.
2. \implies $\text{pre}(u) < \text{pre}(v)$
3. DFS visits u first and then v.
4. If $(u \rightarrow v) \in E(G)$...
5. \implies DFS explores v during the DFS of u.
6. $[\text{pre}(v), \text{post}(v)] \subseteq [\text{pre}(u), \text{post}(u)]$.
7. \implies contradiction.
Proposition

If \(G \) is a DAG and \(\text{post}(u) < \text{post}(v) \), then \((u, v)\) is not in \(G \).

Proof continued...

Case 2: \([\text{pre}(u), \text{post}(u)]\) is disjoint from \([\text{pre}(v), \text{post}(v)]\).

1. By assumption: \(\text{post}(u) < \text{post}(v) \).
2. \(\Rightarrow \) \(\text{pre}(u) < \text{pre}(v) \)
3. \(\text{DFS} \) visits \(u \) first and then \(v \).
4. If \((u \rightarrow v) \in E(G)\)...
5. \(\Rightarrow \) \(\text{DFS} \) explores \(v \) during the \(\text{DFS} \) of \(u \).
6. \([\text{pre}(v), \text{post}(v)] \subseteq [\text{pre}(u), \text{post}(u)] \).
7. \(\Rightarrow \) contradiction.
Proposition

If G is a DAG and $\text{post}(u) < \text{post}(v)$, then (u, v) is not in G.

Proof continued...

Case 2: $[\text{pre}(u), \text{post}(u)]$ is disjoint from $[\text{pre}(v), \text{post}(v)]$.

1. By assumption: $\text{post}(u) < \text{post}(v)$.
2. $\implies \text{pre}(u) < \text{pre}(v)$
3. **DFS** visits u first and then v.
4. If $(u \to v) \in E(G)$...
5. \implies **DFS** explores v during the **DFS** of u.
6. $[\text{pre}(v), \text{post}(v)] \subseteq [\text{pre}(u), \text{post}(u)]$.
7. \implies contradiction.
Proof continued

Proposition

If G is a DAG and $\text{post}(u) < \text{post}(v)$, then (u, v) is not in G.

Proof continued...

Case 2: $[\text{pre}(u), \text{post}(u)]$ is disjoint from $[\text{pre}(v), \text{post}(v)]$.

1. By assumption: $\text{post}(u) < \text{post}(v)$.
2. $\implies \text{pre}(u) < \text{pre}(v)$
3. **DFS** visits u first and then v.
4. If $(u \rightarrow v) \in E(G)$...
5. \implies **DFS** explores v during the **DFS** of u.
6. $[\text{pre}(v), \text{post}(v)] \subseteq [\text{pre}(u), \text{post}(u)]$.
7. \implies contradiction.
Proof continued

Proposition

If G is a DAG and $\text{post}(u) < \text{post}(v)$, then (u, v) is not in G.

Proof continued...

Case 2: $[\text{pre}(u), \text{post}(u)]$ is disjoint from $[\text{pre}(v), \text{post}(v)]$.

1. By assumption: $\text{post}(u) < \text{post}(v)$.
2. $\implies \text{pre}(u) < \text{pre}(v)$
3. **DFS** visits u first and then v.
4. If $(u \rightarrow v) \in E(G)$...
5. \implies **DFS** explores v during the **DFS** of u.
6. $[\text{pre}(v), \text{post}(v)] \subseteq [\text{pre}(u), \text{post}(u)]$.
7. \implies contradiction.
Proposition

If G is a DAG and $\text{post}(u) < \text{post}(v)$, then (u, v) is not in G.

Proof continued...

Case 2: $[\text{pre}(u), \text{post}(u)]$ is disjoint from $[\text{pre}(v), \text{post}(v)]$.

1. By assumption: $\text{post}(u) < \text{post}(v)$.
2. $\implies \text{pre}(u) < \text{pre}(v)$
3. DFS visits u first and then v.
4. If $(u \to v) \in E(G)$...
5. \implies DFS explores v during the DFS of u.
6. $[\text{pre}(v), \text{post}(v)] \subseteq [\text{pre}(u), \text{post}(u)]$.
7. \implies contradiction.
Example

\[
\begin{array}{c}
2 \\
3 \\
1 \\
4 \\
\end{array}
\]

\[
\begin{array}{c}
2 \\
3 \\
1 \\
4 \\
\end{array}
\]
Proposition

\(G \) has a cycle iff there is a back-edge in \(\text{DFS}(G) \).

Proof.

1. If: \((u, v)\) is a back edge \(\implies\) there is a cycle \(C\) in \(G\):
 \(C = \text{path from } v \text{ to } u \text{ in } \text{DFS} \text{ tree } + \text{ edge } (u \rightarrow v)\).

2. Only if: Suppose there is a cycle \(C = v_1 \rightarrow v_2 \rightarrow \ldots \rightarrow v_k \rightarrow v_1\).

 1. Let \(v_i\) be first node in \(C\) visited in \(\text{DFS}\).
 2. All other nodes in \(C\) are descendants of \(v_i\) since they are reachable from \(v_i\).
 3. Therefore, \((v_{i-1}, v_i)\) (or \((v_k, v_1)\) if \(i = 1\)) is a back edge.
Proposition

\(G \) has a cycle iff there is a back-edge in \(\text{DFS}(G) \).

Proof.

1. If: \((u, v)\) is a back edge \(\iff\) there is a cycle \(C\) in \(G\):
 \[C = \text{path from } v \text{ to } u \text{ in } \text{DFS} \text{ tree } + \text{ edge } (u \to v). \]

2. Only if: Suppose there is a cycle
 \[C = v_1 \to v_2 \to \ldots \to v_k \to v_1. \]

 1. Let \(v_i\) be first node in \(C\) visited in \(\text{DFS}\).
 2. All other nodes in \(C\) are descendants of \(v_i\) since they are reachable from \(v_i\).
 3. Therefore, \((v_{i-1}, v_i)\) (or \((v_k, v_1)\) if \(i = 1\)) is a back edge.
Proposition

\(G \) has a cycle iff there is a back-edge in \(\text{DFS}(G) \).

Proof.

1. If: \((u, v)\) is a back edge \(\iff\) there is a cycle \(C\) in \(G\):
 \[C = \text{path from } v \text{ to } u \text{ in } \text{DFS} \text{ tree} + \text{ edge } (u \rightarrow v). \]

2. Only if: Suppose there is a cycle
 \[C = v_1 \rightarrow v_2 \rightarrow \ldots \rightarrow v_k \rightarrow v_1. \]

 1. Let \(v_i\) be first node in \(C\) visited in \(\text{DFS}\).
 2. All other nodes in \(C\) are descendants of \(v_i\) since they are reachable from \(v_i\).
 3. Therefore, \((v_{i-1}, v_i)\) (or \((v_k, v_1)\) if \(i = 1\)) is a back edge.
Proposition

G has a cycle iff there is a back-edge in $\text{DFS}(G)$.

Proof.

1. If: (u, v) is a back edge \iff there is a cycle C in G: $C = \text{path from } v \text{ to } u \text{ in } \text{DFS} \text{ tree} + \text{edge } (u \rightarrow v)$.

2. Only if: Suppose there is a cycle $C = v_1 \rightarrow v_2 \rightarrow \ldots \rightarrow v_k \rightarrow v_1$.

 1. Let v_i be first node in C visited in DFS.
 2. All other nodes in C are descendants of v_i since they are reachable from v_i.
 3. Therefore, (v_{i-1}, v_i) (or (v_k, v_1) if $i = 1$) is a back edge.
Proposition

\(G \) has a cycle iff there is a back-edge in \(\text{DFS}(G) \).

Proof.

1. If: \((u, v)\) is a back edge \(\iff \) there is a cycle \(C \) in \(G \):
 \[C = \text{path from } v \text{ to } u \text{ in } \text{DFS} \text{ tree } \triangleq \text{edge } (u \to v). \]

2. Only if: Suppose there is a cycle
 \[C = v_1 \to v_2 \to \ldots \to v_k \to v_1. \]

 1. Let \(v_i \) be first node in \(C \) visited in \(\text{DFS} \).
 2. All other nodes in \(C \) are descendants of \(v_i \) since they are reachable from \(v_i \).
 3. Therefore, \((v_{i-1}, v_i)\) (or \((v_k, v_1)\) if \(i = 1 \)) is a back edge.
Proposition

\(G \) has a cycle iff there is a back-edge in \(\text{DFS}(G) \).

Proof.

1. If: \((u, v) \) is a back edge \(\iff \) there is a cycle \(C \) in \(G \):
 \[C = \text{path from } v \text{ to } u \text{ in DFS tree + edge } (u \rightarrow v). \]

2. Only if: Suppose there is a cycle
 \[C = v_1 \rightarrow v_2 \rightarrow \ldots \rightarrow v_k \rightarrow v_1. \]

 1. Let \(v_i \) be first node in \(C \) visited in \(\text{DFS} \).
 2. All other nodes in \(C \) are descendants of \(v_i \) since they are reachable from \(v_i \).
 3. Therefore, \((v_{i-1}, v_i) \) (or \((v_k, v_1) \) if \(i = 1 \)) is a back edge.
Proposition

\(G\) has a cycle iff there is a back-edge in \(\text{DFS}(G)\).

Proof.

1. If: \((u, v)\) is a back edge \(\iff\) there is a cycle \(C\) in \(G\):

 \[C = \text{path from } v \text{ to } u \text{ in } \text{DFS} \text{ tree} + \text{ edge } (u \rightarrow v).\]

2. Only if: Suppose there is a cycle

 \[C = v_1 \rightarrow v_2 \rightarrow \ldots \rightarrow v_k \rightarrow v_1.\]

 1. Let \(v_i\) be first node in \(C\) visited in \(\text{DFS}\).
 2. All other nodes in \(C\) are descendants of \(v_i\) since they are reachable from \(v_i\).
 3. Therefore, \((v_{i-1}, v_i)\) (or \((v_k, v_1)\) if \(i = 1\)) is a back edge.
Topological sorting of a DAG

Input: DAG G. With n vertices and m edges.

$O(n + m)$ algorithms for topological sorting

(A) Put source s of G as first in the order, remove s, and repeat. (Implementation not trivial.)

(B) Do DFS of G.
Compute post numbers.
Sort vertices by decreasing post number.
Topological sorting of a DAG

Input: DAG G. With n vertices and m edges.

$O(n + m)$ algorithms for topological sorting

(A) Put source s of G as first in the order, remove s, and repeat. (Implementation not trivial.)

(B) Do DFS of G.
 - Compute post numbers.
 - Sort vertices by decreasing post number.

Question

How to avoid sorting?
Topological sorting of a DAG

Input: DAG G. With \(n \) vertices and \(m \) edges.

\(O(n + m) \) algorithms for topological sorting

(A) Put source \(s \) of G as first in the order, remove \(s \), and repeat. (Implementation not trivial.)

(B) Do DFS of G.
Compute post numbers.
Sort vertices by decreasing post number.

Question

How to avoid sorting?
No need to sort - post numbering algorithm can output vertices...
DAGs and Partial Orders

Definition

A partially ordered set is a set S along with a binary relation \preceq such that \preceq is

1. **reflexive** ($a \preceq a$ for all $a \in V$),
2. **anti-symmetric** ($a \preceq b$ and $a \neq b$ implies $b \not\preceq a$), and
3. **transitive** ($a \preceq b$ and $b \preceq c$ implies $a \preceq c$).

Example: For numbers in the plane define $(x, y) \preceq (x', y')$ iff $x \leq x'$ and $y \leq y'$.

Observation: A finite partially ordered set is equivalent to a DAG. (No equal elements.)

Observation: A topological sort of a DAG corresponds to a complete (or total) ordering of the underlying partial order.
A **partially ordered set** is a set S along with a binary relation \leq such that \leq is

1. **reflexive** ($a \leq a$ for all $a \in V$),
2. **anti-symmetric** ($a \leq b$ and $a \neq b$ implies $b \not\leq a$), and
3. **transitive** ($a \leq b$ and $b \leq c$ implies $a \leq c$).

Example: For numbers in the plane define $(x, y) \leq (x', y')$ iff $x \leq x'$ and $y \leq y'$.

Observation: A *finite* partially ordered set is equivalent to a DAG. (No equal elements.)

Observation: A topological sort of a DAG corresponds to a complete (or total) ordering of the underlying partial order.
A partially ordered set is a set S along with a binary relation \preceq such that \preceq is

1. reflexive ($a \preceq a$ for all $a \in V$),
2. anti-symmetric ($a \preceq b$ and $a \neq b$ implies $b \npreceq a$), and
3. transitive ($a \preceq b$ and $b \preceq c$ implies $a \preceq c$).

Example: For numbers in the plane define $(x, y) \preceq (x', y')$ iff $x \leq x'$ and $y \leq y'$.

Observation: A finite partially ordered set is equivalent to a DAG. (No equal elements.)

Observation: A topological sort of a DAG corresponds to a complete (or total) ordering of the underlying partial order.
What’s DAG but a sweet old fashioned notion

Who needs a DAG...

Example

1. \mathcal{V}: set of n products (say, n different types of tablets).
2. Want to buy one of them, so you do market research...
3. Online reviews compare only pairs of them.
 ...Not everything compared to everything.
4. Given this partial information:
 1. Decide what is the best product.
 2. Decide what is the ordering of products from best to worst.
 3. ...
What DAGs got to do with it?

Or why we should care about DAGs

1. **DAGs** enable us to represent partial ordering information we have about some set (very common situation in the real world).

2. **Questions about DAGs:**
 1. Is a graph G a **DAG**?
 - Is the partial ordering information we have so far is consistent?
 2. Compute a topological ordering of a **DAG**.
 - Find an a consistent ordering that agrees with our partial information.
 3. Find comparisons to do so **DAG** has a unique topological sort.
 - Which elements to compare so that we have a consistent ordering of the items.
What DAGs got to do with it?

Or why we should care about DAGs

1. **DAGs** enable us to represent partial ordering information we have about some set (very common situation in the real world).

2. **Questions about DAGs:**
 1. Is a graph G a **DAG**?
 2. Compute a topological ordering of a **DAG**.
 3. Find comparisons to do so **DAG** has a unique topological sort.

 Is the partial ordering information we have so far is consistent?

 Find an a consistent ordering that agrees with our partial information.

 Which elements to compare so that we have a consistent ordering of the items.
What DAGs got to do with it?
Or why we should care about DAGs

1. **DAGs** enable us to represent partial ordering information we have about some set (very common situation in the real world).

2. Questions about **DAGs**:
 1. Is a graph G a **DAG**?
 \[\iff \]
 Is the partial ordering information we have so far is consistent?
 2. Compute a topological ordering of a **DAG**.
 \[\iff \]
 Find an a consistent ordering that agrees with our partial information.
 3. Find comparisons to do so **DAG** has a unique topological sort.
 \[\iff \]
 Which elements to compare so that we have a consistent ordering of the items.
What DAGs got to do with it?
Or why we should care about DAGs

1. **DAGs** enable us to represent partial ordering information we have about some set (very common situation in the real world).

2. Questions about **DAGs**:
 - Is a graph G a **DAG**?
 - \iff
 - Is the partial ordering information we have so far is consistent?
 - Compute a topological ordering of a **DAG**.
 - \iff
 - Find an a consistent ordering that agrees with our partial information.
 - Find comparisons to do so **DAG** has a unique topological sort.
 - \iff
 - Which elements to compare so that we have a consistent ordering of the items.
Part I

Linear time algorithm for finding all strong connected components of a directed graph
Reminder I: Graph G and its reverse graph G^{rev}

Graph G

Reverse graph G^{rev}
Reminder II: Graph G a vertex F .. and its reachable set $rch(G, F)$
Reminder III: Graph G a vertex F

.. and the set of vertices that can reach it in G: $\text{rch}(G^{\text{rev}}, F)$

Graph G

Set of vertices that can reach F, computed via DFS in the reverse graph G^{rev}.
Reminder IV: Graph G a vertex F and...

its strong connected component in G: $\text{SCC}(G, F)$

$$\text{SCC}(G, F) = \text{rch}(G, F) \cap \text{rch}(G^{\text{rev}}, F)$$
Reminder II: Strong connected components (SCC)

Graph \(G \)

Graph of SCCs \(G^{SCC} \)
Finding all SCCs of a Directed Graph

Problem
Given a directed graph $G = (V, E)$, output all its strong connected components.

Straightforward algorithm:

Mark all vertices in V as not visited.

for each vertex $u \in V$ not visited yet do

find $SCC(G, u)$ the strong component of u:
Compute $rch(G, u)$ using $DFS(G, u)$
Compute $rch(G^{rev}, u)$ using $DFS(G^{rev}, u)$
$SCC(G, u) \leftarrow rch(G, u) \cap rch(G^{rev}, u)$
$\forall u \in SCC(G, u)$: Mark u as visited.

Running time: $O(n(n + m))$
Is there an $O(n + m)$ time algorithm?
Finding all SCCs of a Directed Graph

Problem
Given a directed graph $G = (V, E)$, output all its strong connected components.

Straightforward algorithm:

Mark all vertices in V as not visited.
for each vertex $u \in V$ not visited yet do
find $SCC(G, u)$ the strong component of u:
Compute $rch(G, u)$ using $DFS(G, u)$
Compute $rch(G^{rev}, u)$ using $DFS(G^{rev}, u)$
$SCC(G, u) \leftarrow rch(G, u) \cap rch(G^{rev}, u)$
$\forall u \in SCC(G, u)$: Mark u as visited.

Running time: $O(n(n + m))$
Is there an $O(n + m)$ time algorithm?
Finding all SCCs of a Directed Graph

Problem

Given a directed graph $G = (V, E)$, output all its strong connected components.

Straightforward algorithm:

Mark all vertices in V as not visited.

for each vertex $u \in V$ not visited yet do

find $\text{SCC}(G, u)$ the strong component of u:

Compute $\text{rch}(G, u)$ using $\text{DFS}(G, u)$

Compute $\text{rch}(G^{\text{rev}}, u)$ using $\text{DFS}(G^{\text{rev}}, u)$

$\text{SCC}(G, u) \leftarrow \text{rch}(G, u) \cap \text{rch}(G^{\text{rev}}, u)$

$\forall u \in \text{SCC}(G, u)$: Mark u as visited.

Running time: $O(n(n + m))$

Is there an $O(n + m)$ time algorithm?
Structure of a Directed Graph

Graph G

Graph of SCCs G^{SCC}

Reminder

G^{SCC} is created by collapsing every strong connected component to a single vertex.

Proposition

For a directed graph G, its meta-graph G^{SCC} is a DAG.
Linear-time Algorithm for SCCs: Ideas

Exploit structure of meta-graph...

Wishful Thinking Algorithm

1. Let \(u \) be a vertex in a sink SCC of \(G^{SCC} \)
2. Do \(\text{DFS}(u) \) to compute \(\text{SCC}(u) \)
3. Remove \(\text{SCC}(u) \) and repeat

Justification

1. \(\text{DFS}(u) \) only visits vertices (and edges) in \(\text{SCC}(u) \)
Linear-time Algorithm for SCCs: Ideas

Exploit structure of meta-graph...

Wishful Thinking Algorithm

1. Let u be a vertex in a sink SCC of G^{SCC}
2. Do $\text{DFS}(u)$ to compute $\text{SCC}(u)$
3. Remove $\text{SCC}(u)$ and repeat

Justification

1. $\text{DFS}(u)$ only visits vertices (and edges) in $\text{SCC}(u)$

2

3

4
Linear-time Algorithm for SCCs: Ideas

Exploit structure of meta-graph...

Wishful Thinking Algorithm

1. Let \(u \) be a vertex in a sink SCC of \(G^{SCC} \)
2. Do \(DFS(u) \) to compute \(SCC(u) \)
3. Remove \(SCC(u) \) and repeat

Justification

1. \(DFS(u) \) only visits vertices (and edges) in \(SCC(u) \)
2. ... since there are no edges coming out a sink!
Linear-time Algorithm for SCCs: Ideas

Exploit structure of meta-graph...

Wishful Thinking Algorithm

1. Let u be a vertex in a sink SCC of G^{SCC}
2. Do $DFS(u)$ to compute $SCC(u)$
3. Remove $SCC(u)$ and repeat

Justification

1. $DFS(u)$ only visits vertices (and edges) in $SCC(u)$
2. ... since there are no edges coming out a sink!
3. $DFS(u)$ takes time proportional to size of $SCC(u)$
Linear-time Algorithm for SCCs: Ideas

Exploit structure of meta-graph...

Wishful Thinking Algorithm

1. Let \(u \) be a vertex in a sink SCC of \(G^{\text{SCC}} \)
2. Do \(\text{DFS}(u) \) to compute \(\text{SCC}(u) \)
3. Remove \(\text{SCC}(u) \) and repeat

Justification

1. \(\text{DFS}(u) \) only visits vertices (and edges) in \(\text{SCC}(u) \)
2. ... since there are no edges coming out a sink!
3. \(\text{DFS}(u) \) takes time proportional to size of \(\text{SCC}(u) \)
4. Therefore, total time \(O(n + m) \)!
How do we find a vertex in a sink SCC of G^{SCC}?

Can we obtain an implicit topological sort of G^{SCC} without computing G^{SCC}?

Answer: $\text{DFS}(G)$ gives some information!
Big Challenge(s)

How do we find a vertex in a sink SCC of G^{SCC}?

Can we obtain an *implicit* topological sort of G^{SCC} without computing G^{SCC}?

Answer: $\text{DFS}(G)$ gives some information!
How do we find a vertex in a sink \(\text{SCC} \) of \(G^{\text{SCC}} \)?

Can we obtain an *implicit* topological sort of \(G^{\text{SCC}} \) without computing \(G^{\text{SCC}} \)?

Answer: \(\text{DFS}(G) \) gives some information!
Post-visit times of SCCs

Definition

Given G and a SCC S of G, define $\text{post}(S) = \max_{u \in S} \text{post}(u)$ where post numbers are with respect to some $\text{DFS}(G)$.
An Example

Graph G

Graph with pre-post times for $\text{DFS}(A)$; black edges in tree

Figure: G^{SCC} with post times
Proposition

If S and S' are SCCs in G and (S, S') is an edge in G^{SCC} then $\text{post}(S) > \text{post}(S')$.

Proof.

Let u be first vertex in $S \cup S'$ that is visited.

1. If $u \in S$ then all of S' will be explored before $\text{DFS}(u)$ completes.

2. If $u \in S'$ then all of S' will be explored before any of S.

A False Statement: If S and S' are SCCs in G and (S, S') is an edge in G^{SCC} then for every $u \in S$ and $u' \in S'$, $\text{post}(u) > \text{post}(u')$.
Proposition

If S and S' are SCCs in G and (S, S') is an edge in G^{SCC} then $post(S) > post(S')$.

Proof.

Let u be first vertex in $S \cup S'$ that is visited.

1. If $u \in S$ then all of S' will be explored before $DFS(u)$ completes.

2. If $u \in S'$ then all of S' will be explored before any of S.

A False Statement: If S and S' are SCCs in G and (S, S') is an edge in G^{SCC} then for every $u \in S$ and $u' \in S'$, $post(u) > post(u')$.
Topological ordering of the strong components

Corollary

Ordering SCCs in decreasing order of \(\text{post}(S) \) gives a topological ordering of \(G^{\text{SCC}} \).

Recall: for a DAG, ordering nodes in decreasing post-visit order gives a topological sort.

So...

\(\text{DFS}(G) \) gives some information on topological ordering of \(G^{\text{SCC}} \).
Corollary

Ordering \(\text{SCC}s \) in decreasing order of \(\text{post}(S) \) gives a topological ordering of \(G^{\text{SCC}} \).

Recall: for a DAG, ordering nodes in decreasing post-visit order gives a topological sort.

So...

\(\text{DFS}(G) \) gives some information on topological ordering of \(G^{\text{SCC}} \)!
Proposition

The vertex u with the highest post visit time belongs to a source SCC in G^{SCC}

Proof.

1. $\text{post}(\text{SCC}(u)) = \text{post}(u)$
2. Thus, $\text{post}(\text{SCC}(u))$ is highest and will be output first in topological ordering of G^{SCC}.
Finding Sources

Proposition

The vertex u with the highest post visit time belongs to a source SCC in G^{SCC}

Proof.

1. $\text{post}(\text{SCC}(u)) = \text{post}(u)$
2. Thus, $\text{post}(\text{SCC}(u))$ is highest and will be output first in topological ordering of G^{SCC}.
Finding Sinks

Proposition

The vertex \(u \) with highest post visit time in \(\text{DFS}(G^{rev}) \) belongs to a sink SCC of \(G \).

Proof.

1. \(u \) belongs to source SCC of \(G^{rev} \)
2. Since graph of SCCs of \(G^{rev} \) is the reverse of \(G^{SCC} \), \(SCC(u) \) is sink SCC of \(G \).
Finding Sinks

Proposition

The vertex \(u \) with highest post visit time in \(\text{DFS}(G^{\text{rev}}) \) belongs to a sink SCC of \(G \).

Proof.

1. \(u \) belongs to source SCC of \(G^{\text{rev}} \)
2. Since graph of SCCs of \(G^{\text{rev}} \) is the reverse of \(G^{\text{SCC}} \), \(\text{SCC}(u) \) is sink SCC of \(G \).
do \text{DFS}(G^{\text{rev}}) \text{ and sort vertices in decreasing post order.} \\
Mark all nodes as unvisited \\
for each \(u \) in the computed order do \\
\hspace{1em} if \(u \) is not visited then \\
\hspace{2em} \text{DFS}(u) \\
Let \(S_u \) be the nodes reached by \(u \) \\
Output \(S_u \) as a strong connected component \\
Remove \(S_u \) from \(G \)

Analysis

Running time is \(O(n + m) \). (Exercise)
Linear Time Algorithm: An Example - Initial steps

Graph G:

G

FE

$B C$

D

H

A

\Rightarrow

Reverse graph G^{rev}:

G

FE

$B C$

D

H

A

\Rightarrow

DFS of reverse graph:

G

FE

$B C$

D

H

A

\Rightarrow

Pre/Post DFS numbering of reverse graph:

G

FE

$B C$

D

H

A

\Rightarrow
Linear Time Algorithm: An Example

Removing connected components: 1

Original graph G with rev post numbers:

Do DFS from vertex G remove it.

SCC computed: $\{G\}$
Linear Time Algorithm: An Example
Removing connected components: 2

Do DFS from vertex G, remove it.

Do DFS from vertex H, remove it.

SCC computed:
\{G\}

SCC computed:
\{G\}, \{H\}
Linear Time Algorithm: An Example

Removing connected components: 3

Do **DFS** from vertex H, remove it.

(SSCC computed: \{G\}, \{H\})

Do **DFS** from vertex B
Remove visited vertices: \{F, B, E\}.

(SSCC computed: \{G\}, \{H\}, \{F, B, E\})

Sariel (UIUC) OLD CS473 Spring 2015
Linear Time Algorithm: An Example

Removing connected components: 4

Do **DFS** from vertex F
Remove visited vertices: \{F, B, E\}.

$\text{SCC computed: } \{G\}, \{H\}, \{F, B, E\}$

Do **DFS** from vertex A
Remove visited vertices: \{A, C, D\}.

$\text{SCC computed: } \{G\}, \{H\}, \{F, B, E\}, \{A, C, D\}$
SCC computed:
\{G\}, \{H\}, \{F, B, E\}, \{A, C, D\}
Which is the correct answer!
Obtaining the meta-graph...

Once the strong connected components are computed.

Exercise:

Given all the strong connected components of a directed graph $G = (V, E)$ show that the meta-graph G^{SCC} can be obtained in $O(m + n)$ time.
Correctness: more details

1. Let S_1, S_2, \ldots, S_k be strong components in G.
2. Strong components of G^{rev} and G are same and meta-graph of G is reverse of meta-graph of G^{rev}.
3. Consider $\text{DFS}(G^{rev})$ and let u_1, u_2, \ldots, u_k be such that $\text{post}(u_i) = \text{post}(S_i) = \max_{v \in S_i} \text{post}(v)$.
4. Assume without loss of generality that $\text{post}(u_k) > \text{post}(u_{k-1}) \geq \ldots \geq \text{post}(u_1)$ (renumber otherwise). Then $S_k, S_{k-1}, \ldots, S_1$ is a topological sort of meta-graph of G^{rev} and hence S_1, S_2, \ldots, S_k is a topological sort of the meta-graph of G.
5. u_k has highest post number and $\text{DFS}(u_k)$ will explore all of S_k which is a sink component in G.
6. After S_k is removed u_{k-1} has highest post number and $\text{DFS}(u_{k-1})$ will explore all of S_{k-1} which is a sink component in remaining graph $G - S_k$. Formal proof by induction.
Correctness: more details

1. Let S_1, S_2, \ldots, S_k be strong components in G.
2. Strong components of G^{rev} and G are same and meta-graph of G is reverse of meta-graph of G^{rev}.
3. Consider $\text{DFS}(G^{\text{rev}})$ and let u_1, u_2, \ldots, u_k be such that $\text{post}(u_i) = \text{post}(S_i) = \max_{v \in S_i} \text{post}(v)$.
4. Assume without loss of generality that $\text{post}(u_k) > \text{post}(u_{k-1}) \geq \ldots \geq \text{post}(u_1)$ (renumber otherwise). Then $S_k, S_{k-1}, \ldots, S_1$ is a topological sort of meta-graph of G^{rev} and hence S_1, S_2, \ldots, S_k is a topological sort of the meta-graph of G.
5. u_k has highest post number and $\text{DFS}(u_k)$ will explore all of S_k which is a sink component in G.
6. After S_k is removed $u_{k-1} = \max_{v \in S_{k-1}} \text{post}(v)$. Then u_{k-1} has highest post number and $\text{DFS}(u_{k-1})$ will explore all of S_{k-1} which is a sink component in remaining graph $G - S_k$. Formal proof by induction.
Correctness: more details

1. let S_1, S_2, \ldots, S_k be strong components in G

2. Strong components of G^{rev} and G are same and meta-graph of G is reverse of meta-graph of G^{rev}.

3. consider $\text{DFS}(G^{\text{rev}})$ and let u_1, u_2, \ldots, u_k be such that $\text{post}(u_i) = \text{post}(S_i) = \max_{v \in S_i} \text{post}(v)$.

4. Assume without loss of generality that $\text{post}(u_k) > \text{post}(u_{k-1}) \geq \ldots \geq \text{post}(u_1)$ (renumber otherwise). Then $S_k, S_{k-1}, \ldots, S_1$ is a topological sort of meta-graph of G^{rev} and hence S_1, S_2, \ldots, S_k is a topological sort of the meta-graph of G.

5. u_k has highest post number and $\text{DFS}(u_k)$ will explore all of S_k which is a sink component in G.

6. After S_k is removed u_{k-1} has highest post number and $\text{DFS}(u_{k-1})$ will explore all of S_{k-1} which is a sink component in remaining graph $G - S_k$. Formal proof by induction.
Correctness: more details

1. Let S_1, S_2, \ldots, S_k be strong components in G.

2. Strong components of G^{rev} and G are same and meta-graph of G is reverse of meta-graph of G^{rev}.

3. Consider $\text{DFS}(G^{\text{rev}})$ and let u_1, u_2, \ldots, u_k be such that $\text{post}(u_i) = \text{post}(S_i) = \max_{v \in S_i} \text{post}(v)$.

4. Assume without loss of generality that $\text{post}(u_k) > \text{post}(u_{k-1}) \geq \ldots \geq \text{post}(u_1)$ (renumber otherwise). Then $S_k, S_{k-1}, \ldots, S_1$ is a topological sort of meta-graph of G^{rev} and hence S_1, S_2, \ldots, S_k is a topological sort of the meta-graph of G.

5. u_k has highest post number and $\text{DFS}(u_k)$ will explore all of S_k which is a sink component in G.

6. After S_k is removed u_{k-1} has highest post number and $\text{DFS}(u_{k-1})$ will explore all of S_{k-1} which is a sink component in remaining graph $G - S_k$. Formal proof by induction.
Correctness: more details

1. let S_1, S_2, \ldots, S_k be strong components in G
2. Strong components of G^rev and G are same and meta-graph of G is reverse of meta-graph of G^rev.
3. consider $\text{DFS}(G^\text{rev})$ and let u_1, u_2, \ldots, u_k be such that $\text{post}(u_i) = \text{post}(S_i) = \max_{v \in S_i} \text{post}(v)$.
4. Assume without loss of generality that $\text{post}(u_k) > \text{post}(u_{k-1}) \geq \ldots \geq \text{post}(u_1)$ (renumber otherwise). Then $S_k, S_{k-1}, \ldots, S_1$ is a topological sort of meta-graph of G^rev and hence S_1, S_2, \ldots, S_k is a topological sort of the meta-graph of G.
5. u_k has highest post number and $\text{DFS}(u_k)$ will explore all of S_k which is a sink component in G.
6. After S_k is removed u_{k-1} has highest post number and $\text{DFS}(u_{k-1})$ will explore all of S_{k-1} which is a sink component in remaining graph $G - S_k$. Formal proof by induction.
Correctness: more details

1. Let S_1, S_2, \ldots, S_k be strong components in G.

2. Strong components of G^rev and G are same and meta-graph of G is reverse of meta-graph of G^rev.

3. Consider $\text{DFS}(G^\text{rev})$ and let u_1, u_2, \ldots, u_k be such that $\text{post}(u_i) = \text{post}(S_i) = \max_{v \in S_i} \text{post}(v)$.

4. Assume without loss of generality that $\text{post}(u_k) > \text{post}(u_{k-1}) \geq \ldots \geq \text{post}(u_1)$ (renumber otherwise). Then $S_k, S_{k-1}, \ldots, S_1$ is a topological sort of meta-graph of G^rev and hence S_1, S_2, \ldots, S_k is a topological sort of the meta-graph of G.

5. u_k has highest post number and $\text{DFS}(u_k)$ will explore all of S_k which is a sink component in G.

6. After S_k is removed u_{k-1} has highest post number and $\text{DFS}(u_{k-1})$ will explore all of S_{k-1} which is a sink component in remaining graph $G - S_k$. Formal proof by induction.
Part II

An Application to make
1. Unix utility for automatically building large software applications

2. A makefile specifies
 1. Object files to be created,
 2. Source/object files to be used in creation, and
 3. How to create them
An Example makefile

 project: main.o utils.o command.o
 cc -o project main.o utils.o command.o

 main.o: main.c defs.h
 cc -c main.c

 utils.o: utils.c defs.h command.h
 cc -c utils.c

 command.o: command.c defs.h command.h
 cc -c command.c
makefile as a Digraph

main.c

utils.c

defs.h

command.h

command.c

main.o

utils.o

project

command.o
Computational Problems for make

1. Is the makefile reasonable?
2. If it is reasonable, in what order should the object files be created?
3. If it is not reasonable, provide helpful debugging information.
4. If some file is modified, find the fewest compilations needed to make application consistent.
Algorithms for make

1. Is the makefile reasonable? Is G a DAG?
2. If it is reasonable, in what order should the object files be created? Find a topological sort of a DAG.
3. If it is not reasonable, provide helpful debugging information. Output a cycle. More generally, output all strong connected components.
4. If some file is modified, find the fewest compilations needed to make application consistent.
 1. Find all vertices reachable (using DFS/BFS) from modified files in directed graph, and recompile them in proper order. Verify that one can find the files to recompile and the ordering in linear time.
Take away Points

1. Given a directed graph G, its SCCs and the associated acyclic meta-graph G^{SCC} give a structural decomposition of G that should be kept in mind.

2. There is a DFS based linear time algorithm to compute all the SCCs and the meta-graph. Properties of DFS crucial for the algorithm.

3. DAGs arise in many application and topological sort is a key property in algorithm design. Linear time algorithms to compute a topological sort (there can be many possible orderings so not unique).
Part III

Not for lecture - why do we have to use the reverse graph in computing the SCC?
Finding a sink via post numbers in a DAG

Lemma

Let G be a DAG, and consider the vertex u in G that minimizes $\text{post}(u)$. Then u is a sink of G.

Proof.

The minimum $\text{post}(\cdot)$ is assigned the first time DFS returns for its recursion. Let $\pi = v_1, v_2, \ldots, v_k = u$ be the sequence of vertices visited by the DFS at this point. Clearly, u (i.e., v_k), can not have an edge going into v_1, \ldots, v_{k-1} since this would violates the assumption that there are no cycles. Similarly, u can not have an outgoing edge going into a vertex $z \in V(G) \setminus \{v_1, \ldots, v_k\}$, since the DFS would have continued into z, and u would not have been the first vertex to get assigned a post number. We conclude that u has no outgoing edges, and it is thus a sink.
Counterexample: Finding a source via min post numbers in a DAG

Counter example

Let \(G \) be a DAG, and consider the vertex \(u \) in \(G \) that minimizes \(\text{post}(u) \) is a source. This is FALSE.

The DFS numbering might be:

\[
\begin{align*}
A &: [1,4] \\
B &: [2,3] \\
C &: [5,6]
\end{align*}
\]

But clearly \(B \) is not a source.
Finding a source via post numbers in a DAG

Lemma

Let G be a DAG, and consider the vertex u in G that maximizes $\text{post}(u)$. Then u is a source of G.

Proof: Exercise (And should already be in the slides.)
Meta graph computing the sink..

We proved:

Lemma

Consider the graph G^{SCC}, with every CC $S \in V(G^{SCC})$ numbered by $\text{post}(S)$. Then:

$$\forall (S \rightarrow T) \in E(G^{SCC}) \quad \text{post}(S) \geq \text{post}(T).$$

So, the SCC realizing $\min \text{post}(S)$ is indeed a sink of G^{SCC}.

But how to compute this? Not clear at all.
The **SCC** realizing \(\max post(S) \) is a source of \(G^{SCC} \).

Furthermore, computing

\[
\max_{s \in V(G^{SCC})} post(s) = \max_{s \in V(G^{SCC})} \max_{v \in S} post(v) = \max_{v \in V(G)} post(v).
\]

is easy!

So computing a source in the meta-graph is easy from the post numbering.

But the algorithm needs a sink of the meta graph. Thus, we compute a vertex in the source **SCC** of the meta-graph of \((G^{rev})^{SCC} = (G^{SCC})^{rev} \).