More on DFS in Directed Graphs, and Strong Connected Components, and DAGs

Lecture 3
January 27, 2015

Using DFS...
... to check for Acyclicity and compute Topological Ordering

Question
Given G, is it a DAG? If it is, generate a topological sort.

DFS based algorithm:
1. Compute $\text{DFS}(G)$
2. If there is a back edge then G is not a DAG.
3. Otherwise output nodes in decreasing post-visit order.

Correctness relies on the following:

Proposition G is a DAG iff there is no back-edge in $\text{DFS}(G)$.

Proposition
If G is a DAG and $\text{post}(u) > \text{post}(v)$, then $(u \to v)$ is not in G.

Proof

Proposition
If G is a DAG and $\text{post}(u) < \text{post}(v)$, then (u, v) is not in G.

Proof
Assume $\text{post}(v) > \text{post}(u)$ and (u, v) is an edge in G. We derive a contradiction.

1. **Case 1**: $[\text{pre}(u), \text{post}(u)]$ is contained in $[\text{pre}(v), \text{post}(v)]$.
2. $\implies u$ explored during $\text{DFS}(v)$.
3. u descendant of v.
4. $(u, v) \in E(G)$ \implies cycle in G but G is a DAG.

Proof continued

Proposition
If G is a DAG and $\text{post}(u) < \text{post}(v)$, then (u, v) is not in G.

Proof continued...

Case 2: $[\text{pre}(u), \text{post}(u)]$ is disjoint from $[\text{pre}(v), \text{post}(v)]$.

1. By assumption: $\text{post}(u) < \text{post}(v)$.
2. $\implies \text{pre}(u) < \text{pre}(v)$.
3. DFS visits u first and then v.
4. If $(u \to v) \in E(G)$...
5. $\implies \text{DFS}$ explores v during the DFS of u.
6. $[\text{pre}(v), \text{post}(v)] \subseteq [\text{pre}(u), \text{post}(u)]$.
7. \implies contradiction.
Example

Back edge and Cycles

Proposition
G has a cycle iff there is a back-edge in $\text{DFS}(G)$.

Proof.
1. If: (u, v) is a back edge \implies there is a cycle C in G:
 $C =$ path from v to u in DFS tree + edge $(u \rightarrow v)$.
2. Only if: Suppose there is a cycle $C = v_1 \rightarrow v_2 \rightarrow \ldots \rightarrow v_k \rightarrow v_1$.
 a. Let v_i be first node in C visited in DFS.
 b. All other nodes in C are descendants of v_i since they are reachable from v_i.
 c. Therefore, (v_{i-1}, v_i) (or (v_k, v_1) if $i = 1$) is a back edge.

Topological sorting of a DAG

Input: DAG G. With n vertices and m edges.

$O(n + m)$ algorithms for topological sorting

(A) Put source s of G as first in the order, remove s, and repeat.
 (Implementation not trivial.)
(B) Do DFS of G.
 Compute post numbers.
 Sort vertices by decreasing post number.

Question
How to avoid sorting?
No need to sort - post numbering algorithm can output vertices...

DAGs and Partial Orders

Definition
A partially ordered set is a set S along with a binary relation \leq such that \leq is
- reflexive ($a \leq a$ for all $a \in S$).
- anti-symmetric ($a \leq b$ and $a \neq b$ implies $b \not\leq a$), and
- transitive ($a \leq b$ and $b \leq c$ implies $a \leq c$).

Example: For numbers in the plane define $(x, y) \leq (x', y')$ iff $x \leq x'$ and $y \leq y'$.

Observation: A finite partially ordered set is equivalent to a DAG.
 (No equal elements.)

Observation: A topological sort of a DAG corresponds to a complete (or total) ordering of the underlying partial order.
What's **DAG** but a sweet old fashioned notion

Who needs a **DAG**...

Example

- **V**: set of \(n \) products (say, \(n \) different types of tablets).
- Want to buy one of them, so you do market research...
- Online reviews compare only pairs of them. ...Not everything compared to everything.
- Given this partial information:
 - Decide what is the best product.
 - Decide what is the ordering of products from best to worst.
 - ...
Reminder II: Graph G a vertex F .. and its reachable set $rch(G, F)$

Graph G

Reachable set of vertices from F

Reminder III: Graph G a vertex F .. and the set of vertices that can reach it in G: $rch(G^{rev}, F)$

Graph G

Set of vertices that can reach F, computed via DFS in the reverse graph G^{rev}.

Reminder IV: Graph G a vertex F and...

its strong connected component in G: $SCC(G, F)$

Graph G

$rch(G, F)$

$rch(G^{rev}, F)$

$SCC(G, F) = rch(G, F) \cap rch(G^{rev}, F)$

Reminder II: Strong connected components (SCC)

Graph G

Graph of SCCs G^{SCC}

B, E, F

A, C, D

G

H
Finding all SCCs of a Directed Graph

Problem
Given a directed graph $G = (V, E)$, output all its strong connected components.

Straightforward algorithm:
Mark all vertices in V as not visited.
for each vertex $u \in V$ not visited yet do
find $\text{SCC}(G, u)$ the strong component of u:
Compute $\text{rch}(G, u)$ using $\text{DFS}(G, u)$
Compute $\text{rch}(G^{\text{rev}}, u)$ using $\text{DFS}(G^{\text{rev}}, u)$
$\text{SCC}(G, u) \leftarrow \text{rch}(G, u) \cap \text{rch}(G^{\text{rev}}, u)$
$\forall u \in \text{SCC}(G, u)$: Mark u as visited.

Running time: $O(n(n + m))$

Is there an $O(n + m)$ time algorithm?

Structure of a Directed Graph

Reminder
G^{SCC} is created by collapsing every strong connected component to a single vertex.

Proposition
For a directed graph G, its meta-graph G^{SCC} is a DAG.

Linear-time Algorithm for SCCs: Ideas

Exploit structure of meta-graph...

Wishful Thinking Algorithm
- Let u be a vertex in a sink SCC of G^{SCC}
- Do $\text{DFS}(u)$ to compute $\text{SCC}(u)$
- Remove $\text{SCC}(u)$ and repeat

Justification
- $\text{DFS}(u)$ only visits vertices (and edges) in $\text{SCC}(u)$
- ... since there are no edges coming out a sink!
- $\text{DFS}(u)$ takes time proportional to size of $\text{SCC}(u)$
- Therefore, total time $O(n + m)$!

Big Challenge(s)

How do we find a vertex in a sink SCC of G^{SCC}?

Can we obtain an implicit topological sort of G^{SCC} without computing G^{SCC}?

Answer: $\text{DFS}(G)$ gives some information!
Post-visit times of SCCs

Definition
Given G and a SCC S of G, define $\text{post}(S) = \max_{u \in S} \text{post}(u)$ where post numbers are with respect to some $\text{DFS}(G)$.

Graph of strong connected components

... and post-visit times

Proposition
If S and S' are SCCs in G and (S, S') is an edge in G^{SCC} then $\text{post}(S) > \text{post}(S')$.

Proof.
Let u be first vertex in $S \cup S'$ that is visited.
1. If $u \in S$ then all of S' will be explored before $\text{DFS}(u)$ completes.
2. If $u \in S'$ then all of S' will be explored before any of S.

A False Statement: If S and S' are SCCs in G and (S, S') is an edge in G^{SCC} then for every $u \in S$ and $u' \in S'$, $\text{post}(u) > \text{post}(u')$.

An Example

Graph G

Graph with pre-post times for DFS(G); black edges in tree

Figure: G^{SCC} with post times

Topological ordering of the strong components

Corollary
Ordering SCCs in decreasing order of $\text{post}(S)$ gives a topological ordering of G^{SCC}.

Recall: for a DAG, ordering nodes in decreasing post-visit order gives a topological sort.

So... $\text{DFS}(G)$ gives some information on topological ordering of G^{SCC}.
Finding Sources

Proposition
The vertex u with the highest post visit time belongs to a source SCC in G^{SCC}

Proof.
1. $\text{post}(\text{SCC}(u)) = \text{post}(u)$
2. Thus, $\text{post}(\text{SCC}(u))$ is highest and will be output first in topological ordering of G^{SCC}.

Finding Sinks

Proposition
The vertex u with highest post visit time in $\text{DFS}(G^{rev})$ belongs to a sink SCC of G.

Proof.
1. u belongs to source SCC of G^{rev}
2. Since graph of SCCs of G^{rev} is the reverse of G^{SCC}, $\text{SCC}(u)$ is sink SCC of G.

Linear Time Algorithm

...for computing the strong connected components in G

- do $\text{DFS}(G^{rev})$ and sort vertices in decreasing post order.
- Mark all nodes as unvisited
- for each u in the computed order do
 - if u is not visited then
 - $\text{DFS}(u)$
 - Let S_u be the nodes reached by u
 - Output S_u as a strong connected component
 - Remove S_u from G

Analysis
Running time is $O(n + m)$. (Exercise)
Linear Time Algorithm: An Example

Removing connected components: 1

Original graph G with rev post numbers:

- G
- F
- E
- B
- C
- D
- H
- A
- 16
- 11
- 6
- 12
- 10
- 15
- 5
- 4

$G
FE
B C
D
H
A
16
11
612
10
15
5
4

⇒

Do DFS from vertex G, remove it.

SCC computed:
\{G\}

Removing connected components: 2

Do DFS from vertex G, remove it.

SCC computed:
\{G\}

Do DFS from vertex H, remove it.

SCC computed:
\{G\}, \{H\}

Removing connected components: 3

Do DFS from vertex H, remove it.

SCC computed:
\{G\}, \{H\}

Do DFS from vertex B, remove it.

Remove visited vertices:
\{F, B, E\}

SCC computed:
\{G\}, \{H\}, \{F, B, E\}

Do DFS from vertex A, remove it.

Remove visited vertices:
\{A, C, D\}

SCC computed:
\{G\}, \{H\}, \{F, B, E\}, \{A, C, D\}
Correctness: more details

1. Let S_1, S_2, \ldots, S_k be strong components in G.
2. Strong components of G^{rev} and G are same and meta-graph of G is reverse of meta-graph of G^{rev}.
3. Consider $\text{DFS}(G^{rev})$ and let u_1, u_2, \ldots, u_k be such that
 $$\text{post}(u_i) = \text{post}(S_i) = \max_{v \in S_i} \text{post}(v).$$
4. Assume without loss of generality that
 $$\text{post}(u_k) > \text{post}(u_{k-1}) \geq \ldots \geq \text{post}(u_1)$$
 (renumber otherwise). Then $S_k, S_{k-1}, \ldots, S_1$ is a topological sort of meta-graph of G^{rev} and hence S_1, S_2, \ldots, S_k is a topological sort of the meta-graph of G.
5. u_k has highest post number and $\text{DFS}(u_k)$ will explore all of S_k which is a sink component in G.
6. After S_k is removed u_{k-1} has highest post number and $\text{DFS}(u_{k-1})$ will explore all of S_{k-1} which is a sink component in remaining graph $G - S_k$. Formal proof by induction.
make Utility [Feldman]

- Unix utility for automatically building large software applications
- A makefile specifies
 - Object files to be created,
 - Source/object files to be used in creation, and
 - How to create them

An Example makefile

```
project: main.o utils.o command.o
    cc -o project main.o utils.o command.o

main.o: main.c defs.h
    cc -c main.c

utils.o: utils.c defs.h command.h
    cc -c utils.c

command.o: command.c defs.h command.h
    cc -c command.c
```

makefile as a Digraph

```
main.c  main.o
       |
       v
utils.c
       |
       v
defs.h  utils.o
       |
       v
command.h
       |
       v
command.c
       |
       v
project
```

Computational Problems for make

- Is the makefile reasonable?
- If it is reasonable, in what order should the object files be created?
- If it is not reasonable, provide helpful debugging information.
- If some file is modified, find the fewest compilations needed to make application consistent.
Algorithms for make

- Is the makefile reasonable? Is G a DAG?
- If it is reasonable, in what order should the object files be created? Find a topological sort of a DAG.
- If it is not reasonable, provide helpful debugging information. Output a cycle. More generally, output all strong connected components.
- If some file is modified, find the fewest compilations needed to make application consistent.
 - Find all vertices reachable (using DFS/BFS) from modified files in directed graph, and recompile them in proper order. Verify that one can find the files to recompile and the ordering in linear time.

Take away Points

- Given a directed graph G, its SCCs and the associated acyclic meta-graph G^{SCC} give a structural decomposition of G that should be kept in mind.
- There is a DFS based linear time algorithm to compute all the SCCs and the meta-graph. Properties of DFS crucial for the algorithm.
- DAGs arise in many application and topological sort is a key property in algorithm design. Linear time algorithms to compute a topological sort (there can be many possible orderings so not unique).

Part III

Not for lecture - why do we have to use the reverse graph in computing the SCC?

Finding a sink via post numbers in a DAG

Lemma

Let G be a DAG, and consider the vertex u in G that minimizes post(u). Then u is a sink of G.

Proof.

The minimum post($) is assigned the first time DFS returns for its recursion. Let $\pi = v_1, v_2, \ldots, v_k = u$ be the sequence of vertices visited by the DFS at this point. Clearly, u (i.e., v_k) can not have an edge going into v_1,\ldots,v_{k-1} since this would violates the assumption that there are no cycles. Similarly, u can not have an outgoing edge going into a vertex $z \in V(G) \setminus \{v_1,\ldots,v_k\}$, since the DFS would have continued into z, and u would not have been the first vertex to get assigned a post number. We conclude that u has no outgoing edges, and it is thus a sink.
Counterexample: Finding a source via min post numbers in a DAG

Counter example
Let G be a DAG, and consider the vertex u in G that minimizes $\text{post}(u)$ is a source. This is FALSE.

the DFS numbering might be:
$A:[1,4]$
$B:[2,3]$
$C:[5,6]$

But clearly B is not a source.

Finding a source via post numbers in a DAG

Lemma
Let G be a DAG, and consider the vertex u in G that maximizes $\text{post}(u)$. Then u is a source of G.

Proof: Exercise (And should already be in the slides.)

Meta graph computing the sink..

We proved:

Lemma
Consider the graph G^{SCC}, with every CC $S \in V(G^{\text{SCC}})$ numbered by $\text{post}(S)$. Then:

$$\forall (S \rightarrow T) \in E(G^{\text{SCC}}) \quad \text{post}(S) > \text{post}(T).$$

- So, the SCC realizing $\min \text{post}(S)$ is indeed a sink of G^{SCC}.
- But how to compute this? Not clear at all.

Meta graph computing a source is easy!

- The SCC realizing $\max \text{post}(S)$ is a source of G^{SCC}.
- Furthermore, computing
 $$\max_{S \in V(G^{\text{SCC}})} \text{post}(S) = \max_{S \in V(G^{\text{SCC}})} \max_{v \in S} \text{post}(v) = \max_{v \in V(G)} \text{post}(v).$$
 is easy!
- So computing a source in the meta-graph is easy from the post numbering.
- But the algorithm needs a sink of the meta graph. Thus, we compute a vertex in the source SCC of the meta-graph of $(G^{\text{rev}})^{\text{SCC}} = (G^{\text{SCC}})^{\text{rev}}$.