1. **Minimum Vertex Cover in Trees**

Let G be an unweighted graph. A vertex cover of G is a set S of vertices in G such that every edge in G is incident to at least one vertex in S (i.e., the vertices in S cover the edges in G.)

Describe a greedy algorithm that computes the vertex cover of G if G is a tree, and prove its correctness.

2. **Maximum Independent Sets in Trees**

Let G be an unweighted graph. An independent set of G is a set S of vertices in G such that no two vertices in S are connected by an edge. Finding the maximum independent set in a general graph is considered very hard.

Suppose G was a tree. Describe a greedy algorithm that computes the maximum-size independent set in a tree.

3. **Covering points by intervals**

Consider the problem of covering points by intervals. Specifically, assume that you are given a set P of n points on the real line and a set of m intervals F each specified by two points on the real line. Two discussions ago we solved the weighted case for the minimum weight set of intervals covering of P.

In the unweighted case, describe a greedy algorithm to find the minimum number of intervals needed to cover all the points of P.

4. **Piercing Intervals**

Let X be a set of n closed intervals on the real line. A set P of points pierces X if every interval in X contains at least one point in P. Describe and analyze an efficient algorithm to compute the smallest set of points that stabs X.

5. **Weighted Scheduling**

We have n jobs J_1, J_2, \ldots, J_n which we need to schedule on a machine. Each job J_i has a processing time t_i and a weight w_i. A schedule for the machine is an ordering of the jobs. Given a schedule, let C_i denote the finishing time of job J_i. For example, if job J_j is the first job in the schedule, its finishing time C_j is equal to t_j; if job J_j follows job J_i in the schedule, its finishing time C_j is equal to $C_i + t_j$. The weighted completion time of the schedule is $\sum_{i=1}^n w_i C_i$.

(a) For the case when $w_i = 1$ for all i, show that choosing the shortest job first is optimal.

(b) (HARDER) Give an efficient algorithm that finds a schedule with minimum weighted completion time given arbitrary weights.