1. **SOME RECURRENCES:**

 (a) \(t(0) = t(1) = 2 \)

 \[t(n) = t\left(\left\lfloor \frac{n}{2} \right\rfloor \right) + 2n + 2 \]

 (b) \(t(0) = 2 \)

 \[t(1) = 3 \]

 \[t(n) = 5 + t\left(\left\lfloor \frac{n}{2} \right\rfloor \right) \]

 (c) \(t(n) = \begin{cases}
 2^n & \text{if } n < 2112014 \\
 t\left(\left\lfloor \frac{n}{2} \right\rfloor \right) + 3 & \text{if } n \geq 2112014
 \end{cases} \)

2. **COUNTING INVERSIONS:** Let \(A \) be an array of \(n \) distinct numbers. An \textit{inversion} in \(A \) is a pair of indices \(i < j \) such that \(A[j] < A[i] \); in English, it is a pair of elements out of increasing order.

 Describe an algorithm that computes the number of inversions in \(A \) in \(O(n \log n) \) time.

3. Given a sorted array \(A[1, \ldots, n] \) of distinct integers, you want to find out whether there is an index \(i \) for which \(A[i] = i \). Give an algorithm that runs in time \(O(\log n) \).

 [Hint: divide thy enemy, and then conquer thy enemy.]

4. Let \(A, B \) be two sorted arrays each of size \(n \). Give an \(O(\log n) \) algorithm to find the median element in the union of the two lists.

 [Hint: Suppose \(n \) is a power of 2 and try to find the \(n \)th element.]

5. Suppose we are given a set \(S \) of \(n \) points in the plane. For two points \((u, v) \) and \((x, y) \), we say that \((x, y) \) dominates \((u, v) \) if \(x \geq u \) and \(y \geq v \). A point \(p \) in \(S \) is \textit{maximal} if there is no other point \(q \in S \) dominating \(p \).

 Describe an algorithm (the faster, the better) that computes the set of maximal points in \(S \). For simplicity, you may assume that no two points in \(S \) have the same \(x \) or \(y \)-coordinate.

6. Suppose you are given the following tree traversals of a binary tree. Describe an algorithm that reconstructs a tree matching the traversals.
(a) **In-order** (For example: b d e f a c)
 Pre-order (For example: e d b a f c)

(b) **In-order** (For example: b d e f a c)
 Post-order (For example: b d f c a e)

(c) **Pre-order** (For example: e d b a f c)
 Post-order (For example: b d f c a e)