Why Graphs?

- Graphs help model networks which are ubiquitous: transportation networks (rail, roads, airways), social networks (interpersonal relationships), information networks (web page links) etc etc.
- Fundamental objects in Computer Science, Optimization, Combinatorics
- Many important and useful optimization problems are graph problems
- Graph theory: elegant, fun and deep mathematics

Basic Graph Search

Given $G = (V, E)$ and vertex $u \in V$:

Explore(u):
1. Initialize $S = \{u\}$
2. while there is an edge (x, y) with $x \in S$ and $y \not\in S$ do
 - add y to S

DFS in Directed Graphs

DFS(G)

Mark all nodes u as unvisited
- T is set to \emptyset
- $time = 0$
- while there is an unvisited node u do
 - **DFS**(u)

Output T

DFS(u)

Mark u as visited
- $pre(u) = ++ time$
- for each edge (u, v) in $Out(u)$ do
 - if v is not marked
 - add edge (u, v) to T
 - **DFS**(v)
- $post(u) = ++ time$
pre and post numbers

Node \(u \) is **active** in time interval \([\text{pre}(u), \text{post}(u)]\)

Proposition

For any two nodes \(u \) and \(v \), the two intervals \([\text{pre}(u), \text{post}(u)]\) and \([\text{pre}(v), \text{post}(v)]\) are disjoint or one is contained in the other.

Directed Graph Connectivity Problems

- Given \(G \) and nodes \(u \) and \(v \), can \(u \) reach \(v \)?
- Given \(G \) and \(u \), compute \(\text{rch}(u) \).
- Given \(G \) and \(u \), compute all \(v \) that can reach \(u \), that is all \(v \) such that \(u \in \text{rch}(v) \).
- Find the strongly connected component containing node \(u \), that is \(\text{SCC}(u) \).
- Is \(G \) strongly connected (a single strong component)?
- Compute all strongly connected components of \(G \).

First four problems can be solve in \(O(n + m) \) time by adapting \(\text{BFS/DFS} \) to directed graphs. The last one requires a clever \(\text{DFS} \) based algorithm.

DFS Properties

Generalizing ideas from undirected graphs:

- \(\text{DFS}(u) \) outputs a directed out-tree \(T \) rooted at \(u \)
- A vertex \(v \) is in \(T \) if and only if \(v \in \text{rch}(u) \)
- For any two vertices \(x, y \) the intervals \([\text{pre}(x), \text{post}(x)]\) and \([\text{pre}(y), \text{post}(y)]\) are either disjoint are one is contained in the other.
- The running time of \(\text{DFS}(u) \) is \(O(k) \) where \(k = \sum_{v \in \text{rch}(u)} |\text{Adj}(v)| \) plus the time to initialize the Mark array.
- \(\text{DFS}(G) \) takes \(O(m + n) \) time. Edges in \(T \) form a disjoint collection of of out-trees. Output of \(\text{DFS}(G) \) depends on the order in which vertices are considered.
Tree

Edges of G can be classified with respect to the DFS tree T as:

- **Tree edges** that belong to T
- A **forward edge** is a non-tree edges (x, y) such that $\text{pre}(x) < \text{pre}(y) < \text{post}(y) < \text{post}(x)$.
- A **backward edge** is a non-tree edge (x, y) such that $\text{pre}(y) < \text{pre}(x) < \text{post}(x) < \text{post}(y)$.
- A **cross edge** is a non-tree edges (x, y) such that the intervals $[\text{pre}(x), \text{post}(x)]$ and $[\text{pre}(y), \text{post}(y)]$ are disjoint.

Algorithms via DFS

SC(G, u) = $\{v | u$ is strongly connected to $v\}$

- Find the strongly connected component containing node u.
 That is, compute $\text{SCC}(G, u)$.

SCC(G, u) = $\text{rch}(G, u) \cap \text{rch}(G^{\text{rev}}, u)$

Hence, $\text{SCC}(G, u)$ can be computed with two DFSes, one in G and the other in G^{rev}. Total $O(n + m)$ time.

Linear Time Algorithm

... for computing the strong connected components in G

```
    do DFS($G^{\text{rev}}$) and sort vertices in decreasing post order.
    Mark all vertices as unvisited
    for each $u$ in the computed order do
        if $u$ is not visited then
            DFS($u$)
            Let $S_u$ be the nodes reached by $u$
            Output $S_u$ as a strong connected component
            Remove $S_u$ from $G$
```

Analysis

Running time is $O(n + m)$. (Exercise)

Example: Makefile

with Distances

BFS(s)

- Mark all vertices as unvisited and for each v set $\text{dist}(v) = \infty$
- Initialize search tree T to be empty
- Mark vertex s as visited and set $\text{dist}(s) = 0$
- set Q to be the empty queue
- $\text{enq}(s)$
 while Q is nonempty do
 $u = \text{deq}(Q)$
 for each vertex $v \in \text{Adj}(u)$ do
 if v is not visited do
 add edge (u, v) to T
 Mark v as visited, $\text{enq}(v)$
 and set $\text{dist}(v) = \text{dist}(u) + 1$

Proposition

BFS(s) runs in $O(n + m)$ time.
with Layers

BFS\text{Layers}(s):
Mark all vertices as unvisited and initialize T to be empty
Mark s as visited and set $L_0 = \{s\}$
\[i = 0 \]
while L_i is not empty do
 initialize L_{i+1} to be an empty list
 for each u in L_i do
 for each edge $(u, v) \in \text{Adj}(u)$ do
 if v is not visited
 mark v as visited
 add (u, v) to tree T
 add v to L_{i+1}
 \[i = i + 1 \]
Running time: $O(n + m)$

Checking if a graph is bipartite...
Linear time algorithm

Corollary
There is an $O(n + m)$ time algorithm to check if G is bipartite and output an odd cycle if it is not.

Dijkstra’s Algorithm

Initialize for each node v, $\text{dist}(s, v) = \infty$
Initialize $S = \{s\}$, $\text{dist}(s, s) = 0$
for $i = 1$ to $|V|$ do
 Let v be such that $\text{dist}(s, v) = \min_{u \in V \setminus S} \text{dist}(s, u)$
 $S = S \cup \{v\}$
 for each u in $\text{Adj}(v)$ do
 $\text{dist}(s, u) = \min(\text{dist}(s, u), \text{dist}(s, v) + \ell(v, u))$

- Using Fibonacci heaps. Running time: $O(m + n \log n)$.
- Can compute shortest path tree.

Single-Source Shortest Paths with Negative Edge Lengths

Single-Source Shortest Path Problems
Input: A directed graph $G = (V, E)$ with arbitrary (including negative) edge lengths. For edge $e = (u, v)$, $\ell(e) = \ell(u, v)$ is its length.

- Given nodes s, t find shortest path from s to t.
- Given node s find shortest path from s to all other nodes.
Negative Length Cycles

Definition
A cycle C is a negative length cycle if the sum of the edge lengths of C is negative.

A Generic Shortest Path Algorithm
Dijkstra’s algorithm does not work with negative edges.

Relax ($e = (u, v)$)
if $d(s, v) > d(s, u) + ℓ(u, v)$ then
$d(s, v) = d(s, u) + ℓ(u, v)$

GenericShortestPathAlg:
- $d(s, s) = 0$
- for each node $u \neq s$ do
 - $d(s, u) = \infty$

while there is a tense edge do
 Pick a tense edge e
 Relax(e)

Output $d(s, u)$ values

Bellman-Ford to detect Negative Cycles

- for each $u \in V$ do
 - $d(s, u) = \infty$
 - $d(s, s) = 0$

for $i = 1$ to $|V| - 1$ do
 for each edge $e = (u, v)$ do
 Relax(e)

for each edge $e = (u, v)$ do
 if $e = (u, v)$ is tense then
 Stop and output that s can reach a negative length cycle

Output for each $u \in V$: $d(s, u)$

- Total running time: $O(mn)$.
- Can detect negative cycle reachable from s.
- Appropriate construction - detect any negative cycle in a graph.

Bellman-Ford to detect Negative Cycles

Algorithm for s

ShortestPathInDAG(G, s):
- $s = v_1, v_2, v_{i+1}, \ldots, v_n$ be a topological sort of G

for $i = 1$ to n do
 $d(s, v_i) = \infty$
 $d(s, s) = 0$

for $i = 1$ to $n - 1$ do
 for each edge e in $Adj(v_i)$ do
 Relax(e)

return $d(s, \cdot)$ values computed

Running time: $O(m + n)$ time algorithm! Works for negative edge lengths and hence can find longest paths in a DAG.
Reduction

Reducing problem A to problem B:
- Algorithm for A uses algorithm for B as a black box.
- Example: Uniqueness (or distinct element) to sorting.

Recursion

- Recursion is a very powerful and fundamental technique.
- Basis for several other methods.
 - Divide and conquer.
 - Dynamic programming.
 - Enumeration and branch and bound etc.
 - Some classes of greedy algorithms.
- Recurrences arise in analysis.

Examples seen:
- Recursion: Tower of Hanoi, Selection sort, Quick Sort.
- Divide & Conquer:
 - Merge sort.
 - Multiplying large numbers.

Solving recurrences using recursion trees

An illustrated example: Merge sort...

Solving recurrences

The other “technique” - guess and verify

- Guess solution to recurrence.
- Verify it via induction.

Solved in class:
- \(T(n) = 2T(n/2) + n/\log n \).
- \(T(n) = T(\sqrt{n}) + 1 \).
- \(T(n) = \sqrt{n}T(\sqrt{n}) + n \).
- \(T(n) = T(n/4) + T(3n/4) + n \).
Closest Pair - the problem

Input Given a set S of n points on the plane

Goal Find $p, q \in S$ such that $d(p, q)$ is minimum

Algorithm:
One can compute closest pair points in the plane in $O(n \log n)$ time using divide and conquer.

Median selection

Problem
Given list L of n numbers, and a number k find kth smallest number in n.

- Quick Sort can be modified to solve it (but worst case running time is quadratic (if lucky linear time)).
- Seen divide & conquer algorithm...
 Involved, but linear running time.

Recursive algorithm for Selection

A feast for recursion

```
select(A, j):
    n = |A|
    if n <= 10 then
        Compute jth smallest element in A using brute force.
    Form lists $L_1, L_2, \ldots, L_{\lceil n/5 \rceil}$ where $L_i = \{A[5i - 4], \ldots, A[5i]\}$
    Find median $b_i$ of each $L_i$ using brute-force
    $B$ is the array of $b_1, b_2, \ldots, b_{\lceil n/5 \rceil}$.
    $b = select(B, \lceil n/10 \rceil)$
    Partition $A$ into $A_{\text{less or equal}}$ and $A_{\text{greater}}$ using $b$ as pivot
    if $|A_{\text{less or equal}}| = j$ then
        return $b$
    if $|A_{\text{less or equal}}| > j$ then
        return $select(A_{\text{less or equal}}, j)$
    else
        return $select(A_{\text{greater}}, j - |A_{\text{less or equal}}|)$
```

Back to Recursion

Seen some simple recursive algorithms:
- Binary search.
- Fast exponentiation.
- Fibonacci numbers.
- Maximum weight independent set.