NP Completeness and Cook-Levin Theorem

Lecture 22
April 17, 2013
\(P \) and \(NP \) and Turing Machines

1. **P**: set of decision problems that have polynomial time algorithms.

2. **NP**: set of decision problems that have polynomial time non-deterministic algorithms.

Question: What is an algorithm? Depends on the model of computation!

What is our model of computation?

Formally speaking our model of computation is Turing Machines.
P and NP and Turing Machines

1. **P**: set of decision problems that have polynomial time algorithms.

2. **NP**: set of decision problems that have polynomial time non-deterministic algorithms.

Question: What is an algorithm? Depends on the model of computation!

What is our model of computation?

Formally speaking our model of computation is Turing Machines.
P and **NP** and Turing Machines

1. **P**: set of decision problems that have polynomial time algorithms.
2. **NP**: set of decision problems that have polynomial time non-deterministic algorithms.

Question: What is an algorithm? Depends on the model of computation!

What is our model of computation?

Formally speaking our model of computation is Turing Machines.
1. **P**: set of decision problems that have polynomial time algorithms.

2. **NP**: set of decision problems that have polynomial time non-deterministic algorithms.

Question: What is an algorithm? Depends on the model of computation!

What is our model of computation?

Formally speaking our model of computation is Turing Machines.
P and NP and Turing Machines

1. **P**: set of decision problems that have polynomial time algorithms.

2. **NP**: set of decision problems that have polynomial time non-deterministic algorithms.

Question: What is an algorithm? Depends on the model of computation!

What is our model of computation?

Formally speaking our model of computation is Turing Machines.
Turing Machines: Recap

1. Infinite tape.
2. Finite state control.
3. Input at beginning of tape.
4. Special tape letter “blank” \square.
5. Head can move only one cell to left or right.
Turing Machines: Formally

A Turing Machine $M = (Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}})$:

1. Q is set of states in finite control
2. q_0 start state, q_{accept} is accept state, q_{reject} is reject state
3. Σ is input alphabet, Γ is tape alphabet (includes \sqcup)
4. $\delta : Q \times \Gamma \rightarrow \{L, R\} \times \Gamma \times Q$ is transition function
 1. $\delta(q, a) = (q', b, L)$ means that M in state q and head seeing a on tape will move to state q' while replacing a on tape with b and head moves left.

$L(M)$: language accepted by M is set of all input strings s on which M accepts; that is:

1. TM is started in state q_0.
2. Initially, the tape head is located at the first cell.
3. The tape contain s on the tape followed by blanks.
4. The TM halts in the state q_{accept}.
Definition

M is a polynomial time TM if there is some polynomial $p(\cdot)$ such that on all inputs w, M halts in $p(|w|)$ steps.

Definition

L is a language in P iff there is a polynomial time TM M such that $L = L(M)$.
Definition

L is an **NP** language iff there is a *non-deterministic* polynomial time **TM** M such that $L = L(M)$.

Non-deterministic TM: each step has a choice of moves

1. $\delta : Q \times \Gamma \rightarrow \mathcal{P}(Q \times \Gamma \times \{L, R\})$.

 Example: $\delta(q, a) = \{(q_1, b, L), (q_2, c, R), (q_3, a, R)\}$ means that M can non-deterministically choose one of the three possible moves from (q, a).

2. $L(M)$: set of all strings s on which there exists some sequence of valid choices at each step that lead from q_0 to q_{accept}.
NP via TMs

Definition

L is an NP language iff there is a *non-deterministic* polynomial time TM M such that $L = L(M)$.

Non-deterministic TM: each step has a choice of moves

1. $\delta : Q \times \Gamma \rightarrow \mathcal{P}(Q \times \Gamma \times \{L, R\})$.

 Example: $\delta(q, a) = \{(q_1, b, L), (q_2, c, R), (q_3, a, R)\}$ means that M can non-deterministically choose one of the three possible moves from (q, a).

2. $L(M)$: set of all strings s on which there exists some sequence of valid choices at each step that lead from q_0 to q_{accept}.
Non-deterministic TMs vs certifiers

Two definition of **NP**:
1. \(L \) is in **NP** iff \(L \) has a polynomial time certifier \(C(\cdot, \cdot) \).
2. \(L \) is in **NP** iff \(L \) is decided by a non-deterministic polynomial time TM \(M \).

Claim
Two definitions are equivalent.

Why?
Informal proof idea: the certificate \(t \) for \(C \) corresponds to non-deterministic choices of \(M \) and vice-versa.
In other words \(L \) is in **NP** iff \(L \) is accepted by a **NTM** which first guesses a proof \(t \) of length poly in input \(|s|\) and then acts as a deterministic TM.
A non-deterministic machine has choices at each step and accepts a string if there exists a set of choices which lead to a final state.

Equivalently the choices can be thought of as guessing a solution and then verifying that solution. In this view all the choices are made a priori and hence the verification can be deterministic. The “guess” is the “proof” and the “verifier” is the “certifier”.

We reemphasize the asymmetry inherent in the definition of non-determinism. Strings in the language can be easily verified. No easy way to verify that a string is not in the language.
Why do we use **TMs** some times and **RAM** Model other times?

1. **TMs** are very simple: no complicated instruction set, no jumps/pointers, no explicit loops etc.
 1. Simplicity is useful in proofs.
 2. The “right” formal bare-bones model when dealing with subtleties.

2. **RAM** model is a closer approximation to the running time/space usage of realistic computers for reasonable problem sizes
 1. Not appropriate for certain kinds of formal proofs when algorithms can take super-polynomial time and space
Question

What is the hardest problem in \textbf{NP}? How do we define it?

Towards a definition

1. Hardest problem must be in \textbf{NP}.
2. Hardest problem must be at least as "difficult" as every other problem in \textbf{NP}.
Definition

A problem X is said to be NP-Complete if

1. $X \in \text{NP}$, and
2. (Hardness) For any $Y \in \text{NP}$, $Y \leq_{P} X$.
Proposition

Suppose X is NP-Complete. Then X can be solved in polynomial time if and only if $P = NP$.

Proof.

\Rightarrow Suppose X can be solved in polynomial time

1. Let $Y \in NP$. We know $Y \leq_P X$.
2. We showed that if $Y \leq_P X$ and X can be solved in polynomial time, then Y can be solved in polynomial time.
3. Thus, every problem $Y \in NP$ is such that $Y \in P$; $NP \subseteq P$.
4. Since $P \subseteq NP$, we have $P = NP$.

\Leftarrow Since $P = NP$, and $X \in NP$, we have a polynomial time algorithm for X.

Sariel, Alexandra (UIUC)
CS473
Spring 2013
NP-Hard Problems

Definition

A problem X is said to be **NP-Hard** if:

1. **(Hardness)** For any $Y \in \text{NP}$, we have that $Y \leq_P X$.

An **NP-Hard** problem need not be in **NP**!

Example: Halting problem is **NP-Hard** (why?) but not **NP-Complete**.
Consequences of proving **NP-Completeness**

If **X** is **NP-Complete**

1. Since we believe $P \neq NP$,
2. and solving X implies $P = NP$.

X is **unlikely** to be efficiently solvable.

At the very least, many smart people before you have failed to find an efficient algorithm for X.

(This is proof by mob opinion — take with a grain of salt.)
Consequences of proving NP-Completeness

If X is NP-Complete

1. Since we believe $P \neq NP$,
2. and solving X implies $P = NP$.

X is unlikely to be efficiently solvable.

At the very least, many smart people before you have failed to find an efficient algorithm for X.

(This is proof by mob opinion — take with a grain of salt.)
If X is NP-Complete

1. Since we believe $P \neq NP$, and solving X implies $P = NP$.

X is unlikely to be efficiently solvable.

At the very least, many smart people before you have failed to find an efficient algorithm for X.

(This is proof by mob opinion — take with a grain of salt.)
Consequences of proving NP-Completeness

If X is NP-Complete

1. Since we believe $P \neq NP$,
2. and solving X implies $P = NP$.

X is unlikely to be efficiently solvable.

At the very least, many smart people before you have failed to find an efficient algorithm for X.
(This is proof by mob opinion — take with a grain of salt.)
Are there any problems that are NP-Complete?

Yes! Many, many problems are NP-Complete.
Circuits

Definition

A circuit is a directed *acyclic* graph with

1. **Input** vertices (without incoming edges) labelled with 0, 1 or a distinct variable.
2. Every other vertex is labelled ∨, ∧ or ¬.
3. Single node **output** vertex with no outgoing edges.
A circuit is a directed *acyclic* graph with

1. **Input** vertices (without incoming edges) labelled with 0, 1 or a distinct variable.
2. Every other vertex is labelled ∨, ∧ or ¬.
3. Single node output vertex with no outgoing edges.
Circuits

Definition

A circuit is a directed acyclic graph with:

1. **Input** vertices (without incoming edges) labelled with 0, 1 or a distinct variable.
2. Every other vertex is labelled ∨, ∧ or ¬.
3. Single node **output** vertex with no outgoing edges.
Definition (Circuit Satisfaction (CSAT).)

Given a circuit as input, is there an assignment to the input variables that causes the output to get value 1?

Theorem (Cook-Levin)

CSAT is NP-Complete.

Need to show

1. CSAT is in NP.
2. every NP problem X reduces to CSAT.
Claim

CSAT is in NP.

1. **Certificate:** Assignment to input variables.
2. **Certifier:** Evaluate the value of each gate in a topological sort of DAG and check the output gate value.
Claim

CSAT is in **NP**.

1. **Certificate**: Assignment to input variables.
2. **Certifier**: Evaluate the value of each gate in a topological sort of **DAG** and check the output gate value.
CSAT is NP-hard: Idea

Need to show that every NP problem X reduces to CSAT.

What does it mean that $X \in \text{NP}$?

$X \in \text{NP}$ implies that there are polynomials $p()$ and $q()$ and certifier/verifier program C such that for every string s the following is true:

1. If s is a YES instance ($s \in X$) then there is a proof t of length $p(|s|)$ such that $C(s, t)$ says YES.
2. If s is a NO instance ($s \not\in X$) then for every string t of length at $p(|s|)$, $C(s, t)$ says NO.
3. $C(s, t)$ runs in time $q(|s| + |t|)$ time (hence polynomial time).
Reducing \textbf{X} to \textbf{CSAT}

\textbf{X} is in \textbf{NP} means we have access to \(p()\), \(q()\), \(C(\cdot, \cdot)\).

What is \(C(\cdot, \cdot)\)? It is a program or equivalently a Turing Machine!

How are \(p()\) and \(q()\) given? As numbers.

Example: if 3 is given then \(p(n) = n^3\).

Thus an \textbf{NP} problem is essentially a three tuple \(\langle p, q, C \rangle\) where \(C\) is either a program or a \textbf{TM}.
Reducing X to $CSAT$

Thus an \textbf{NP} problem is essentially a three tuple $\langle p, q, C \rangle$ where C is either a program or \textbf{TM}.

Problem X: Given string s, is $s \in X$?

Same as the following: is there a proof t of length $p(|s|)$ such that $C(s, t)$ says YES.

How do we reduce X to $CSAT$? Need an algorithm \mathcal{A} that

1. takes s (and $\langle p, q, C \rangle$) and creates a circuit G in polynomial time in $|s|$ (note that $\langle p, q, C \rangle$ are fixed).
2. G is satisfiable if and only if there is a proof t such that $C(s, t)$ says YES.
Reducing X to CSAT

Thus an NP problem is essentially a three tuple $\langle p, q, C \rangle$ where C is either a program or TM.

Problem X: Given string s, is $s \in X$?

Same as the following: is there a proof t of length $p(|s|)$ such that $C(s, t)$ says YES.

How do we reduce X to CSAT? Need an algorithm A that

1. takes s (and $\langle p, q, C \rangle$) and creates a circuit G in polynomial time in $|s|$ (note that $\langle p, q, C \rangle$ are fixed).
2. G is satisfiable if and only if there is a proof t such that $C(s, t)$ says YES.
Reducing X to CSAT

Thus an NP problem is essentially a three tuple $\langle p, q, C \rangle$ where C is either a program or TM.

Problem X: Given string s, is $s \in X$?

Same as the following: is there a proof t of length $p(|s|)$ such that $C(s, t)$ says YES.

How do we reduce X to CSAT? Need an algorithm A that

1. Takes s (and $\langle p, q, C \rangle$) and creates a circuit G in polynomial time in $|s|$ (note that $\langle p, q, C \rangle$ are fixed).
2. G is satisfiable if and only if there is a proof t such that $C(s, t)$ says YES.
Reducing \(X \) to \(\text{CSAT} \)

Thus an \(\text{NP} \) problem is essentially a three tuple \(\langle p, q, C \rangle \) where \(C \) is either a program or \(\text{TM} \).

Problem \(X \): Given string \(s \), is \(s \in X \)?

Same as the following: is there a proof \(t \) of length \(p(|s|) \) such that \(C(s, t) \) says YES.

How do we reduce \(X \) to \(\text{CSAT} \)? Need an algorithm \(A \) that

1. takes \(s \) (and \(\langle p, q, C \rangle \)) and creates a circuit \(G \) in polynomial time in \(|s| \) (note that \(\langle p, q, C \rangle \) are fixed).

2. \(G \) is satisfiable if and only if there is a proof \(t \) such that \(C(s, t) \) says YES.
Reducing \mathbf{X} to \mathbf{CSAT}

Thus an \mathbf{NP} problem is essentially a three tuple $\langle p, q, C \rangle$ where C is either a program or \mathbf{TM}.

Problem X: Given string s, is $s \in X$?

Same as the following: is there a proof t of length $p(|s|)$ such that $C(s, t)$ says YES.

How do we reduce \mathbf{X} to \mathbf{CSAT}? Need an algorithm \mathcal{A} that

1. takes s (and $\langle p, q, C \rangle$) and creates a circuit G in polynomial time in $|s|$ (note that $\langle p, q, C \rangle$ are fixed).
2. G is satisfiable if and only if there is a proof t such that $C(s, t)$ says YES.
Reducing X to CSAT

How do we reduce X to CSAT? Need an algorithm \(\mathcal{A} \) that

1. takes \(s \) (and \(\langle p, q, C \rangle \)) and creates a circuit \(G \) in polynomial time in \(|s| \) (note that \(\langle p, q, C \rangle \) are fixed).

2. \(G \) is satisfiable if and only if there is a proof \(t \) such that \(C(s, t) \) says YES

Simple but Big Idea: Programs are essentially the same as Circuits!

1. Convert \(C(s, t) \) into a circuit \(G \) with \(t \) as unknown inputs (rest is known including \(s \))

2. We know that \(|t| = p(|s|) \) so express boolean string \(t \) as \(p(|s|) \) variables \(t_1, t_2, \ldots, t_k \) where \(k = p(|s|) \).

3. Asking if there is a proof \(t \) that makes \(C(s, t) \) say YES is same as whether there is an assignment of values to “unknown” variables \(t_1, t_2, \ldots, t_k \) that will make \(G \) evaluate to true/YES.
Reducing X to CSAT

How do we reduce X to CSAT? Need an algorithm A that

1. takes s (and ⟨p, q, C⟩) and creates a circuit G in polynomial time in |s| (note that ⟨p, q, C⟩ are fixed).

2. G is satisfiable if and only if there is a proof t such that C(s, t) says YES

Simple but Big Idea: Programs are essentially the same as Circuits!

1. Convert C(s, t) into a circuit G with t as unknown inputs (rest is known including s)

2. We know that |t| = p(|s|) so express boolean string t as p(|s|) variables t₁, t₂, ..., tₖ where k = p(|s|).

3. Asking if there is a proof t that makes C(s, t) say YES is same as whether there is an assignment of values to “unknown” variables t₁, t₂, ..., tₖ that will make G evaluate to true/YES.
Reducing \(X \) to \(\text{CSAT} \)

How do we reduce \(X \) to \(\text{CSAT} \)? Need an algorithm \(\mathcal{A} \) that

1. takes \(s \) (and \(\langle p, q, C \rangle \)) and creates a circuit \(G \) in polynomial time in \(|s| \) (note that \(\langle p, q, C \rangle \) are fixed).

2. \(G \) is satisfiable if and only if there is a proof \(t \) such that \(C(s, t) \) says YES

Simple but Big Idea: Programs are essentially the same as Circuits!

1. Convert \(C(s, t) \) into a circuit \(G \) with \(t \) as unknown inputs (rest is known including \(s \))

2. We know that \(|t| = p(|s|) \) so express boolean string \(t \) as \(p(|s|) \) variables \(t_1, t_2, \ldots, t_k \) where \(k = p(|s|) \).

3. Asking if there is a proof \(t \) that makes \(C(s, t) \) say YES is same as whether there is an assignment of values to “unknown” variables \(t_1, t_2, \ldots, t_k \) that will make \(G \) evaluate to true/YES.
Reducing \(X \) to \(\text{CSAT} \)

How do we reduce \(X \) to \(\text{CSAT} \)? Need an algorithm \(A \) that

1. takes \(s \) (and \(\langle p, q, C \rangle \)) and creates a circuit \(G \) in polynomial time in \(|s|\) (note that \(\langle p, q, C \rangle \) are fixed).

2. \(G \) is satisfiable if and only if there is a proof \(t \) such that \(C(s, t) \) says YES

Simple but Big Idea: Programs are essentially the same as Circuits!

1. Convert \(C(s, t) \) into a circuit \(G \) with \(t \) as unknown inputs (rest is known including \(s \))

2. We know that \(|t| = p(|s|)\) so express boolean string \(t \) as \(p(|s|) \) variables \(t_1, t_2, \ldots, t_k \) where \(k = p(|s|) \).

3. Asking if there is a proof \(t \) that makes \(C(s, t) \) say YES is same as whether there is an assignment of values to “unknown” variables \(t_1, t_2, \ldots, t_k \) that will make \(G \) evaluate to true/YES.
Reducing X to CSAT

How do we reduce X to CSAT? Need an algorithm A that

1. takes s (and $\langle p, q, C \rangle$) and creates a circuit G in polynomial time in $|s|$ (note that $\langle p, q, C \rangle$ are fixed).
2. G is satisfiable if and only if there is a proof t such that $C(s, t)$ says YES

Simple but Big Idea: Programs are essentially the same as Circuits!

1. Convert $C(s, t)$ into a circuit G with t as unknown inputs (rest is known including s)
2. We know that $|t| = p(|s|)$ so express boolean string t as $p(|s|)$ variables t_1, t_2, \ldots, t_k where $k = p(|s|)$.
3. Asking if there is a proof t that makes $C(s, t)$ say YES is same as whether there is an assignment of values to “unknown” variables t_1, t_2, \ldots, t_k that will make G evaluate to true/YES.
Example: **Independent Set**

1. **Problem:** Does $G = (V, E)$ have an **Independent Set** of size $\geq k$?
 - **Certificate:** Set $S \subseteq V$.
 - **Certifier:** Check $|S| \geq k$ and no pair of vertices in S is connected by an edge.

Formally, why is **Independent Set** in NP?
Example: **Independent Set**

1. **Problem:** Does \(G = (V, E) \) have an **Independent Set** of size \(\geq k \)?

2. **Certificate:** Set \(S \subseteq V \).

3. **Certifier:** Check \(|S| \geq k \) and no pair of vertices in \(S \) is connected by an edge.

Formally, why is **Independent Set** in **NP**?
Example: **Independent Set**

Formally why is **Independent Set** in **NP**?

1. **Input:**
 \[< n, y_1, y_2, \ldots, y_1, y_2, \ldots, y_{n, n}, k >\]
 encodes \[< G, k >\].

 1. \(n\) is number of vertices in \(G\).
 2. \(y_{i,j}\) is a bit which is 1 if edge \((i, j)\) is in \(G\) and 0 otherwise (adjacency matrix representation).
 3. \(k\) is size of independent set.

2. **Certificate:** \(t = t_1 t_2 \ldots t_n\). Interpretation is that \(t_i\) is 1 if vertex \(i\) is in the independent set, 0 otherwise.
Certifier for **Independent Set**

Certifier $C(s, t)$ for **Independent Set**:

if $(t_1 + t_2 + \ldots + t_n < k)$ then
 return NO
else
 for each (i, j) do
 if $(t_i \land t_j \land y_{i,j})$ then
 return NO

return YES
Example: Independent Set
A certifier circuit for Independent Set

Figure: Graph G with $k = 2$
Consider “program” A that takes $f(|s|)$ steps on input string s.

Question: What computer is the program running on and what does *step* mean?

Real computers difficult to reason with mathematically because

1. instruction set is too rich
2. pointers and control flow jumps in one step
3. assumption that pointer to code fits in one word

Turing Machines

1. simpler model of computation to reason with
2. can simulate real computers with *polynomial* slow down
3. all moves are *local* (head moves only one cell)
Consider “program” A that takes $f(|s|)$ steps on input string s.

Question: What computer is the program running on and what does *step* mean?

Real computers difficult to reason with mathematically because

- instruction set is too rich
- pointers and control flow jumps in one step
- assumption that pointer to code fits in one word

Turing Machines

- simpler model of computation to reason with
- can simulate real computers with *polynomial* slow down
- all moves are *local* (head moves only one cell)
Assume $C(\cdot, \cdot)$ is a (deterministic) Turing Machine M

Problem: Given M, input s, p, q decide if there is a proof t of length $p(|s|)$ such that M on s, t will halt in $q(|s|)$ time and say YES.

There is an algorithm A that can reduce above problem to CSAT mechanically as follows.

1. A first computes $p(|s|)$ and $q(|s|)$.
2. Knows that M can use at most $q(|s|)$ memory/tape cells
3. Knows that M can run for at most $q(|s|)$ time
4. Simulates the evolution of the state of M and memory over time using a big circuit.
Think of M’s state at time ℓ as a string $x^\ell = x_1x_2 \ldots x_k$ where each $x_i \in \{0, 1, B\} \times Q \cup \{q_{-1}\}$.

At time 0 the state of M consists of input string s a guess t (unknown variables) of length $p(|s|)$ and rest $q(|s|)$ blank symbols.

At time $q(|s|)$ we wish to know if M stops in q_{accept} with say all blanks on the tape.

We write a circuit C_ℓ which captures the transition of M from time ℓ to time $\ell + 1$.

Composition of the circuits for all times 0 to $q(|s|)$ gives a big (still poly) sized circuit C.

The final output of C should be true if and only if the entire state of M at the end leads to an accept state.
NP-Hardness of Circuit Satisfaction

Key Ideas in reduction:

1. Use **TM**s as the code for certifier for simplicity
2. Since **p()** and **q()** are known to **A**, it can set up all required memory and time steps in advance
3. Simulate computation of the **TM** from one time to the next as a circuit that only looks at three adjacent cells at a time

Note: Above reduction can be done to **SAT** as well. Reduction to **SAT** was the original proof of Steve Cook.
NP-Hardness of Circuit Satisfaction

Key Ideas in reduction:

1. Use **TM**s as the code for certifier for simplicity
2. Since **p()** and **q()** are known to \(\mathcal{A} \), it can set up all required memory and time steps in advance
3. Simulate computation of the **TM** from one time to the next as a circuit that only looks at three adjacent cells at a time

Note: Above reduction can be done to **SAT** as well. Reduction to **SAT** was the original proof of Steve Cook.
SAT is NP-Complete

1. We have seen that SAT ∈ NP

2. To show NP-Hardness, we will reduce Circuit Satisfiability (CSAT) to SAT

Instance of CSAT (we label each node):

```
Inputs:
1, a  ?, b  ?, c  0, d  ?, e
```

```
Outputs:
∧, k
¬, i  ∧, j
∧, f  ∨, g  ∨, h
```

Sariel, Alexandra (UIUC) CS473 Spring 2013
Converting a circuit into a **CNF** formula

Label the nodes

(A) Input circuit

(B) Label the nodes.
Converting a circuit into a **CNF** formula

Introduce a variable for each node

(B) Label the nodes.

(C) Introduce var for each node.
Converting a circuit into a **CNF** formula

Write a sub-formula for each variable that is true if the var is computed correctly.

\[x_k \quad \text{(Demand a sat' assignment!)} \]
\[x_k = x_i \land x_k \]
\[x_j = x_g \land x_h \]
\[x_i = \neg x_f \]
\[x_h = x_d \lor x_e \]
\[x_g = x_b \lor x_c \]
\[x_f = x_a \land x_b \]
\[x_d = 0 \]
\[x_e = 1 \]

(C) Introduce var for each node.

(D) Write a sub-formula for each variable that is true if the var is computed correctly.

\[x_a \]
\[x_b \]
\[x_c \]
\[x_d \]
\[x_e \]
Converting a circuit into a **CNF** formula

Convert each sub-formula to an equivalent **CNF** formula

<table>
<thead>
<tr>
<th>x_k</th>
<th>x_k</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x_k = x_i \land x_j$</td>
<td>$(\neg x_k \lor x_i) \land (\neg x_k \lor x_j) \land (x_k \lor \neg x_i \lor \neg x_j)$</td>
</tr>
<tr>
<td>$x_j = x_g \land x_h$</td>
<td>$(\neg x_j \lor x_g) \land (\neg x_j \lor x_h) \land (x_j \lor \neg x_g \lor \neg x_h)$</td>
</tr>
<tr>
<td>$x_i = \neg x_f$</td>
<td>$(x_i \lor x_f) \land (\neg x_i \lor x_f)$</td>
</tr>
<tr>
<td>$x_h = x_d \lor x_e$</td>
<td>$(x_h \lor \neg x_d) \land (x_h \lor \neg x_e) \land (\neg x_h \lor x_d \lor x_e)$</td>
</tr>
<tr>
<td>$x_g = x_b \lor x_c$</td>
<td>$(x_g \lor \neg x_b) \land (x_g \lor \neg x_c) \land (\neg x_g \lor x_b \lor x_c)$</td>
</tr>
<tr>
<td>$x_f = x_a \land x_b$</td>
<td>$(\neg x_f \lor x_a) \land (\neg x_f \lor x_b) \land (x_f \lor \neg x_a \lor \neg x_b)$</td>
</tr>
<tr>
<td>$x_d = 0$</td>
<td>$\neg x_d$</td>
</tr>
<tr>
<td>$x_a = 1$</td>
<td>x_a</td>
</tr>
</tbody>
</table>
Converting a circuit into a \textbf{CNF} formula

Take the conjunction of all the CNF sub-formulas

We got a \textbf{CNF} formula that is satisfiable if and only if the original circuit is satisfiable.
Reduction: $\text{CSAT} \leq_p \text{SAT}$

1. For each gate (vertex) v in the circuit, create a variable x_v

2. Case \neg: v is labeled \neg and has one incoming edge from u (so $x_v = \neg x_u$). In SAT formula generate, add clauses $(x_u \lor x_v)$, $(\neg x_u \lor \neg x_v)$. Observe that

$$x_v = \neg x_u \text{ is true } \iff (x_u \lor x_v) \land (\neg x_u \lor \neg x_v) \text{ both true.}$$
Case \lor: So $x_v = x_u \lor x_w$. In SAT formula generated, add clauses $(x_v \lor \neg x_u)$, $(x_v \lor \neg x_w)$, and $(\neg x_v \lor x_u \lor x_w)$. Again, observe that

$$(x_v = x_u \lor x_w) \text{ is true } \iff (x_v \lor \neg x_u), \quad (x_v \lor \neg x_w), \quad (\neg x_v \lor x_u \lor x_w) \text{ all true.}$$
Reduction: \(\text{CSAT} \leq_p \text{SAT} \)

Continued...

1. Case \(\land \): So \(x_v = x_u \land x_w \). In \text{SAT} formula generated, add clauses \((\neg x_v \lor x_u), (\neg x_v \lor x_w)\), and \((x_v \lor \neg x_u \lor \neg x_w)\). Again observe that

\[
x_v = x_u \land x_w \text{ is true } \iff (\neg x_v \lor x_u), (\neg x_v \lor x_w), \text{ all true.}
\]
Reduction: $\text{CSAT} \leq^p \text{SAT}$

Continued...

1. If v is an input gate with a fixed value then we do the following. If $x_v = 1$ add clause x_v. If $x_v = 0$ add clause $\neg x_v$

2. Add the clause x_v where v is the variable for the output gate
Correctness of Reduction

Need to show circuit \mathbf{C} is satisfiable iff φ_C is satisfiable

⇒ Consider a satisfying assignment \mathbf{a} for \mathbf{C}
 1. Find values of all gates in \mathbf{C} under \mathbf{a}
 2. Give value of gate \mathbf{v} to variable x_v; call this assignment \mathbf{a}'
 3. \mathbf{a}' satisfies φ_C (exercise)

⇐ Consider a satisfying assignment \mathbf{a} for φ_C
 1. Let \mathbf{a}' be the restriction of \mathbf{a} to only the input variables
 2. Value of gate \mathbf{v} under \mathbf{a}' is the same as value of x_v in \mathbf{a}
 3. Thus, \mathbf{a}' satisfies \mathbf{C}

Theorem

\mathbf{SAT} \textit{is} NP-Complete.
Proving that a problem X is NP-Complete

To prove X is NP-Complete, show:

1. Show X is in NP.
 - certificate/proof of polynomial size in input
 - polynomial time certifier $C(s,t)$

2. Reduction from a known NP-Complete problem such as CSAT or SAT to X

$\text{SAT} \leq_P X$ implies that every NP problem $Y \leq_P X$. Why?

Transitivity of reductions:

$Y \leq_P \text{SAT}$ and $\text{SAT} \leq_P X$ and hence $Y \leq_P X$.
Proving that a problem X is NP-Complete

To prove X is NP-Complete, show

1. Show X is in NP.
 - certificate/proof of polynomial size in input
 - polynomial time certifier $C(s, t)$

2. Reduction from a known NP-Complete problem such as CSAT or SAT to X

SAT $\leq_p X$ implies that every NP problem $Y \leq_p X$. Why?

Transitivity of reductions:

$Y \leq_p SAT$ and $SAT \leq_p X$ and hence $Y \leq_p X$.

Sariel, Alexandra (UIUC) CS473 42

Spring 2013 42 / 43
Proving that a problem X is NP-Complete

To prove X is NP-Complete, show

1. Show X is in NP.
 - certificate/proof of polynomial size in input
 - polynomial time certifier $C(s, t)$

2. Reduction from a known NP-Complete problem such as CSAT or SAT to X

SAT $\leq_p X$ implies that every NP problem $Y \leq_p X$. Why?
Transitivity of reductions:

$Y \leq_p SAT$ and $SAT \leq_p X$ and hence $Y \leq_p X$.
NP-Completeness via Reductions

1. CSAT is NP-Complete.
2. CSAT \leq_P SAT and SAT is in NP and hence SAT is NP-Complete.
3. SAT \leq_P 3-SAT and hence 3-SAT is NP-Complete.
4. 3-SAT \leq_P Independent Set (which is in NP) and hence Independent Set is NP-Complete.
5. Vertex Cover is NP-Complete.
6. Clique is NP-Complete.

Hundreds and thousands of different problems from many areas of science and engineering have been shown to be NP-Complete.

A surprisingly frequent phenomenon!
NP-Completeness via Reductions

1. **CSAT** is NP-Complete.

2. **CSAT \leq_P SAT** and **SAT** is in **NP** and hence **SAT** is NP-Complete.

3. **SAT \leq_P 3-SAT** and hence 3-SAT is **NP-Complete**.

4. **3-SAT \leq_P Independent Set** (which is in **NP**) and hence **Independent Set** is NP-Complete.

5. **Vertex Cover** is NP-Complete.

6. **Clique** is NP-Complete.

Hundreds and thousands of different problems from many areas of science and engineering have been shown to be **NP-Complete**.

A surprisingly frequent phenomenon!