Chapter 16

Network Flows

CS 473: Fundamental Algorithms, Spring 2013
March 15, 2013

16.0.0.1 Everything flows

Panta rei – everything flows (literally).
 Heraclitus (535–475 BC)

16.1 Network Flows: Introduction and Setup

16.1.0.2 Transportation/Road Network

16.1.0.3 Internet Backbone Network

16.1.0.4 Common Features of Flow Networks

(A) _Network_ represented by a (directed) graph \(G = (V, E) \).
(B) Each edge \(e \) has a _capacity_ \(c(e) \geq 0 \) that limits amount of _traffic_ on \(e \).
(C) _Source(s)_ of traffic/data.
(D) _Sink(s)_ of traffic/data.
(E) Traffic _flows_ from sources to sinks.
(F) Traffic is switched/interchanged at nodes. Flow abstract term to indicate stuff (traffic/data/etc) that flows from sources to sinks.

16.1.0.5 Single Source/Single Sink Flows

Simple setting:
(A) Single source s and single sink t.
(B) Every other node v is an internal node.
(C) Flow originates at s and terminates at t.

(A) Each edge e has a capacity \(c(e) \geq 0 \).
(B) Sometimes assume:
Source \(s \in V \) has no incoming edges, and sink \(t \in V \) has no outgoing edges.

Assumptions: All capacities are integer, and every vertex has at least one edge incident to it.

16.1.0.6 Definition of Flow

Two ways to define flows:
(A) edge based, or
(B) path based.
Essentially equivalent but have different uses.

Edge based definition is more compact.

16.1.0.7 Edge Based Definition of Flow

Definition 16.1.1. Flow in network \(G = (V, E) \), is function \(f : E \rightarrow \mathbb{R}^{\geq 0} \) s.t.
16.1.0.8 Flow...

Conservation of flow law is also known as *Kirchhoff’s law*.

16.1.0.9 More Definitions and Notation

Notation

(A) The inflow into a vertex \(v \) is \(f^{\text{in}}(v) = \sum_{e \text{ into } v} f(e) \) and the outflow is \(f^{\text{out}}(v) = \sum_{e \text{ out of } v} f(e) \).

(B) For a set of vertices \(A \), \(f^{\text{in}}(A) = \sum_{e \text{ into } A} f(e) \). Outflow \(f^{\text{out}}(A) \) is defined analogously.

Definition 16.1.2. For a network \(G = (V, E) \) with source \(s \), the value of flow \(f \) is defined as \(v(f) = f^{\text{out}}(s) - f^{\text{in}}(s) \).

16.1.0.10 A Path Based Definition of Flow

Intuition: Flow goes from source \(s \) to sink \(t \) along a path.

\(\mathcal{P} \): set of all paths from \(s \) to \(t \). \(|\mathcal{P}\)| can be exponential in \(n \).

Definition 16.1.3 (Flow by paths.). A flow in network \(G = (V, E) \), is function \(f : \mathcal{P} \to \mathbb{R}^\geq 0 \) s.t.

(A) **Capacity Constraint:** For each edge \(e \), total flow on \(e \) is \(\leq c(e) \).

\[\sum_{p \in \mathcal{P} : e \in p} f(p) \leq c(e) \]

(B) **Conservation Constraint:** No need! Automatic.

Value of flow: \(\sum_{p \in \mathcal{P}} f(p) \).
16.1.0.11 Example

\[P = \{p_1, p_2, p_3\} \]
\[p_1 : s \rightarrow u \rightarrow t \]
\[p_2 : s \rightarrow u \rightarrow v \rightarrow t \]
\[p_3 : s \rightarrow v \rightarrow t \]
\[f(p_1) = 10, f(p_2) = 4, f(p_3) = 6 \]

16.1.0.12 Path based flow implies edge based flow

Lemma 16.1.4. Given a path based flow \(f : \mathcal{P} \rightarrow \mathbb{R}_{\geq 0} \) there is an edge based flow \(f' : E \rightarrow \mathbb{R}_{\geq 0} \) of the same value.

Proof: For each edge \(e \) define \(f'(e) = \sum_{p \in \mathcal{P}} f(p) \).

Exercise: Verify capacity and conservation constraints for \(f' \).

Exercise: Verify that value of \(f \) and \(f' \) are equal

16.1.0.13 Example

\[\mathcal{P} = \{p_1, p_2, p_3\} \]
\[p_1 : s \rightarrow u \rightarrow t \]
\[p_2 : s \rightarrow u \rightarrow v \rightarrow t \]
\[p_3 : s \rightarrow v \rightarrow t \]
\[f(p_1) = 10, f(p_2) = 4, f(p_3) = 6 \]
\[f'(s \rightarrow u) = 14 \]
\[f'(u \rightarrow v) = 4 \]
\[f'(s \rightarrow v) = 6 \]
\[f'(u \rightarrow t) = 10 \]
\[f'(v \rightarrow t) = 10 \]
16.1.1 Flow Decomposition

16.1.1.1 Edge based flow to Path based Flow

Lemma 16.1.5. Given an edge based flow $f' : E \to \mathbb{R}^{\geq 0}$, there is a path based flow $f : \mathcal{P} \to \mathbb{R}^{\geq 0}$ of same value. Moreover, f assigns non-negative flow to at most m paths where $|E| = m$ and $|V| = n$. Given f', the path based flow can be computed in $O(mn)$ time.

16.1.2 Flow Decomposition

16.1.2.1 Edge based flow to Path based Flow

Proof:[Proof Idea]
(A) Remove all edges with $f'(e) = 0$.
(B) Find a path p from s to t.
(C) Assign $f(p)$ to be $\min_{e \in p} f'(e)$.
(D) Reduce $f'(e)$ for all $e \in p$ by $f(p)$.
(E) Repeat until no path from s to t.
(F) In each iteration at least one edge has flow reduced to zero.
(G) Hence, at most m iterations. Can be implemented in $O(m(m + n))$ time. $O(mn)$ time requires care.

16.1.2.2 Example

16.1.2.3 Edge vs Path based Definitions of Flow

Edge based flows:
(A) compact representation, only m values to be specified, and
(B) need to check flow conservation explicitly at each internal node.

Path flows:
(A) in some applications, paths more natural,
(B) not compact,
(C) no need to check flow conservation constraints.
Equivalence shows that we can go back and forth easily.

16.1.2.4 The Maximum-Flow Problem

Problem

Input A network G with capacity c and source s and sink t.

Goal Find flow of maximum value.

Question: Given a flow network, what is an upper bound on the maximum flow between source and sink?

16.1.2.5 Cuts

Definition 16.1.6 (s-t cut). Given a flow network an s-t cut is a set of edges $E' \subset E$ such that removing E' disconnects s from t: in other words there is no directed $s \rightarrow t$ path in $E - E'$.

The capacity of a cut E' is $c(E') = \sum_{e \in E'} c(e)$.

Caution:
(A) Cut may leave $t \rightarrow s$ paths!
(B) There might be many s-t cuts.

16.1.3 s – t cuts

16.1.3.1 A death by a thousand cuts
16.1.3.2 Minimal Cut

Definition 16.1.7 (Minimal s-t cut). Given a s-t flow network $G = (V, E)$, $E' \subseteq E$ is a minimal cut if for all $e \in E'$, if $E' \setminus \{e\}$ is not a cut.

Observation: given a cut E', can check efficiently whether E' is a minimal cut or not. How?

16.1.3.3 Cuts as Vertex Partitions

Let $A \subset V$ such that
(A) $s \in A$, $t \notin A$, and
(B) $B = V \setminus A$ (hence $t \in B$).

The cut (A, B) is the set of edges

$$(A, B) = \{(u, v) \in E \mid u \in A, v \in B\}.$$

Cut (A, B) is set of edges leaving A.

Claim 16.1.8. (A, B) is an s-t cut.

Proof: Let P be any $s \rightarrow t$ path in G. Since t is not in A, P has to leave A via some edge (u, v) in (A, B).

16.1.3.4 Cuts as Vertex Partitions

Lemma 16.1.9. Suppose E' is an s-t cut. Then there is a cut (A, B) such that $(A, B) \subseteq E'$.

Proof: E' is an s-t cut implies no path from s to t in $(V, E - E')$.
(A) Let A be set of all nodes reachable by s in $(V, E - E')$.
(B) Since E' is a cut, $t \notin A$.
(C) $(A, B) \subseteq E'$. Why? If some edge $(u, v) \in (A, B)$ is not in E' then v will be reachable by s and should be in A, hence a contradiction.

Corollary 16.1.10. Every minimal s-t cut E' is a cut of the form (A, B).

16.1.3.5 Minimum Cut

Definition 16.1.11. Given a flow network an s-t minimum cut is a cut E' of smallest capacity amongst all s-t cuts.

Observation: exponential number of s-t cuts and no “easy” algorithm to find a minimum cut.

16.1.3.6 The Minimum-Cut Problem

Problem

Input A flow network G

Goal Find the capacity of a minimum s-t cut

16.1.3.7 Flows and Cuts

Lemma 16.1.12. For any s-t cut E', maximum s-t flow \leq capacity of E'.

Proof: Formal proof easier with path based definition of flow.

Suppose $f : \mathcal{P} \rightarrow \mathbb{R}_{\geq 0}$ is a max-flow. Every path $p \in \mathcal{P}$ contains an edge $e \in E'$. Why?

Assign each path $p \in \mathcal{P}$ to exactly one edge $e \in E'$. Let \mathcal{P}_e be paths assigned to $e \in E'$. Then

$$v(f) = \sum_{p \in \mathcal{P}} f(p) = \sum_{e \in E'} \sum_{p \in \mathcal{P}_e} f(p) \leq \sum_{e \in E'} c(e).$$

16.1.3.8 Flows and Cuts

Lemma 16.1.13. For any s-t cut E', maximum s-t flow \leq capacity of E'.

Corollary 16.1.14. Maximum s-t flow \leq minimum s-t cut.
16.1.3.9 Max-Flow Min-Cut Theorem

Theorem 16.1.15. In any flow network the maximum s-t flow is equal to the minimum s-t cut.

Can compute minimum-cut from maximum flow and vice-versa!
Proof coming shortly.
Many applications:
(A) optimization
(B) graph theory
(C) combinatorics

16.1.3.10 The Maximum-Flow Problem

Problem

Input A network G with capacity c and source s and sink t.

Goal Find flow of maximum value from s to t.

Exercise: Given G, s, t as above, show that one can remove all edges into s and all edges out of t without affecting the flow value between s and t.