Chapter 6

Recurrences, Closest Pair and Selection

CS 473: Fundamental Algorithms, Spring 2013
February 7, 2013

6.1 Recurrences

6.1.0.1 Solving Recurrences

Two general methods:
(A) Recursion tree method: need to do sums
 (A) elementary methods, geometric series
 (B) integration
(B) Guess and Verify
 (A) guessing involves intuition, experience and trial & error
 (B) verification is via induction

6.1.0.2 Recurrence: Example I

(A) Consider $T(n) = 2T(n/2) + n/ \log n$.
(B) Construct recursion tree, and observe pattern. ith level has 2^i nodes, and problem size
 at each node is $n/2^i$ and hence work at each node is $\frac{n}{2^i}/ \log \frac{n}{2^i}$.
(C) Summing over all levels

\[T(n) = \sum_{i=0}^{\log n - 1} 2^i \left\lfloor \frac{(n/2^i)}{\log(n/2^i)} \right\rfloor \]

\[= \sum_{i=0}^{\log n - 1} \frac{n}{\log n - i} \]

\[= n \sum_{j=1}^{\log n} \frac{1}{j} = nH_{\log n} = \Theta(n \log \log n) \]

6.1.0.3 Recurrence: Example II

(A) Consider...
(B) What is the depth of recursion? \(\sqrt{n}, \sqrt[4]{n}, \sqrt[8]{n}, \ldots, O(1)\).
(C) Number of levels: \(n^{2^{-L}} = 2\) means \(L = \log \log n\).
(D) Number of children at each level is 1, work at each node is 1
(E) Thus, \(T(n) = \sum_{i=0}^{L} 1 = \Theta(L) = \Theta(\log \log n)\).

6.1.0.4 Recurrence: Example III

(A) Consider \(T(n) = \sqrt{n}T(\sqrt{n}) + n\).
(B) Using recursion trees: number of levels \(L = \log \log n\)
(C) Work at each level? Root is \(n\), next level is \(\sqrt{n} \times \sqrt{n} = n\), so on. Can check that each level is \(n\).
(D) Thus, \(T(n) = \Theta(n \log \log n)\)

6.1.0.5 Recurrence: Example IV

(A) Consider \(T(n) = T(n/4) + T(3n/4) + n\).
(B) Using recursion tree, we observe the tree has leaves at different levels (a lop-sided tree).
(C) Total work in any level is at most \(n\). Total work in any level without leaves is exactly \(n\).
(D) Highest leaf is at level \(\log_4 n\) and lowest leaf is at level \(\log_{4/3} n\)
(E) Thus, \(n \log_4 n \leq T(n) \leq n \log_{4/3} n\), which means \(T(n) = \Theta(n \log \log n)\)

6.2 Closest Pair

6.2.1 The Problem

6.2.1.1 Closest Pair - the problem

Input Given a set \(S\) of \(n\) points on the plane

Goal Find \(p, q \in S\) such that \(d(p, q)\) is minimum
6.2.1.2 Applications

(A) Basic primitive used in graphics, vision, molecular modelling
(B) Ideas used in solving nearest neighbor, Voronoi diagrams, Euclidean MST

6.2.2 Algorithmic Solution

6.2.2.1 Algorithm: Brute Force

(A) Compute distance between every pair of points and find minimum.
(B) Takes $O(n^2)$ time.
(C) Can we do better?

6.2.3 Special Case

6.2.3.1 Closest Pair: 1-d case

Input Given a set S of n points on a line

Goal Find $p, q \in S$ such that $d(p, q)$ is minimum

Algorithm
(A) Sort points based on coordinate
(B) Compute the distance between successive points, keeping track of the closest pair.
Running time $O(n \log n)$ Can we do this in better running time? Can reduce Distinct Elements Problem (see lecture 1) to this problem in $O(n)$ time. Do you see how?

6.2.3.2 Generalizing 1-d case

Can we generalize 1-d algorithm to 2-d?
Sort according to x or y-coordinate??
No easy generalization.
6.2.4 Divide and Conquer

6.2.4.1 First Attempt
Divide and Conquer I
(A) Partition into 4 quadrants of roughly equal size. **Not always!**
(B) Find closest pair in each quadrant recursively
(C) Combine solutions

6.2.4.2 New Algorithm
Divide and Conquer II
(A) Divide the set of points into two equal parts via vertical line
(B) Find closest pair in each half recursively
(C) Find closest pair with one point in each half
(D) Return the best pair among the above 3 solutions

6.2.5 Towards a fast solution

6.2.5.1 New Algorithm
Divide and Conquer II
(A) Divide the set of points into two equal parts via vertical line
(B) Find closest pair in each half recursively
(C) Find closest pair with one point in each half
(D) Return the best pair among the above 3 solutions
(A) Sort points based on x-coordinate and pick the median. Time = $O(n \log n)$

(B) How to find closest pair with points in different halves? $O(n^2)$ is trivial. Better?

6.2.5.2 Combining Partial Solutions

(A) Does it take $O(n^2)$ to combine solutions?

(B) Let δ be the distance between closest pairs, where both points belong to the same half.

6.2.5.3 Combining Partial Solutions

(A) Let δ be the distance between closest pairs, where both points belong to the same half.

(B) Need to consider points within δ of dividing line
6.2.5.4 Sparsity of Band XXX

Divide the band into square boxes of size $\delta/2$

Lemma 6.2.1. Each box has at most one point

Proof: If not, then there are a pair of points (both belonging to one half) that are at most $\sqrt{2}\delta/2 < \delta$ apart!

6.2.5.5 Searching within the Band

Lemma 6.2.2. Suppose a, b are both in the band $d(a, b) < \delta$ then a, b have at most two rows of boxes between them.

Proof: Each row of boxes has height $\delta/2$. If more than two rows then $d(a, b) > 2 \cdot \delta/2$!

6.2.5.6 Searching within the Band

Corollary 6.2.3. Order points according to their y-coordinate. If p, q are such that $d(p, q) < \delta$ then p and q are within 11 positions in the sorted list.

Proof:

(A) ≤ 2 points between them if p and q in same row.

(B) ≤ 6 points between them if p and q in two consecutive rows.

(C) ≤ 10 points between if p and q one row apart.

(D) \implies More than ten points between them in the sorted y order than p and q are more than two rows apart.

(E) $\implies d(p, q) > \delta$. A contradiction. ■
6.2.5.7 The Algorithm

\[
\text{ClosestPair}(P):
\begin{align*}
1. & \quad \text{Find vertical line } L \text{ splits } P \text{ into equal halves: } P_1 \text{ and } P_2 \\
2. & \quad \delta_1 \leftarrow \text{ClosestPair}(P_1) \\
3. & \quad \delta_2 \leftarrow \text{ClosestPair}(P_2) \\
4. & \quad \delta = \min(\delta_1, \delta_2) \\
5. & \quad \text{Delete points from } P \text{ further than } \delta \text{ from } L \\
6. & \quad \text{Sort } P \text{ based on } y\text{-coordinate into an array } A \\
7. & \quad \text{for } i = 1 \text{ to } |A| - 1 \text{ do} \\
& \quad \quad \text{for } j = i + 1 \text{ to } \min(i + 11, |A|) \text{ do} \\
& \quad \quad \quad \text{if } \text{ dist}(A[i], A[j]) < \delta \text{ update } \delta \text{ and closest pair}
\end{align*}
\]

(A) Step 1, involves sorting and scanning. Takes \(O(n \log n)\) time.
(B) Step 5 takes \(O(n)\) time.
(C) Step 6 takes \(O(n \log n)\) time.
(D) Step 7 takes \(O(n)\) time.

6.2.6 Running Time Analysis

6.2.6.1 Running Time

The running time of the algorithm is given by

\[T(n) \leq 2T(n/2) + O(n \log n) \]

Thus, \(T(n) = O(n \log^2 n)\). Improved Algorithm: Avoid repeated sorting of points in band: two options

(A) Sort all points by \(y\)-coordinate and store the list. In conquer step use this to avoid sorting

(B) Each recursive call returns a list of points sorted by their \(y\)-coordinates. Merge in conquer step in linear time.

Analysis: \(T(n) \leq 2T(n/2) + O(n) = O(n \log n)\)

6.3 Selecting in Unsorted Lists

6.3.1 Quick Sort

6.3.1.1 Quick Sort

Quick Sort [Hoare]

(A) Pick a pivot element from array

(B) Split array into 3 subarrays: those smaller than pivot, those larger than pivot, and the pivot itself. Linear scan of array does it. Time is \(O(n)\)

(C) Recursively sort the subarrays, and concatenate them.

Example:

(A) array: 16, 12, 14, 20, 5, 3, 18, 19, 1
6.3.1.2 Time Analysis

(A) Let \(k \) be the rank of the chosen pivot. Then, \(T(n) = T(k-1) + T(n-k) + O(n) \)

(B) If \(k = \lceil n/2 \rceil \) then \(T(n) = T(\lceil n/2 \rceil - 1) + T(\lfloor n/2 \rfloor) + O(n) \leq 2T(n/2) + O(n) \). Then, \(T(n) = O(n \log n) \).

(A) Theoretically, median can be found in linear time.

(C) Typically, pivot is the first or last element of array. Then,

\[
T(n) = \max_{1 \leq k \leq n} (T(k-1) + T(n-k) + O(n))
\]

In the worst case \(T(n) = T(n-1) + O(n) \), which means \(T(n) = O(n^2) \). Happens if array is already sorted and pivot is always first element.

6.3.2 Selection
6.3.2.1 Problem - Selection

Input Unsorted array \(A \) of \(n \) integers

Goal Find the \(j \)th smallest number in \(A \) (rank \(j \) number)

Example 6.3.1. \(A = \{4, 6, 2, 1, 5, 8, 7\} \) and \(j = 4 \). The \(j \)th smallest element is 5.

Median: \(j = \lceil (n + 1)/2 \rceil \)

6.3.3 Naïve Algorithm
6.3.3.1 Algorithm I

(A) Sort the elements in \(A \)
(B) Pick \(j \)th element in sorted order
 Time taken = \(O(n \log n) \)
 Do we need to sort? Is there an \(O(n) \) time algorithm?

6.3.3.2 Algorithm II

If \(j \) is small or \(n-j \) is small then
(A) Find \(j \) smallest/largest elements in \(A \) in \(O(jn) \) time. (How?)
(B) Time to find median is \(O(n^2) \).
6.3.4 Divide and Conquer

6.3.4.1 Divide and Conquer Approach

(A) Pick a pivot element \(a \) from \(A \)
(B) Partition \(A \) based on \(a \).
\[A_{\text{less}} = \{ x \in A \mid x \leq a \} \text{ and } A_{\text{greater}} = \{ x \in A \mid x > a \} \]
(C) \(|A_{\text{less}}| = j \): return \(a \)
(D) \(|A_{\text{less}}| > j \): recursively find \(j \)th smallest element in \(A_{\text{less}} \)
(E) \(|A_{\text{less}}| < j \): recursively find \(k \)th smallest element in \(A_{\text{greater}} \) where \(k = j - |A_{\text{less}}| \).

6.3.4.2 Time Analysis

(A) Partitioning step: \(O(n) \) time to scan \(A \)
(B) How do we choose pivot? Recursive running time?
 Suppose we always choose pivot to be \(A[1] \).
 Say \(A \) is sorted in increasing order and \(j = n \).

 Exercise: show that algorithm takes \(\Omega(n^2) \) time

6.3.4.3 A Better Pivot

Suppose pivot is the \(\ell \)th smallest element where \(n/4 \leq \ell \leq 3n/4 \).
That is pivot is \emph{approximately} in the middle of \(A \) Then \(n/4 \leq |A_{\text{less}}| \leq 3n/4 \) and \(n/4 \leq |A_{\text{greater}}| \leq 3n/4 \). If we apply recursion,
\[T(n) \leq T(3n/4) + O(n) \]
Implies \(T(n) = O(n) \)!
 How do we find such a pivot? Randomly? In fact works!
 Analysis a little bit later.
 Can we choose pivot deterministically?

6.3.5 Median of Medians

6.3.6 Divide and Conquer Approach

6.3.6.1 A game of medians

Idea

(A) Break input \(A \) into many subarrays: \(L_1, \ldots L_k \).
(B) Find median \(m_i\) in each subarray \(L_i\).
(C) Find the median \(x\) of the medians \(m_1, \ldots, m_k\).
(D) Intuition: The median \(x\) should be close to being a good median of all the numbers in \(A\).
(E) Use \(x\) as pivot in previous algorithm.

But we have to be...

More specific...

(A) Size of each group?
(B) How to find median of medians?

6.3.7 Choosing the pivot

6.3.7.1 A clash of medians

(A) Partition array \(A\) into \([n/5]\) lists of 5 items each.
\(L_1 = \{A[1], A[2], \ldots, A[5]\}\), \(L_2 = \{A[6], \ldots, A[10]\}\), \ldots, \(L_i = \{A[5i + 1], \ldots, A[5i - 4]\}\),
\ldots, \(L_{[n/5]} = \{A[5[n/5] - 4], \ldots, A[n]\}\).
(B) For each \(i\) find median \(b_i\) of \(L_i\) using brute-force in \(O(1)\) time. Total \(O(n)\) time
(C) Let \(B = \{b_1, b_2, \ldots, b_{[n/5]}\}\)
(D) Find median \(b\) of \(B\)

Lemma 6.3.2. Median of \(B\) is an approximate median of \(A\). That is, if \(b\) is used a pivot to partition \(A\), then \(|A_{\text{less}}| \leq 7n/10 + 6\) and \(|A_{\text{greater}}| \leq 7n/10 + 6\).

6.3.8 Algorithm for Selection

6.3.8.1 A storm of medians

\begin{verbatim}
select(A, j):
 Form lists \(L_1, L_2, \ldots, L_{[n/5]}\) where \(L_i = \{A[5i - 4], \ldots, A[5i]\}\)
 Find median \(b_i\) of each \(L_i\) using brute-force
 Find median \(b\) of \(B = \{b_1, b_2, \ldots, b_{[n/5]}\}\)
 Partition \(A\) into \(A_{\text{less}}\) and \(A_{\text{greater}}\) using \(b\) as pivot
 if \((|A_{\text{less}}|) = j\) return \(b\)
 else if \((|A_{\text{less}}|) > j\)
 return select(\(A_{\text{less}}, j\))
 else
 return select(\(A_{\text{greater}}, j - |A_{\text{less}}|\))
\end{verbatim}

How do we find median of \(B\)? Recursively!
6.3.9 Running time of deterministic median selection

6.3.9.1 A dance with recurrences

\[T(n) = T(\lceil n/5 \rceil) + \max\{T(|A_{\text{less}}|), T(|A_{\text{greater}}|)\} + O(n) \]

From Lemma,

\[T(n) \leq T(\lceil n/5 \rceil) + T(\lceil 7n/10 + 6 \rceil) + O(n) \]

and

\[T(1) = 1 \]

Exercise: show that \(T(n) = O(n) \)

Lemma 6.3.3. For \(T(n) \leq T(\lceil n/5 \rceil) + T(\lceil 7n/10 + 6 \rceil) + O(n) \), it holds that \(T(n) = O(n) \).

Proof: We claim that \(T(n) \leq cn \), for some constant \(c \). We have that \(T(i) \leq c \) for all \(i = 1, \ldots, 1000 \), by picking \(c \) to be sufficiently large. This implies the base of the induction. Similarly, we can assume that the \(O(n) \) in the above recurrence is smaller than \(cn/100 \), by picking \(c \) to be sufficiently large.

So, assume the claim holds for any \(i < n \), and we will prove it for \(n \). By induction, we have

\[T(n) \leq T(\lceil n/5 \rceil) + T(\lceil 7n/10 + 6 \rceil) + O(n) \]

\[\leq c(n/5 + 1) + c(7n/10 + 6) + cn/100 \]

\[= cn(1/5 + 7/10 + 1/100 + 1/n + 6/n) \leq cn, \]

for \(n > 1000 \).

6.3.9.2 Median of Medians: Proof of Lemma

![Figure 6.1: Shaded elements are all greater than \(b \)](image)

Proposition 6.3.4. There are at least \(3n/10 - 6 \) elements greater than the median of medians \(b \).

Proof: At least half of the \(\lceil n/5 \rceil \) groups have at least 3 elements larger than \(b \), except for last group and the group containing \(b \). So \(b \) is less than

\[3(\lceil (1/2)\lceil n/5 \rceil \rceil - 2) \geq 3n/10 - 6 \]

Figure 6.1: Shaded elements are all greater than \(b \)
6.3.9.3 Median of Medians: Proof of Lemma

Proposition 6.3.5. There are at least \(\frac{3n}{10} - 6 \) elements greater than the median of medians \(b \).

Corollary 6.3.6. \(|A_{\text{less}}| \leq \frac{7n}{10} + 6 \).

Via symmetric argument,

Corollary 6.3.7. \(|A_{\text{greater}}| \leq \frac{7n}{10} + 6 \).

6.3.9.4 Questions to ponder

(A) Why did we choose lists of size 5? Will lists of size 3 work?

(B) Write a recurrence to analyze the algorithm’s running time if we choose a list of size \(k \).

6.3.9.5 Median of Medians Algorithm

Due to M. Blum, R. Floyd, D. Knuth, V. Pratt, R. Rivest, and R. Tarjan.

“Time bounds for selection”.

How many Turing Award winners in the author list?

All except Vaughn Pratt!

6.3.9.6 Takeaway Points

(A) Recursion tree method and guess and verify are the most reliable methods to analyze recursions in algorithms.

(B) Recursive algorithms naturally lead to recurrences.

(C) Sometimes one can look for certain type of recursive algorithms (reverse engineering) by understanding recurrences and their behavior.