4.1. Recurrences
Solve the following recurrences.
(A) \(T(n) = 5T(n/4) + n \) and \(T(n) = 1 \) for \(1 \leq n < 4 \).
(B) \(T(n) = 2T(n/2) + n \log n \)
(C) \(T(n) = 2T(n/2) + 3T(n/3) + n^2 \)

4.2. Tree Traversal.
Let \(T \) be a rooted binary tree on \(n \) nodes. The nodes have unique labels from 1 to \(n \).
(A) Given the preorder and postorder node sequences for \(T \), give a recursive algorithm to
reconstruct a tree that satisfies the preorder and postorder sequences. Is this recon-
struction unique?
(B) Given the preorder and inorder node sequences for \(T \), give a recursive algorithm to re-
construct a tree that satisfies the preorder and inorder sequences. Is this reconstruction
unique?

4.3. Divide and Conquer.
Let \(p = (x, y) \) and \(p’ = (x’, y’) \) be two points in the Euclidean plane given by their coordi-
nates. We say that \(p \) dominates \(p’ \) if and only if \(x > x’ \) and \(y > y’ \). Given a set of \(n \) points
\(P = \{p_1, \ldots, p_n\} \), a point \(p_i \in P \) is undominated in \(P \) if there is no other point \(p_j \in P \)
such that \(p_j \) dominates \(p_i \). Describe an algorithm that given \(P \) outputs all the undominated
points in \(P \); see figure. Your algorithm should run in time asymptotically faster than \(O(n^2) \).

4.4. Merging arrays.
Suppose you are given \(k \) sorted arrays \(A_1, A_2, \ldots, A_k \) where each array contains \(n \) elements.
The goal is to merge all the arrays into a single sorted array \(A \) of \(kn \) elements. Given two

![Figure 1: The undominated points are shown as unfilled circles.](image-url)
sorted arrays of size x and y respectively, you know that they can be merged into a single sorted array in $O(x + y)$ time.

(A) Suppose you use the following algorithm for merging the k arrays. Merge A_1 and A_2. Merge the resulting array with A_3 and the result with A_4 and so on. What is the running time of this algorithm as a function of k and n?

(B) Give a more efficient algorithm using divide and conquer.

(C) Consider the following modification to the merge sort algorithm. Instead of splitting the input array into 2 subarrays, recursively sorting each and merging the 2 sorted subarrays, we will split the input array into k subarrays, recursively sort each (using the modified algorithm), and merge the k sorted subarrays. How does the running time of the modified algorithm compare to that of the original algorithm?

4.5. **Convex Hull**

You are given a set P of n points in the plane, and you would like to compute their convex-hull (i.e., that is the shortest perimeter polygon that contains all the points). To see how the convex-hull looks like, think about the plane as being a wood board, and place a nail at each point. Now, you shrink a rubber band around the points. The rubber shrinks into the convex-hull. Clearly, the vertices of the convex-hull are a subset of the input points. Show an $O(n \log n)$ time algorithm for computing the convex-hull. (Hint: Split the plane by a vertical line, compute the convex-hulls on both sides, and then figure out how to stitch the two convex-hulls together. To get a handle on this stitching problem, find closest points in the x-axis between the two hulls, and climb up to the stitching bridges.)