Network Flow Algorithms

Lecture 17
March 27, 2012
Part I

Algorithm(s) for Maximum Flow
Greedy Approach

1. Begin with $f(e) = 0$ for each edge
2. Find a s-t path P with $f(e) < c(e)$ for every edge $e \in P$
3. Augment flow along this path
4. Repeat augmentation for as long as possible.
Greedy Approach

1. Begin with $f(e) = 0$ for each edge.
2. Find a $s-t$ path P with $f(e) < c(e)$ for every edge $e \in P$.
3. Augment flow along this path.
4. Repeat augmentation for as long as possible.
Greedy Approach

1. Begin with \(f(e) = 0 \) for each edge
2. Find a s-t path \(P \) with \(f(e) < c(e) \) for every edge \(e \in P \)
3. Augment flow along this path
4. Repeat augmentation for as long as possible.
Greedy Approach

1. Begin with $f(e) = 0$ for each edge
2. Find a s-t path P with $f(e) < c(e)$ for every edge $e \in P$
3. Augment flow along this path
4. Repeat augmentation for as long as possible.
Greedy Approach: Issues

Issues = What is this nonsense?

1. Begin with $f(e) = 0$ for each edge
2. Find a s-t path P with $f(e) < c(e)$ for every edge $e \in P$
3. Augment flow along this path
4. Repeat augmentation for as long as possible.

Greedy can get stuck in sub-optimal flow!
Need to “push-back” flow along edge (u, v)
Greedy Approach: Issues

Issues = What is this nonsense?

1. Begin with $f(e) = 0$ for each edge
2. Find a s-t path P with $f(e) < c(e)$ for every edge $e \in P$
3. Augment flow along this path
4. Repeat augmentation for as long as possible.

Greedy can get stuck in sub-optimal flow!
Need to “push-back” flow along edge (u, v)
Greedy Approach: Issues

Issues = What is this nonsense?

1. Begin with $f(e) = 0$ for each edge
2. Find a s-t path P with $f(e) < c(e)$ for every edge $e \in P$
3. Augment flow along this path
4. Repeat augmentation for as long as possible.

Greedy can get stuck in sub-optimal flow!

Need to “push-back” flow along edge (u, v)
Greedy Approach: Issues

Issues = What is this nonsense?

1. Begin with $f(e) = 0$ for each edge
2. Find a s-t path P with $f(e) < c(e)$ for every edge $e \in P$
3. Augment flow along this path
4. Repeat augmentation for as long as possible.

Greedy can get stuck in sub-optimal flow!

Need to “push-back” flow along edge (u, v)
Greedy Approach: Issues

Issues = What is this nonsense?

1. Begin with $f(e) = 0$ for each edge
2. Find a s-t path P with $f(e) < c(e)$ for every edge $e \in P$
3. Augment flow along this path
4. Repeat augmentation for as long as possible.

Greedy can get stuck in sub-optimal flow!
Need to “push-back” flow along edge (u, v)
Greedy Approach: Issues

Issues = What is this nonsense?

1. Begin with $f(e) = 0$ for each edge
2. Find a s-t path P with $f(e) < c(e)$ for every edge $e \in P$
3. Augment flow along this path
4. Repeat augmentation for as long as possible.

Greedy can get stuck in sub-optimal flow!
Need to “push-back” flow along edge (u, v)
Residual Graph
The “leftover” graph

Definition
For a network $G = (V, E)$ and flow f, the residual graph $G_f = (V', E')$ of G with respect to f is

- $V' = V$
- **Forward Edges:** For each edge $e \in E$ with $f(e) < c(e)$, we add $e \in E'$ with capacity $c(e) - f(e)$
- **Backward Edges:** For each edge $e = (u, v) \in E$ with $f(e) > 0$, we add $(v, u) \in E'$ with capacity $f(e)$
Residual Graph
The “leftover” graph

Definition
For a network $G = (V, E)$ and flow f, the residual graph $G_f = (V', E')$ of G with respect to f is

- $V' = V$
- **Forward Edges**: For each edge $e \in E$ with $f(e) < c(e)$, we add $e \in E'$ with capacity $c(e) - f(e)$
- **Backward Edges**: For each edge $e = (u, v) \in E$ with $f(e) > 0$, we add $(v, u) \in E'$ with capacity $f(e)$
Residual Graph

The “leftover” graph

Definition

For a network $G = (V, E)$ and flow f, the residual graph $G_f = (V', E')$ of G with respect to f is

- $V' = V$
- **Forward Edges:** For each edge $e \in E$ with $f(e) < c(e)$, we add $e \in E'$ with capacity $c(e) - f(e)$
- **Backward Edges:** For each edge $e = (u, v) \in E$ with $f(e) > 0$, we add $(v, u) \in E'$ with capacity $f(e)$
Residual Graph Example

Figure: Flow on edges is indicated in red

Figure: Residual Graph
Observation: Residual graph captures the “residual” problem exactly.

Lemma
Let f be a flow in G and G_f be the residual graph. If f' is a flow in G_f then $f + f'$ is a flow in G of value $v(f) + v(f')$.

Lemma
Let f and f' be two flows in G with $v(f') \geq v(f)$. Then there is a flow f'' of value $v(f') - v(f)$ in G_f.

Definition of $+$ and $-$ for flows is intuitive and the above lemmas are easy in some sense but a bit messy to formally prove.
Residual Graph Property

Observation: Residual graph captures the “residual” problem exactly.

Lemma

Let f be a flow in G and G_f be the residual graph. If f' is a flow in G_f then $f + f'$ is a flow in G of value $v(f) + v(f')$.

Lemma

Let f and f' be two flows in G with $v(f') \geq v(f)$. Then there is a flow f'' of value $v(f') - v(f)$ in G_f.

Definition of $+$ and $-$ for flows is intuitive and the above lemmas are easy in some sense but a bit messy to formally prove.
Residual Graph Property

Observation: Residual graph captures the “residual” problem exactly.

Lemma

Let f be a flow in G and G_f be the residual graph. If f' is a flow in G_f then $f + f'$ is a flow in G of value $v(f) + v(f')$.

Lemma

Let f and f' be two flows in G with $v(f') \geq v(f)$. Then there is a flow f'' of value $v(f') - v(f)$ in G_f.

Definition of $+$ and $-$ for flows is intuitive and the above lemmas are easy in some sense but a bit messy to formally prove.
Residual Graph Property

Observation: Residual graph captures the “residual” problem exactly.

Lemma

Let f be a flow in G and G_f be the residual graph. If f' is a flow in G_f then $f + f'$ is a flow in G of value $v(f) + v(f')$.

Definition of + and - for flows is intuitive and the above lemmas are easy in some sense but a bit messy to formally prove.
Residual Graph Property: Implication

Recursive algorithm for finding a maximum flow:

\[
\text{MaxFlow}(G, s, t):
\]
\[
\begin{align*}
\text{If the flow from } s \text{ to } t \text{ is 0} & \quad \text{return 0} \\
\text{Find any flow } f \text{ with } v(f) > 0 \text{ in } G & \\
\text{Recursively compute a maximum flow } f' \text{ in } G_f & \\
\text{Output the flow } f + f' &
\end{align*}
\]

Iterative algorithm for finding a maximum flow:

\[
\text{MaxFlow}(G, s, t):
\]
\[
\begin{align*}
\text{Start with flow } f \text{ that is 0 on all edges} & \\
\text{While there is a flow } f' \text{ in } G_f \text{ with } v(f') > 0 \text{ do} & \\
\quad f = f + f' & \\
\quad \text{Update } G_f & \\
\text{endWhile} & \\
\text{Output } f &
\end{align*}
\]
Residual Graph Property: Implication

Recursive algorithm for finding a maximum flow:

\[
\text{MaxFlow}(G, s, t):
\]
\[
\begin{align*}
&\quad \text{If the flow from } s \text{ to } t \text{ is 0} \\
&\quad \quad \text{return 0} \\
&\quad \text{Find any flow } f \text{ with } v(f) > 0 \text{ in } G \\
&\quad \text{Recursively compute a maximum flow } f' \text{ in } G_f \\
&\quad \text{Output the flow } f + f'
\end{align*}
\]

Iterative algorithm for finding a maximum flow:

\[
\text{MaxFlow}(G, s, t):
\]
\[
\begin{align*}
&\quad \text{Start with flow } f \text{ that is 0 on all edges} \\
&\quad \text{While there is a flow } f' \text{ in } G_f \text{ with } v(f') > 0 \text{ do} \\
&\quad \quad f = f + f' \\
&\quad \quad \text{Update } G_f \\
&\quad \text{endWhile} \\
&\text{Output } f
\end{align*}
\]
Ford-Fulkerson Algorithm

```plaintext
algFordFulkerson

for every edge \( e \), \( f(e) = 0 \)

\( G_f \) is residual graph of \( G \) with respect to \( f \)

while \( G_f \) has a simple \( s-t \) path do

let \( P \) be simple \( s-t \) path in \( G_f \)

\( f = \text{augment}(f, P) \)

Construct new residual graph \( G_f \)
```

```plaintext
augment(f,P)

let \( b \) be bottleneck capacity, i.e., min capacity of edges in \( P \) (in \( G_f \))

for each edge \( (u,v) \) in \( P \) do

if \( e = (u,v) \) is a forward edge then

\( f(e) = f(e) + b \)

else (* \( (u,v) \) is a backward edge *)

let \( e = (v,u) \) (* \( (v,u) \) is in \( G \) *)

\( f(e) = f(e) - b \)

return \( f \)
```
Ford-Fulkerson Algorithm

algFordFulkerson

for every edge \(e \), \(f(e) = 0 \)

\(G_f \) is residual graph of \(G \) with respect to \(f \)

while \(G_f \) has a simple \(s-t \) path do

let \(P \) be simple \(s-t \) path in \(G_f \)

\(f = \text{augment}(f, P) \)

Construct new residual graph \(G_f \)

augment(\(f, P \))

let \(b \) be bottleneck capacity,
i.e., min capacity of edges in \(P \) (in \(G_f \))

for each edge \((u, v) \) in \(P \) do

if \(e = (u, v) \) is a forward edge then

\(f(e) = f(e) + b \)

else (* \((u, v) \) is a backward edge *)

let \(e = (v, u) \) (* \((v, u) \) is in \(G \) *)

\(f(e) = f(e) - b \)

return \(f \)
Example
Example continued
Example continued
Example continued

![Graph Example](image)

1. **Graph 1**: The graph shows two paths from s to t. Path 1 has a total weight of 30 (10 + 20 + 10) and Path 2 has a total weight of 45 (10 + 20 + 10 + 15).

2. **Graph 2**: The graph shows a path from s to t. The path has a total weight of 30 (10 + 20 + 10).

3. **Graph 3**: The graph shows a path from s to t. The path has a total weight of 45 (10 + 20 + 10 + 15).

4. **Graph 4**: The graph shows a path from s to t. The path has a total weight of 30 (10 + 20 + 10).
Lemma

If f is a flow and P is a simple s-t path in G_f, then $f' = \text{augment}(f, P)$ is also a flow.

Proof.

Verify that f' is a flow. Let b be augmentation amount.

- **Capacity constraint:** If $(u, v) \in P$ is a forward edge then $f'(e) = f(e) + b$ and $b \leq c(e) - f(e)$. If $(u, v) \in P$ is a backward edge, then letting $e = (v, u)$, $f'(e) = f(e) - b$ and $b \leq f(e)$. Both cases $0 \leq f'(e) \leq c(e)$.

- **Conservation constraint:** Let v be an internal node. Let e_1, e_2 be edges of P incident to v. Four cases based on whether e_1, e_2 are forward or backward edges. Check cases (see fig next slide).
Properties about Augmentation: Flow

Lemma

If f is a flow and P is a simple s-t path in G_f, then $f' = \text{augment}(f, P)$ is also a flow.

Proof.

Verify that f' is a flow. Let b be augmentation amount.

- Capacity constraint: If $(u, v) \in P$ is a forward edge then $f'(e) = f(e) + b$ and $b \leq c(e) - f(e)$. If $(u, v) \in P$ is a backward edge, then letting $e = (v, u)$, $f'(e) = f(e) - b$ and $b \leq f(e)$. Both cases $0 \leq f'(e) \leq c(e)$.

- Conservation constraint: Let v be an internal node. Let e_1, e_2 be edges of P incident to v. Four cases based on whether e_1, e_2 are forward or backward edges. Check cases (see fig next slide).
Properties about Augmentation: Flow

Lemma

If f is a flow and P is a simple s-t path in G_f, then $f' = \text{augment}(f, P)$ is also a flow.

Proof.

Verify that f' is a flow. Let b be augmentation amount.

- **Capacity constraint:** If $(u, v) \in P$ is a forward edge then $f'(e) = f(e) + b$ and $b \leq c(e) - f(e)$. If $(u, v) \in P$ is a backward edge, then letting $e = (v, u)$, $f'(e) = f(e) - b$ and $b \leq f(e)$. Both cases $0 \leq f'(e) \leq c(e)$.

- **Conservation constraint:** Let v be an internal node. Let e_1, e_2 be edges of P incident to v. Four cases based on whether e_1, e_2 are forward or backward edges. Check cases (see fig next slide).
Lemma

If \(f \) is a flow and \(P \) is a simple \(s-t \) path in \(G_f \), then \(f' = \text{augment}(f, P) \) is also a flow.

Proof.

Verify that \(f' \) is a flow. Let \(b \) be augmentation amount.

- **Capacity constraint:** If \((u, v) \in P \) is a forward edge then \(f'(e) = f(e) + b \) and \(b \leq c(e) - f(e) \). If \((u, v) \in P \) is a backward edge, then letting \(e = (v, u) \), \(f'(e) = f(e) - b \) and \(b \leq f(e) \). Both cases \(0 \leq f'(e) \leq c(e) \).

- **Conservation constraint:** Let \(v \) be an internal node. Let \(e_1, e_2 \) be edges of \(P \) incident to \(v \). Four cases based on whether \(e_1, e_2 \) are forward or backward edges. Check cases (see fig next slide).
Lemma

If f is a flow and P is a simple s-t path in G_f, then $f' = \text{augment}(f, P)$ is also a flow.

Proof.

Verify that f' is a flow. Let b be augmentation amount.

- **Capacity constraint:** If $(u, v) \in P$ is a forward edge then $f'(e) = f(e) + b$ and $b \leq c(e) - f(e)$. If $(u, v) \in P$ is a backward edge, then letting $e = (v, u)$, $f'(e) = f(e) - b$ and $b \leq f(e)$. Both cases $0 \leq f'(e) \leq c(e)$.

- **Conservation constraint:** Let v be an internal node. Let e_1, e_2 be edges of P incident to v. Four cases based on whether e_1, e_2 are forward or backward edges. Check cases (see fig next slide).
Properties about Augmentation: Conservation Constraint

Figure: Augmenting path P in G_f and corresponding change of flow in G. Red edges are backward edges.
Lemma

At every stage of the Ford-Fulkerson algorithm, the flow values $f(e)$ and the residual capacities in G_f are integers.

Proof.

Initial flow and residual capacities are integers. Suppose lemma holds for j iterations. Then in $(j + 1)$st iteration, minimum capacity edge b is an integer, and so flow after augmentation is an integer.
Proposition

Let \(f \) be a flow and \(f' \) be flow after one augmentation. Then \(v(f) < v(f') \).

Proof.

Let \(P \) be an augmenting path, i.e., \(P \) is a simple \(s-t \) path in residual graph.

- First edge \(e \) in \(P \) must leave \(s \).
- Original network \(G \) has no incoming edges to \(s \); hence \(e \) is a forward edge.
- \(P \) is simple and so never returns to \(s \).
- Thus, value of flow increases by the flow on edge \(e \).
Termination Proof

Theorem

Let C be the minimum cut value; in particular $C \leq \sum_{e \text{ out of } s} c(e)$. Ford-Fulkerson algorithm terminates after finding at most C augmenting paths.

Proof.

The value of the flow increases by at least 1 after each augmentation. Maximum value of flow is at most C.

Running time

- Number of iterations $\leq C$
- Number of edges in $G_f \leq 2m$
- Time to find augmenting path is $O(n + m)$
- Running time is $O(C(n + m))$ (or $O(mC)$).
Efficiency of Ford-Fulkerson

Running time $= \mathcal{O}(mC)$ is not polynomial. Can the running time be as $\Omega(mC)$ or is our analysis weak?

Ford-Fulkerson can take $\Omega(C)$ iterations.
Efficiency of Ford-Fulkerson

Running time $= O(mC)$ is not polynomial. Can the running time be as $\Omega(mC)$ or is our analysis weak?

Ford-Fulkerson can take $\Omega(C)$ iterations.
Efficiency of Ford-Fulkerson

Running time $= \mathbf{O}(mC)$ is not polynomial. Can the running time be as $\Omega(mC)$ or is our analysis weak?

Ford-Fulkerson can take $\Omega(C)$ iterations.
Correctness of Ford-Fulkerson Augmenting Path Algorithm

Question: When the algorithm terminates, is the flow computed the maximum s-t flow?

Proof idea: show a cut of value equal to the flow. Also shows that maximum flow is equal to minimum cut!
Correctness of Ford-Fulkerson Augmenting Path Algorithm

Question: When the algorithm terminates, is the flow computed the maximum \(s-t \) flow?

Proof idea: show a cut of value equal to the flow. Also shows that maximum flow is equal to minimum cut!
Recalling Cuts

Definition

Given a flow network an **s-t cut** is a set of edges $E' \subset E$ such that removing E' disconnects s from t: in other words there is no directed $s \rightarrow t$ path in $E - E'$. *Capacity of cut* E' is $\sum_{e \in E'} c(e)$.

Let $A \subset V$ such that
- $s \in A$, $t \notin A$
- $B = V - A$ and hence $t \in B$

Define $(A, B) = \{(u, v) \in E \mid u \in A, v \in B\}$

Claim

(A, B) is an **s-t cut**.

Recall: Every *minimal s-t cut* E' is a cut of the form (A, B).
Lemma

If there is no s-t path in G_f then there is some cut (A, B) such that $v(f) = c(A, B)$

Proof.
Let A be all vertices reachable from s in G_f; $B = V \setminus A$

- $s \in A$ and $t \in B$. So (A, B) is an s-t cut in G
- If $e = (u, v) \in G$ with $u \in A$ and $v \in B$, then $f(e) = c(e)$ (saturated edge) because otherwise v is reachable from s in G_f
Lemma

If there is no s-t path in G_f then there is some cut (A, B) such that v(f) = c(A, B)

Proof.

Let A be all vertices reachable from s in G_f; B = V \ A

- s ∈ A and t ∈ B. So (A, B) is an s-t cut in G
- If e = (u, v) ∈ G with u ∈ A and v ∈ B, then f(e) = c(e) (saturated edge) because otherwise v is reachable from s in G_f
Ford-Fulkerson Correctness

Lemma

If there is no s-t path in G_f then there is some cut (A, B) such that $v(f) = c(A, B)$

Proof.

Let A be all vertices reachable from s in G_f; $B = V \setminus A$

- $s \in A$ and $t \in B$. So (A, B) is an s-t cut in G
- If $e = (u, v) \in G$ with $u \in A$ and $v \in B$, then $f(e) = c(e)$ (saturated edge) because otherwise v is reachable from s in G_f
Ford-Fulkerson Correctness

Lemma

If there is no \(s-t \) path in \(G_f \) then there is some cut \((A, B)\) such that \(v(f) = c(A, B) \)

Proof.

Let \(A \) be all vertices reachable from \(s \) in \(G_f \); \(B = V \setminus A \)

- \(s \in A \) and \(t \in B \). So \((A, B)\) is an \(s-t \) cut in \(G \)
- If \(e = (u, v) \in G \) with \(u \in A \) and \(v \in B \), then \(f(e) = c(e) \) (saturated edge) because otherwise \(v \) is reachable from \(s \) in \(G_f \)
Proof.

- If $e = (u', v') \in G$ with $u' \in B$ and $v' \in A$, then $f(e) = 0$ because otherwise u' is reachable from s in G_f.
- Thus,

$$v(f) = f^{\text{out}}(A) - f^{\text{in}}(A)$$
$$= f^{\text{out}}(A) - 0$$
$$= c(A, B) - 0$$
$$= c(A, B)$$
Example

Flow f

Residual graph G_f: no s-t path

A is reachable set from s in G_f
Example

Flow f on graph G:

- s to t: 10
- s to t: 5
- s to t: 10
- s to t: 10
- s to t: 5
- s to t: 5
- s to t: 10
- s to t: 10
- s to t: 5
- s to t: 5
- s to t: 10
- s to t: 15
- s to t: 5
- s to t: 5
- s to t: 5
- s to t: 15
- s to t: 5

Residual graph G_f: no s-t path

A is reachable set from s in G_f
Theorem

The flow returned by the algorithm is the maximum flow.

Proof.

- For any flow f and s-t cut (A, B), $v(f) \leq c(A, B)$
- For flow f^* returned by algorithm, $v(f^*) = c(A^*, B^*)$ for some s-t cut (A^*, B^*)
- Hence, f^* is maximum
Max-Flow Min-Cut Theorem and Integrality of Flows

Theorem

For any network G, the value of a maximum s-t flow is equal to the capacity of the minimum s-t cut.

Proof.

Ford-Fulkerson algorithm terminates with a maximum flow of value equal to the capacity of a (minimum) cut.
Max-Flow Min-Cut Theorem and Integrality of Flows

Theorem

For any network G with integer capacities, there is a maximum s-t flow that is integer valued.

Proof.

Ford-Fulkerson algorithm produces an integer valued flow when capacities are integers.
Efficiency of Ford-Fulkerson

Running time $= \mathcal{O}(mC)$ is not polynomial. Can the upper bound be achieved?
Efficiency of Ford-Fulkerson

Running time $= O(mC)$ is not polynomial. Can the upper bound be achieved?

\[C \]

\[C \]

\[C \]

\[C \]

\[C - 1 \]

\[C \]

\[C - 1 \]

\[C \]
Efficiency of Ford-Fulkerson

Running time $= O(mC)$ is not polynomial. Can the upper bound be achieved?
Question: Is there a polynomial time algorithm for maxflow?

Question: Is there a variant of Ford-Fulkerson that leads to a polynomial time algorithm? Can we choose an augmenting path in some clever way? Yes! Two variants.

- Choose the augmenting path with largest bottleneck capacity.
- Choose the shortest augmenting path.
Question: Is there a polynomial time algorithm for maxflow?

Question: Is there a variant of Ford-Fulkerson that leads to a polynomial time algorithm? Can we choose an augmenting path in some clever way? Yes! Two variants.

- Choose the augmenting path with largest bottleneck capacity.
- Choose the shortest augmenting path.
Question: Is there a polynomial time algorithm for maxflow?

Question: Is there a variant of Ford-Fulkerson that leads to a polynomial time algorithm? Can we choose an augmenting path in some clever way? Yes! Two variants.

- Choose the augmenting path with largest bottleneck capacity.
- Choose the shortest augmenting path.
Augmenting Paths with Large Bottleneck Capacity

- Pick augmenting paths with largest bottleneck capacity in each iteration of Ford-Fulkerson.

- How do we find path with largest bottleneck capacity?
 - Assume we know Δ the bottleneck capacity.
 - Remove all edges with residual capacity $\leq \Delta$.
 - Check if there is a path from s to t.
 - Do binary search to find largest Δ.
 - Running time: $O(m \log C)$.

- Can we bound the number of augmentations? Can show that in $O(m \log C)$ augmentations the algorithm reaches a max flow. This leads to an $O(m^2 \log^2 C)$ time algorithm.
Pick augmenting paths with largest bottleneck capacity in each iteration of Ford-Fulkerson

How do we find path with largest bottleneck capacity?

- Assume we know Δ the bottleneck capacity
- Remove all edges with residual capacity $\leq \Delta$
- Check if there is a path from s to t
- Do binary search to find largest Δ
- Running time: $O(m \log C)$

Can we bound the number of augmentations? Can show that in $O(m \log C)$ augmentations the algorithm reaches a max flow. This leads to an $O(m^2 \log^2 C)$ time algorithm.
Augmenting Paths with Large Bottleneck Capacity

- Pick augmenting paths with largest bottleneck capacity in each iteration of Ford-Fulkerson

How do we find path with largest bottleneck capacity?
- Assume we know Δ the bottleneck capacity
- Remove all edges with residual capacity $\leq \Delta$
- Check if there is a path from s to t
- Do binary search to find largest Δ
- Running time: $O(m \log C)$

Can we bound the number of augmentations? Can show that in $O(m \log C)$ augmentations the algorithm reaches a max flow. This leads to an $O(m^2 \log^2 C)$ time algorithm.
Augmenting Paths with Large Bottleneck Capacity

How do we find path with largest bottleneck capacity?

- Max bottleneck capacity is one of the edge capacities. Why?
- Can do binary search on the edge capacities. First, sort the edges by their capacities and then do binary search on that array as before.
- Algorithm’s running time is $O(m \log m)$.
- Different algorithm that also leads to $O(m \log m)$ time algorithm by adapting Prim’s algorithm.
Removing Dependence on C

- [Edmonds-Karp, Dinitz] Picking augmenting paths with fewest number of edges yields a $O(m^2n)$ algorithm, i.e., independent of C. Such an algorithm is called a strongly polynomial time algorithm since the running time does not depend on the numbers (assuming RAM model). (Many implementation of Ford-Fulkerson would actually use shortest augmenting path if they use BFS to find an $s-t$ path).

- Further improvements can yield algorithms running in $O(mn \log n)$, or $O(n^3)$.
Finding a Minimum Cut

Question: How do we find an actual minimum \(s-t \) cut?

Proof gives the algorithm!

- Compute an \(s-t \) maximum flow \(f \) in \(G \)
- Obtain the residual graph \(G_f \)
- Find the nodes \(A \) reachable from \(s \) in \(G_f \)
- Output the cut \((A, B) = \{(u, v) | u \in A, v \in B\} \). Note: The cut is found in \(G \) while \(A \) is found in \(G_f \)

Running time is essentially the same as finding a maximum flow.

Note: Given \(G \) and a flow \(f \) there is a linear time algorithm to check if \(f \) is a maximum flow and if it is, outputs a minimum cut. How?
Finding a Minimum Cut

Question: How do we find an actual minimum s-t cut?

Proof gives the algorithm!

- Compute an s-t maximum flow f in G
- Obtain the residual graph G_f
- Find the nodes A reachable from s in G_f
- Output the cut $(A, B) = \{(u, v) \mid u \in A, v \in B\}$. Note: The cut is found in G while A is found in G_f

Running time is essentially the same as finding a maximum flow.

Note: Given G and a flow f there is a linear time algorithm to check if f is a maximum flow and if it is, outputs a minimum cut. How?